This application claims priority from Japanese Patent Application Nos. 2007-311678 filed on Nov. 30, 2007 and 2008-076550 filed on Mar. 24, 2008, the subject matter of which is incorporated herein by reference in its entirety.
Aspects of the present invention relate to an ink cartridge accommodating device including a mounting portion that can accommodate a plurality of ink cartridges arranged in a predetermined direction and sensors that are provided to correspond to the ink cartridges and optically detect information related to the ink cartridges.
An ink-jet recording apparatus uses ink to record images on a sheet. The ink-jet recording apparatus includes a mounting portion configured to mount thereon a plurality of ink cartridges. The ink cartridge is removably mountable on the mounting portion. Color inks are supplied from the ink cartridges to a recording head, the recording head selectively discharges ink from nozzles to the sheet. In this way, a color image is recorded on the sheet. In this type of ink-jet recording apparatus, an optical sensor is installed to the mounting portion or the ink cartridge in order to detect the amount of ink stored in the ink cartridge (for example, see JP-A-2007-152559).
However, when the partition plates 286 (see
Exemplary embodiments of the present invention address the above disadvantages and other disadvantages not described above. However, the present invention is not required to overcome the disadvantages described above, and thus, an exemplary embodiment of the present invention may not overcome any of the problems described above.
Accordingly, it is an aspect of the present invention to provide a small ink cartridge accommodating device capable of reducing the width of a mounting portion by appropriately arranging optical sensors.
According to an exemplary embodiment of the present invention, there is provided an ink cartridge accommodating device including: an accommodating portion which is configured to accommodate a plurality of ink cartridges arranged in an arrangement direction; and a plurality of sensors which are provided correspondingly to the plurality of ink cartridges, and which optically detect information related to the plurality of ink cartridges, respectively. Each of the sensors includes a light-emitting element which emits light and a light-receiving element which receives light. The light-emitting elements or the light-receiving elements of adjacent sensors are arranged adjacent to each other.
According to another exemplary embodiment of the present invention, there is provided an ink cartridge accommodating device including: an accommodating portion which is configured to accommodate a plurality of ink cartridges arranged in a first direction; and a plurality of sensors, each including: a light-emitting element which emits light; and a light-receiving element which receives light and faces the light-emitting element in the first direction with a portion of the corresponding one of the ink cartridges being therebetween. A direction from the light-emitting element to the light-receiving element of one of the sensors is opposite to a direction from the light-emitting element to the light-receiving element of another one of the sensors adjacent to the one of the sensors.
The above and other aspects of the present invention will become more apparent and more readily appreciated from the following description of exemplary embodiments of the present invention taken in conjunction with the attached drawings, in which:
Hereinafter, illustrative non-limiting exemplary embodiments of the present invention will be described with reference to the accompanying drawings. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
[Ink Cartridge 100]
Next, an ink cartridge 100 for an ink-jet image recording apparatus will be described with reference to
As shown in
The ink cartridge 100 includes the body 40 (see
The body cover 42 covers substantially the entire body 40 (see
The slider 41 is attached to the body 40 through a coil spring (not shown). With the body cover 42 coupled to the body 40 (see
The slider 41 includes openings 177 and 178. The opening 177 is formed at a position corresponding to an air communicating valve 80, which will be described below. The opening 178 is formed at a position corresponding to an ink supply valve 90, which will be described below. Therefore, even when the slider 41 is attached to the body 40, the air communicating valve 80 and the ink supply valve 90 are exposed to the outside through the openings 177 and 178, respectively. As shown in
[Body 40]
Next, the body 40 of the ink cartridge 100 will be described. As shown in
The body 40 includes a frame 50, an arm 70, the air communicating valve 80, the ink supply valve 90, and a thin transparent film (not shown) adhered to the frame 50. In
The frame 50 is a member forming the casing of the body 40. The frame 50 forms the six surfaces 34 to 39 of the body 40. Therefore, the six surfaces 34 to 39 of the body 40 are the same as the six surfaces of the frame 50. In the following description, reference numerals given to the six surfaces of the body 40 denote the six surfaces of the frame 50.
The frame 50 is formed of a translucent member, for example, a transparent or translucent resin material. The frame 50 is formed of a resin material by injection molding. Examples of the resin material include polyacetal, nylon, polyethylene, and polypropylene.
