The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, an ink cartridge and a printing apparatus of this invention will be described in detail based on preferred embodiments shown in accompanying drawings.
A printing apparatus 100, i.e., a printer, shown in
First, the ink cartridge will be explained. The ink cartridge 1 shown in
The cartridge body 2 has an outline in a flat shape. This cartridge body 2 is provided with a hollow, i.e., an inner cavity, which functions in the loaded state, as an ink supplying system 7 for supplying the ink to the printing apparatus 100. This ink supplying system 7 has a storage portion 71 for storing the ink, an outlet 72 for supplying the printing apparatus 100 with the ink in the loaded state, and a flow path 73 for guiding the ink from the storage portion 71 to the outlet 72.
A color of the ink to be filled in the ink supplying system 7 is not limited specifically and may be red, blue, yellow, black, or the like, for example. This ink is added with an infrared absorption material having a function of absorbing an infrared ray to distinguish the ink from other inks of the same color. That is, this ink has a higher infrared absorptivity than any other inks of the same color. The infrared absorption material is not limited specifically and may be a dye such as a phthalocyanine-based dye, a naphthalocyanine-based dye, an anthraquinone-based dye, an indolenine-based dye, a polymetline-based dye, a cyanine-based dye, a nitroso compound and a metal complex salt thereof, an azo cobalt, a thiol nickel salt, a triarylmethane-based dye, an immonium-based dye, a naphthoquinone-based dye, an anthraquinone-based dye, an anthracene-based dye, an azulene-based dye, or a phtlhalide-based dye, or an inorganic oxide such as an ITO (a thin doped indium oxide) or an ATO (an antimony doped tin oxide). An infrared ray L can be certainly absorbed by making the infrared absorption material of those materials as described above.
Furthermore, the cartridge body 2 is made of a substantially transparent resin material, which has an optical transparency. This resin material is not limited specifically and may be, for example, a polymethyl methacrylate resin (PMMA), a polycarbonate resin, an acrylic resin, or the like.
As shown in
As shown in
The flow path 73 is shaped as described above, resulting in following advantages. When using the printing apparatus 100 in the loaded state, in the case where the printing apparatus 100 is placed at a location which is inclined to some extent with respect to the horizontal direction, the ink can be certainly guided from the storage portion 71 to the outlet 72 even where the amount of ink remaining in the ink supplying system 7 of the ink cartridges 1 decreases. Therefore, the ink inside the ink cartridge can be used up, i.e., run out.
It is to be noted that the number of the ink supplying system 7 provided to the ink cartridge 1 is one in the structure shown in
A projection 22, which projects downward, is provide to a right side of a lower surface 21 of the cartridge 2, as shown in
The ink cartridge 1 is mounted with a valve system 23 that opens and closes the outlet 72. The valve system 23 is composed of a valve disc 231, a sealing member 233, and a coil spring 232 urging the valve disc 231 in a downward direction, i.e., toward a side of the sealing member 233.
The sealing member 233 is mounted in the hollow 221 and has a ring shape along with an inner circumferential surface of the hollow 221. This sealing member 233 is made of an elastic material. The elastic material is not particularly limited but various rubber materials may be used as the elastic material, such as a natural rubber, an isoprene rubber, a butadiene rubber, a styrene-butadiene rubber, a nitrile rubber, a chloroprene rubber. a butyl rubber, an acrylic rubber, an ethylene-propylene rubber, a hydrin rubber, a urethane rubber, a silicon rubber, and a fluoro-rubber.
The valve disc 231 is mounted in the second vertical path 734 of the flow path 72 in a movable manner in a longitudinal direction of the second vertical path 734. This valve disc 231 has a disc-shaped portion 231a in a disc form and a guiding portion 231b provided to an upper surface of the disc-shaped portion 231a in a united manner. A lower surface of the disc-shaped portion 231a is brought in close contact with the sealing member 233 with urging force by the coil spring 232 in an unloaded state where the ink cartridge 1 is not loaded into the printing apparatus 100. Therefore, the ink is prevented from undesirably flowing out of the outlet 72. The guiding portion 231b slides over the inner circumferential surface of the second vertical path 734. Thus, the valve disc 231 is stably movable in the second vertical path 734 in a longitudinal direction thereof. A constituent material of the valve disc 231 is not limited and various metallic materials or plastics may be used in isolation or in combination.