As shown in
The films are adhered to the edges of the two side surfaces 38 and 39 (the left and right surfaces of
The inner walls 52 are provided in the space surrounded by the outer wall 51. The films are also adhered to the edges of the inner walls 52 facing the side surfaces 38 and 39. In this way, it is possible to prevent the films from being detached. In addition, even when the slider 41 and the body cover 42 are deformed toward the body 40, the inner walls 52 prevent the deformation of the slider 41 and the body cover 42.
As shown in
A detecting portion 140 is formed on the front surface 34 of the frame 50. The detecting portion 140 is for visually or optically detecting the amount of ink stored in the ink chamber 102. The detecting portion 140 is formed integrally with the frame 50. Therefore, the detecting portion 140 is formed of the same material as that forming the frame 50. That is, the detecting portion 140 is made of a transparent or opaque resin material capable of transmitting light. The detecting portion 140 can transmit light incident from the outside.
The detecting portion 140 has a substantially rectangular parallelepiped shape. The detecting portion 140 protrudes from a middle portion of the front surface 34 of the body 40 to the outside of the body 40. The detecting portion 140 is partitioned by five walls having substantially rectangular shapes, and has a space therein. A space surrounded by the walls is formed inside the detecting portion 140. One surface of the detecting portion 140 facing the ink chamber 102 is opened such that the detecting portion 140 communicates with the chamber 102.
When the ink cartridge 100 is inserted into the base unit 200, the detecting portion 140 enters an optical path 183 (see
The arm 70 is provided in the body 40, that is, the ink chamber 102. The arm 70 is made of a light-shielding resin material. The arm 70 is pivotably supported by a rib 74 that is vertically provided at the center of the outer wall 51 in the width direction (in the direction of the arrow 31). A floating portion 73 that serves as a floating member is provided at one end of the arm 70. The floating portion 73 is vertically moved depending on the amount of ink in the ink chamber 102. An indicator 72 arranged in the detecting portion 140 is provided at the other end of the arm 70.
When the floating portion 73 is vertically moved depending on the amount of ink in the ink chamber 102, the arm 70 is pivotad, and the indicator 72 is moved in the vertical direction in the inner space of the detecting portion 140. Specifically, the indicator 72 is movable between a first position where the indicator is disposed inside the radiation region 144 and a second position where the indicator is disposed outside the radiation region 144. When the indicator 72 that is moved in the vertical direction is detected by the optical sensor 181 (see
As shown in
The ink supply valve 90 is provided at a lower part of the front surface 34 of the frame 50, that is, below the detecting portion 140. The ink supply valve 90 is a valve that closes or opens an ink passage extending from an opening (not shown) formed in the front surface 34 to the ink chamber 102. For example, the ink supply valve 90 includes a valve body (not shown) that is slidably supported in the ink passage, a spring (not shown) that urges the valve body, a seal member 93 that is provided at the edge of the opening, and a cap 95 that fixes the seal member 93. The cap 95 and the seal member 93 are provided with through holes (not shown). The through holes form an ink supply port through which the ink passage communicates with the outside. When a tubular ink needle 209 (see
As shown in
A stopper 125 is provided on the table portion 124 so as to protrude from the table portion 124 upward. The stopper 125 is provided at the leading end of the table portion 124 in the insertion direction 30. The stopper 125 includes a vertical wall 126 that is vertical with respect to the table portion 124 and an inclined rib 127 that is inclined from the top of the vertical wall 126 downward to the front side of the upper surface 36 in the insertion direction 30 at an angle of about 45°. When the ink cartridge 100 is inserted into the base unit 200, the stopper 125 is used to fix the ink cartridge 100 such that the ink cartridge 100 is not detached from the base unit 200. The ink cartridge 100 is fixed by engagement between the stopper 125 and a lock lever 230 (see
[Base Unit 200]
Next, the configuration of the base unit 200 will be described with reference to
As shown in
As shown in
Four guide grooves 206 are formed in the bottom of the frame 204. The guide grooves 206 are for smoothly guiding the ink cartridges 100 to the inner rear surface of the cartridge mounting portion 202. The guide grooves 206 extend straight in the depth direction of the base unit 200. The guide grooves 206 are arranged at specific intervals in the width direction of the base unit 200. The leftmost guide groove 206 has a width that is larger than those of the other guide grooves 206, in order to enable the black ink cartridge having a width that is larger than those of the other ink cartridges to be inserted. The lower ends of the ink cartridges 100 are guided by the guide grooves 206 in the depth direction and the ink cartridges 100 are smoothly inserted into the cartridge mounting portion 202.
Connecting portions 208 connected to the ink supply ports of the ink supply valve 90 are provided at a lower part of the inner rear surface of the cartridge mounting portion 202. The connecting portions 208 are arranged on the inner rear surface at positions corresponding to the ink supply valves 90 of the ink cartridges 100. In this exemplary embodiment, four connecting portions 208 corresponding to four ink cartridges 100 capable of being inserted into the cartridge mounting portion 202 are provided. In
Each of the connecting portions 208 includes the ink needle 209 and a holding portion 210. The ink needle 209 is a tubular resin needle. As shown in
The holding portion 210 is formed in a concave shape. The ink needle 209 is provided at the center of the holding portion 210. When the ink cartridge 100 is inserted into the cartridge mounting portion 202, the cap 95 (see
Pressing portions 216 (see
The sensor unit 150 is provided above the connecting portions 208 on the inner rear surface of the cartridge mounting portion 202. The sensor unit 150 includes a substrate 152, the optical sensors 181, and a connector 157. The optical sensors 181 and the connector 157 are mounted on the substrate 152 to configure the sensor unit 150. The sensor unit 150 is mounted from the rear side of the base unit 200.
As shown in
Each of the optical sensors 181 is used to detect whether the amount of ink in the ink chamber 102 of the ink cartridge 100 is less than a threshold value. Each of the optical sensors 181 includes the light-emitting element 154 such as an LED, the light-receiving element 155 such as a phototransistor, and a resin housing 158. In each of the optical sensors 181, the light-emitting element 154 and the light-receiving element 155 are provided in the housing 158. As shown in
Each of the light-emitting element 154 and the light-receiving element 155 has two terminals 153 at the lower end of an element body 156. The two terminals 153 extend from the rear surface of the housing 158, which faces the substrate 152, to the outside of the housing 158, with the light-emitting element 154 and the light-receiving element 155 being provided in the protruding portions 159. Although not shown in the drawings, a plurality of through holes are formed in the substrate 152 so as to pass through the front and rear surfaces of the substrate 152. The terminals 153 of the light-emitting elements 154 and the light-receiving elements 155 pass through the through holes. The leading ends of the terminals 153 of the light-emitting elements 154 and the light-receiving elements 154 are soldered to the rear surface of the substrate 152, with the terminals 153 passing through the through holes of the substrate 152.
Each of the light-emitting element 154 and the light-receiving element 155 includes a protrusion 151 provided on the side surface of the element body 156 (see
The housing 158 is formed in a substantially U-shape by a plurality of resin members. Although not shown in the drawings, openings that communicate with the inside of the protruding portions 159 are formed in the rear surface of the housing 158, which faces the substrate 152. The openings are used to insert the light-emitting element 154 and the light-receiving element 155 into the two protruding portions 159. Therefore, the openings are formed in sufficient size and shape to insert the light-emitting element 154 and light-receiving element 155 into the protruding portions 159. The light-emitting element 154 and the light-receiving element 155 are inserted into the two protruding portions 159 through the openings. In this way, in the housing 158, the light-emitting element 154 is accommodated in one of the two protruding portions 159 protruding from the substrate 152, and the light-receiving element 155 is accommodated in the other protruding portion 159. As a result, the light-emitting element 154 and the light-receiving element 155 are arranged so as to face each other.
An opening 164 is formed in a side surface 168 of each of the protruding portions 159. The openings 164 are provided in the side surfaces of the two protruding portions 159 of the housing 158 so as to face each other. Light is emitted from the light-emitting element 154 to the light-receiving element 155. Specifically, light emitted from the light-emitting element 154 passes through the opening 164 of the protruding portion 159 having the light-emitting element 154 provided therein and then travels to the outside of the protruding portion 159. Then, the light travels to the inside of the protruding portion 159 having the light-receiving element 155 provided therein through the opening 164 of the protruding portion 159, and is then received by the light-receiving element 155. Since light emitted from the light-emitting element 154 is received by the light-receiving element 155 in this way, an optical path 183 through which light travels is formed in a space between the light-emitting element 154 and the light-receiving element 155. The light-receiving element 155, which receives light emitted from the light-emitting element 154, outputs a signal having a level corresponding to the brightness (intensity) of the received light to a main control unit (not shown) of the image recording apparatus.