In the loaded state, a hollow needle 36 connected to the droplet discharging head 101 of the printing apparatus 100 presses the disc-shaped portion 231a of the valve disc 231 against an urging force, thereby opening the outlet 72. Thus, the ink is supplied to the droplet discharging head 101 through an opening 361 formed in an outer circumferential surface of an upper end of the hollow needle 36.
An engaging piece 24 in a plate form is mounted in an upper portion of a periphery of the cartridge body 2. This engaging piece 24 is held in a manner that a lower end portion thereof is rotatable with respect to the periphery 25 of the cartridge body 2, as shown in
As shown in
Furthermore, a guiding portion 27 in a plate form is provided in a projecting manner to a lower portion of the periphery 25 of the cartridge body 2. The guiding portion 27 is provided to the loaded portion 27 in the loaded state so as to be engaged in a third recess 39, i.e., a guiding groove for guiding the guiding portion 27. The ink cartridge 1 is thus positioned.
A recess 28 is provided in a concave manner to an upper portion of a periphery 26 on the other side of the periphery 25 of the cartridge body 2. The recess 28 is formed in size enough to allow a flat part of a thumb to fit therein, approximately.
A lower portion of the periphery 26 of the cartridge body 2 is provided with board-mounted portion 29 in a projecting manner, on which the circuit board 6 is mounted. As shown in
As shown in
The circuit body 61 is made of a plate-formed member in a substantial square shape.
As shown in
It is to be noted that a method for forming each of the terminals 62 to the board body 61 is not limited specifically and a printing method may be cited as an example. Each of the terminals 62 can be formed with high accuracy by the printing method, thereby being able to certainly come in contact with each of terminals 41 of the loaded portion 107 in the loaded state.
As shown in
This disposition allows the infrared ray L to be certainly emitted from the light emitter 81 to the second horizontal path 733 of the ink supplying system 7. Furthermore, the infrared ray L having been emitted from the light emitter 81 passes through the second horizontal path 733 in a longitudinal direction thereof to be certainly received by the light receiver 82.
Where the ink exists in the second horizontal path 733, certain emission and reception of the infrared ray L as described above ensures that the infrared absorption material mixed into the ink absorbs the infrared ray L, thereby decreasing the light amount of the infrared ray L which is received by the light receiver 82. Where the ink does not exist in the second horizontal path 733, the light amount of the infrared ray L which is received by the light receiver 82 is substantially equal to the light amount of the infrared ray L emitted by the light emitter 81.
Disposition of the sensor 8 as described above results in an optical path between the light emitter 81 and the light receiver 82 in a longitudinal direction of the second horizontal path 733. Accordingly, where the ink exists in the second horizontal path 733, the infrared absorption material mixed into the ink certainly absorbs the infrared ray L, thereby decreasing the light amount of the infrared ray L received by the light receiver 82.
Furthermore, the infrared ray L emitted by the light emitter 81 has a peak wavelength, i.e., a maximum wavelength desirably set to 750 to 1500 nm and more desirably set to 800 to 1300 nm. Thus, the infrared absorption material mixed into the ink absorbs the infrared ray L certainly.
The printing apparatus 100 will be described next. As shown in
In the printing apparatus 100 as described above, the recording medium 109 is conveyed by a paper conveyance roller and a paper pressing roller, both not shown, thereby passing under the droplet discharging head 101. At this time, the recording medium 109 is printed with ink droplets discharged from the droplet discharging head 101 and then discharged from the printing apparatus 100 by a discharging roller, not shown.
As shown in
A backside of the loaded portion 107, i.e., a right side in
Furthermore, the loaded portion 107 is provided with a plurality of ribs 33, 34 in a projecting manner, the ribs 33, 34 partitioning the adjacent ink cartridges 1. The ribs 33 are to partition the ink cartridges 1 at a side of the engaging pieces 24, respectively. The ribs 34 are to partition the ink cartridges 1 at a side of the board-mounted portions 29.
Formation of these ribs 33, 34 makes it easy for a user to perform the operation to attach or detach each of the ink cartridges 1 with respect to the loaded portion 107 since side surfaces of the ink cartridges 1 are guided by the ribs 33, 34, respectively.
As shown in
Furthermore, the printing apparatus 100 has a display unit 106 as a reporting unit for displaying, i.e., for reporting exchange of the ink cartridge 1 or information relating thereto. This display unit 106 may be composed of a liquid crystal panel, for example.
Where the veritable ink cartridges 1, i.e., the genuine ink cartridge 1, which is filled with the ink mixed with the aforementioned infrared absorption material, the ink referred to as a proper ink hereinafter, is loaded into the loaded portion 107, the printing apparatus 100 with the structure as described above performs a regular printing, i.e., a normal printing in which the printing is performed to the recording medium 109 using ink droplets discharged by the droplet discharging heads 101.
The aforementioned regular printing is performed in the case where the controller makes a judgment that use of the ink is adequate as a result of a judgment as to the adequacy of use of the ink inside the ink cartridge 1 based on the information from the sensor 8 of the ink cartridge 1.
Furthermore, where the regular printing is performed, the ink is consumed over time and eventually, the amount of remaining ink reaches to approximately zero, for example, which is not enough to perform the regular printing. In other words, the ink cartridge 1 becomes empty of ink. In this case, the regular printing can be performed as long as the used ink cartridge 1 in empty state is replaced with the unused ink cartridge 1.
However, it can be considered that a malicious user fills or pumps through the outlet 72 a fake ink unmixed with the infrared absorption material, the fake ink hereinafter referred to as a counterfeit ink, in the used ink cartridge 1 in later phase. In the case of loading the ink cartridge 1 filled with the counterfeit ink, hereinafter refereed to as the counterfeit ink cartridge, into the loaded portion 107, the controller 105 of the printing apparatus 100 makes a judgment that use of the ink is inadequate, thereby prohibiting the printing operation. Thus, reuse of the ink cartridge 1 can be certainly prevented.
As described above, the judgment as to adequacy of use of the ink is made based on the information from the sensor 8. The information from the sensor 8 is not limited specifically and the light amount of the infrared ray L received by the light receiver 8 is used as the information in this embodiment.
Where the proper ink exists in the second horizontal path 733 of the ink cartridge 1, the infrared absorption material mixed into the proper ink certainly absorbs the infrared ray L emitted by the light emitter 81, thereby decreasing the light amount of the infrared ray L received by the light receiver 82 compared to the light amount of the infrared ray L emitted by the light emitter 81.
Where the fake ink exists in the second horizontal path 733 of the ink cartridge 1, the infrared ray L emitted by the light emitter 81 is not absorbed, as described above. Thus, the light amount of the infrared ray L received by the light receiver 82 is substantially equal to the light amount of the infrared ray L emitted by the light emitter 81.
Hereinafter, the control program of the controller 105 of the printing apparatus will be described based on the flowchart in
Where the printing apparatus 100 starts the printing operation, the light emitter 81 emits the infrared ray at the step S900.
A judgment is made at the step S901 as to whether the light amount of the infrared ray L received by the light receiver 82 is greater than or equal to a threshold value as a predetermined value previously stored or set in the memory of the controller 105. In the case of judgment that the light amount is not greater than nor equal to the threshold value, that is, the light amount is smaller than the threshold value, which means that the ink inside the ink cartridge 1 is the proper ink suitable for printing use, the operation for regular printing is performed at the step S902.
In the case of judgment that the light amount is greater than or equal to the threshold value, which means that the ink inside the ink cartridge 1 is the counterfeit ink unsuitable for printing use, the printing operation is prohibited at the step S903.
Next, the display unit 106 displays a status message, “Exchange Ink Cartridge (With Genuine Ink Cartridge)”, at the step S904.
The structure as described above enables the printing apparatus 100 to prevent use of the used ink cartridge in later phase by pumping the counterfeit ink unsuitable for the ink cartridge into the used ink cartridge. In other words, the printing apparatus 100 can prevent reuse of the used ink cartridge by adopting the structure as described above.
It is to be noted that prohibition of a droplet discharging operation of the droplet discharging head 101 or a conveyance operation, i.e., paper conveyance operation for conveying the recording medium 109 may be cited as prohibition of the printing operation.
Where the regular printing is performed, the proper ink is consumed over time and eventually runs out in the second horizontal path 733. That is, in this state, the infrared absorption material does not absorb the infrared ray L any more. At this time, the light amount of the infrared ray L received by the light receiver 82 reaches to the threshold value. Where the light amount reaches the threshold value, the number of discharged ink droplet, i.e., the number of print dots, is counted. The printing operation is suspended where the number of discharged droplets, that has been counted, reaches to the number of dischargeable ink droplets, i.e., the predetermined dot number such that the proper ink remaining inside the ink cartridge 1 becomes substantially equal to zero, which is calculated based on the amount or volume of the proper ink remaining inside the ink cartridge 1 and a volume per ink droplet.