The slit 160 is provided in a side surface 169 of each of the protruding portions 159. In the protruding portion 159, the slit 160 is formed in the side surface 169 that is opposite to the side surface 168 having the opening 164 formed therein. The slits 160 are provided in the two protruding portions 159 of the housing 158. As shown in
As shown in
When light is emitted from the light-emitting element 154 with the ink cartridge 100 inserted into the cartridge mounting portion 202, the light is incident on the radiation region 144 of the detecting portion 140. At the first position where the indicator 72 is arranged inside the radiation region 144, light traveling to the light-receiving element 155 through the radiation region 144 (see
In this exemplary embodiment, as shown in
Optical sensors 182 (see
The frame 204 is provided with the lock levers 230. Each of the lock levers 230 is for fixing (locking) the ink cartridge 100 such that the ink cartridge 100 is not detached from the cartridge mounting portion 202. As shown in
As shown in
Next the circuit configuration and the operation of the base unit 200 will be described.
As shown in
The supply circuit 111 includes a resistor 113, an npn transistor 114, a pnp transistor 115, and a resistor 120. The npn transistor 114 and the pnp transistor 115 serve as switches that connect or disconnect power supply paths to the light-emitting elements 154 of the optical sensors 181A to 181D. The base of the npn transistor 114 is connected to the main control unit through the resistor 113. The base and the emitter of the npn transistor 114 are connected to each other through a resistor 117. The emitter of the npn transistor 114 is connected to the ground. The collector of the npn transistor 114 is connected to the base of the pnp transistor 115 through a resistor 116. The emitter of the pnp transistor 115 is connected to a power line of a power supply (not shown). The collector of the pnp transistor 115 is connected to an anode of the light-emitting element 154 of the optical sensor 181A through the resistor 120.
The sensor unit 150 includes the optical sensors 181 (181A to 181D). The light-emitting elements 154 of the optical sensors 181A to 181D are LEDs in this exemplary embodiment. The anode of the light-emitting element 154 of the optical sensor 181A is connected to the collector of the pnp transistor 115 through the resistor 120. The cathode of the light-emitting element 154 of the optical sensor 181D is connected to the ground. The cathode of the light-emitting element 154 of the optical sensor 181A and the anode of the light-emitting element 154 of the optical sensor 181B are connected to each other by a jumper wire 104. The cathode of the light-emitting element 154 of the optical sensor 181B and the anode of the light-emitting element 154 of the optical sensor 181C are connected to each other by a jumper wire 105. The cathode of the light-emitting element 154 of the optical sensor 181C and the anode of the light-emitting element 154 of the optical sensor 181D are connected to each other by a jumper wire 106. In this way, the light-emitting elements 154 of the optical sensors 181 are connected in series to one another. Therefore, when power is supplied from the supply circuit 111, the light-emitting elements 154 of the optical sensors 181A to 181D emit light at the same time.
Since the light-emitting elements 154 of the optical sensors 181 are connected in series to one another, it is not necessary to individually connect the supply circuit 111 to the light-emitting elements 154 of the optical sensors 181, as compared to the configuration in which the light-emitting elements 154 of the optical sensors 181 are connected in parallel to each other. Therefore, it is possible to decrease the number of lines connected to the light-emitting elements 154 of the optical sensors 181 and reduce the size of the base unit 200.
The light-receiving elements 155 of the optical sensors 181A to 181D are phototransistors in this exemplary embodiment. The collectors of the light-receiving elements 155 of the optical sensors 181A to 181D are individually connected to signal lines 107 (107A to 107D). The emitters of the light-receiving elements 155 of the optical sensors 181A to 181D are connected to a common line 103 that is grounded.
The output circuit 112 includes resistors 109, coils 119, resistors 108, and capacitors 110. The coils 119 and the resistors 108 are provided in the signal lines 107 (107A to 107D) of the output circuit 112. The signal lines 107 (107A to 107D) transmit signals output from the light-receiving elements 155 of the optical sensors 181A to 181D, and are connected to the main control unit (not shown). The resistor 109 has one end connected to the power supply (not shown) and the other end connected to a connection point between the coil 119 and the resistor 108 of the signal line 107. The signal lines 107A to 107D are connected to the ground through the capacitors 110. Since the resistor 109, the coil 119, the resistor 108, and the capacitor 110 are known elements for stabilizing the signal output from the light-receiving element 155, a detailed description thereof will be omitted.