With the controlling structure as described above, the proper ink can be certainly used up, i.e., run out.
It is to be noted that the number of dischargeable ink droplets as described above is previously stored in the memory of the controller 105.
Furthermore, where the printing operation is suspended, as described above, the display unit 106 may display a status message, “Exchange Ink Cartridge (With Genuine Ink Cartridge)”. Accordingly, an exchange timing of the ink cartridge 1 can be ascertained.
The printing apparatus 100 may include a current detector for detecting a weak current from the sensor 8. Where the proper ink is filled in the ink cartridge 1, the current of the corresponding light amount, i.e., the light amount received by the light receiver 82, may be defined as the aforementioned weak current.
Where a malicious user insulates or crushes at least either one side of the terminals 62 at a side of the ink cartridge 1 and the terminals 41 at a side of the printing apparatus 100, the current from the sensor 8 becomes zero, the controller 105 makes a judgment that the ink inside the ink cartridge 1 is a proper ink suitable for printing, regardless the proper ink or the counterfeit ink.
However, operation of the current detector allows detection of the weak current from the sensor 8, thereby making a judgment more reliable as to adequacy of use of the ink.
Conditions for, e.g., a content of the infrared ray absorption material or construction material, or a peak wavelength of the infrared ray L emitted by the light emitter 81 may be changed according to a manufacture period of the in cartridge 1. Thus, the manufacture period, in other words, a manufacture record of the ink cartridge 1 can be managed.
The printing apparatus according to the second embodiment of this invention will be described hereinafter with reference to
This embodiment and the first embodiment are the same except that the sensor is mounted in the printing apparatus.
As shown in
Each of the sensors 8A is composed of the light emitter 81 disposed at a side of the terminal 41 of the loaded portion 107A, i.e., a left side in
In the loaded state, the second horizontal path 733 of the flow path 72 in the ink supplying system 7 of the ink cartridge 1A is intervened between the light emitter 81 and the light receiver 82. Thus, the optical path of the infrared ray L between the light emitter 81 and the light receiver 82 extends in a longitudinal direction of the second horizontal path 733. As a result, where the ink exists in the second horizontal path 733, the infrared absorption material mixed into the ink certainly absorbs the infrared ray L thereby decreasing the light amount of the infrared ray L received by the light receiver 82 more certainly. Furthermore, the ink does not exist in the second horizontal path 733, the light amount of the infrared ray L received by the light receiver 82 is substantially equal to the light amount of the infrared ray L emitted by the light emitter 81.
The structure as described above allows the printing apparatus 100A to perform substantially the same operation as that of the printing apparatus 100 according to the first embodiment. Therefore, this structure enables the printing apparatus 100A to prevent use of the used ink in later phase by pumping the counterfeit ink unsuitable for the ink cartridge into the used ink cartridge. In other words, the printing apparatus 100A can prevent reuse of the used ink cartridge by adopting the structure as described above.
The printing apparatus according to the third embodiment of this invention will be described hereinafter with reference to
This embodiment and the second embodiment are the same except that the loaded portion is mounted in a fixed manner.
A printing apparatus 100B shown in
The droplet discharging head 101 is movable along the guiding axis 102. The droplet discharging head 101 is connected through a tube, not shown, to the loaded portion 107A. As a result, the ink can be supplied from the ink cartridge 1A loaded into the loaded portion 107A through the tube to the droplet discharging head 101.
The ink cartridges and the printing apparatuses according to the embodiments of the invention, shown in drawings are described above but this invention is not limited thereto. Each of elements composing the ink cartridge and the printing apparatus may be substituted by an element with an arbitral structure which allows similar functions to be fully used. Furthermore, arbitral constituents may be added.
Yet further, each of the ink cartridge and the printing apparatus according to this invention may be a combination of two or more arbitral structures. i.e., features of the aforementioned embodiments.
For example, the loaded portion described in the first embodiment may be mounted in a fixed manner in a manner similar to the loaded portion according to the third embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2006-169115 | Jun 2006 | JP | national |
2007-103185 | Apr 2007 | JP | national |