When control signals are transmitted from the main control unit to the base of the npn transistor 114, the collector and the emitter of the npn transistor 114 are electrically connected to each other. Then, a current flows from the base of the pnp transistor 115 to the collector of the npn transistor 114. As a result, the emitter and the collector of the pnp transistor 115 are electrically connected to each other, and a current flows from the power supply (not shown) connected to the emitter of the pnp transistor 115 to the light-emitting elements 154 of the optical sensors 181A to 181D. That is, power is supplied from the supply circuit 111 to the light-emitting elements 154 of the optical sensors 181A to 181D. As described above, since the light-emitting elements 154 of the optical sensors 181A to 181D are connected in series to one another, the light-emitting elements 154 of the optical sensors 181A to 181D emit light at the same time (simultaneously).
As described above, when the supply circuit 111 supplies power to the light-emitting elements 154 of the optical sensors 181, the light-emitting elements 154 emit light. When the light-receiving elements 155 of the optical sensors 181 receive the light emitted from the light-emitting elements 154 of the same optical sensors 181, the light-receiving elements 155 output signals having a level corresponding to the received light through the signal lines 107. The light-receiving elements 155 of the optical sensors 181A to 181D are connected to the signal lines 107A to 107D, respectively. Therefore, the output circuit 112 outputs the signal from the light-receiving element 155 of the optical sensor 181A to the main control unit through the signal line 107A, and outputs the signal from the light-receiving element 155 of the optical sensor 181B to the main control unit through the signal line 107B. In addition, the output circuit 112 outputs the signal from the light-receiving element 155 of the optical sensor 181C to the main control unit through the signal line 107C, and outputs the signal from the light-receiving element 155 of the optical sensor 181D to the main control unit through the signal line 107D. The signals output through the signal lines have different levels based on whether light emitted from the light-emitting element 154 is received by the light-receiving element 155. Therefore, it is possible to determine the state of the ink cartridges 100 on the basis of the levels of the signals transmitted through the signal lines 107A to 107D corresponding to the light-receiving elements 155.
However, as described above, since the slit 160 is provided in the protruding portion 159, light emitted from the light-emitting element 154 might leak to the outside of the protruding portion 159 through the slit 160. In the related art, adjacent optical sensors 181 are arranged in the same direction. That is, as shown in
In order to reduced or prevent the leakage of light from the light-emitting element 154 causing the detection error of the optical sensor 181, the light-emitting element 154 and the light-receiving element 155 may be fixed to the protruding portions 159 and the slits 160 may be covered. However, if the slit 160 is covered, although it is possible to reduce or prevent the leakage of light from the light-emitting element 154, it is complicated to assemble the sensor unit 150.
As described above, in this exemplary embodiment, as shown in
Further, in this exemplary embodiment, since the cutout 224 is formed in the plate 223, it is possible to use a space corresponding to the thickness of the cutout 224 to arrange the optical sensor 181. In this way, the gap between adjacent optical sensors 181 can be smaller than the thickness of the plate 223. It is noted that since the cutout 224 is formed in the plate 223, it is possible to prevent the optical sensor 181 from contacting the plate 223.
[Modifications]
The base unit 200 may have a circuit configuration in which the light-emitting elements 154 of the optical sensors 181A to 181D emit light at different timings and signals output from the light-receiving elements 155 of the optical sensors 181A to 181D are transmitted through a common line.
As shown in
The supply circuit 251 includes a resistor 253, switches 254 (254A to 254D), and a resistor 255. The resistor 253 has one end connected to a power supply (not shown) and the other end connected to the anodes of the light-emitting elements 154 of the optical sensors 181A to 181D. The switches 254A to 254D are npn transistors each having a base and an emitter connected to each other through a resistor 264. The cathode of the light-emitting element 154 of the optical sensor 181A is connected to the collector of the switch 254A, and the cathode of the light-emitting element 154 of the optical sensor 181B is connected to the collector of the switch 254B. In addition, the cathode of the light-emitting element 154 of the optical sensor 181C is connected to the collector of the switch 254C, and the cathode of the light-emitting element 154 of the optical sensor 181D is connected to the collector of the switch 254D. As such, the light-emitting elements 154 of the optical sensors 181A to 181D are connected in parallel to the power supply (not shown) connected to one end of the resistor 253. The emitters of the switches 254A to 254D are all connected to the ground. In addition, the bases of the switches 254A to 254D are connected to the main control unit (not shown) through resistors 255.
When the main control unit (not shown) transmits control signals to the bases of the switches 254, the collector and the emitter of each of the switches 254 are electrically connected to each other. In this way, a current flows to the light-emitting element 154 of the optical sensor 181. That is, power is supplied from the supply circuit 251 to the light-emitting element 154 and the light-emitting element 154 emits light. The switches 254 having the bases to which the control signals are input are appropriately selected. In this way, the light-emitting elements 154 of the optical sensors 181A to 181D emit light in the order, for example, of the light-emitting element 154 of the optical sensor 181A, the light-emitting element 154 of the optical sensor 181B, the light-emitting element 154 of the optical sensor 181C, and the light-emitting element 154 of the optical sensor 181D. That is, the light-emitting elements 154 of the optical sensors 181A to 181D emit light at different timings.
The output circuit 252 includes a resistor 259, a coil 258, a resistor 257, and a capacitor 256.
The resistor 259 has one end connected to the power supply (not shown) and the other end connected to a connection point between the resistor 257 and the coil 258 of the first common line 261. The first common line 261 and the second common line 262 of the output circuit 252 transmit signals output from the light-receiving elements 155 of the optical sensors 181A to 181D. The first common line 261 is connected to first terminals 271 of the light-receiving elements 155 of the optical sensors 181A to 181D. That is, the first common line 261 is for connecting the collectors of the light-receiving elements 155 of the optical sensors 181A to 181D. The first common line 261 is connected to the main control unit (not shown). The second common line 262 is connected to second terminals 272 of the light-receiving elements 155 of the optical sensors 181A to 181D. That is, the second common line 262 is for connecting the emitters of the light-receiving elements 155 of the optical sensors 181A to 181D. The second common line 262 is connected to the ground. As such, the light-receiving elements 155 of the optical sensors 181A to 181D are connected in series to one another between the first common line 261 and the second common line 262. Since the resistor 259, the coil 258, the resistor 257, and the capacitor 256 are known elements for stabilizing the signals output from the light-receiving elements 155, a detailed description thereof will be omitted.
As described above, in the light-receiving elements 155 of the optical sensors 181A to 181D, the first terminals 271 are connected to the first common line 261, and the second terminals 272 are connected to the second common line 262. Therefore, the output circuit 252 outputs signals to the main control unit through the common lines 261 and 262 when any of the light-receiving elements 155 of the optical sensors 181A to 181D receives light. In this way, it is possible to simplify the circuit configuration of the base unit 200, as compared to the configuration in which a line for outputting a signal is provided for each light-receiving element 155. As a result, it is possible to reduce the size of the base unit 200.
As described above, in the related art, adjacent optical sensors 181B and 181C are arranged in the same direction such that the light-emitting element 154 of the optical sensor 181B and the light-receiving element 155 of the optical sensor 181C are adjacent to each other (see
In the above-described exemplary embodiment, the present invention is applied to the optical sensors 181 for detecting whether the amount of ink in the ink chamber 102 is more than a threshold value, but the present invention is not limited thereto. For example, the inventive concept of the present invention can be applied to the optical sensor 182 for detecting whether the ink cartridge 100 is inserted into the cartridge mounting portion 202.
Number | Date | Country | Kind |
---|---|---|---|
2007-311678 | Nov 2007 | JP | national |
2008-076550 | Mar 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6422674 | Hinami et al. | Jul 2002 | B1 |
20040113965 | Kosugi et al. | Jun 2004 | A1 |
20050195225 | Takagi et al. | Sep 2005 | A1 |
20060033789 | Sasaki et al. | Feb 2006 | A1 |
20070132819 | Umeda et al. | Jun 2007 | A1 |
20070154233 | Ukai | Jul 2007 | A1 |
20080180498 | Hattori et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
04-020962 | Jan 1992 | JP |
08-001958 | Sep 1996 | JP |
10-128998 | May 1998 | JP |
2784995 | Aug 1998 | JP |
3351946 | Dec 2002 | JP |
2004-202796 | Jul 2004 | JP |
3667127 | Jul 2005 | JP |
2005-246781 | Sep 2005 | JP |
2005-262564 | Sep 2005 | JP |
2005-313446 | Nov 2005 | JP |
2007-152559 | Jun 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090141096 A1 | Jun 2009 | US |