Claims
- 1. An ink composition comprised of (1) a polymer; (2) an acid compound of the formula CH3(CH2)m(CH2CH═CH)p(CH2)nCOOH wherein n, m, and p represent the number of segments; (3) a conductive component; (4) a lightfastness component; and (5) a colorant.
- 2. An ink in accordance with claim 1 wherein said polymer is poly[(o-cresyl glycidyl ether)-co-formaldehyde], (b) poly[(phenyl glycidyl ether)-co-dicyclopentadiene], or (c) poly(bisphenol A-co-epichlorohydrin), glycidyl end-capped.
- 3. An ink in accordance with claim 1 wherein said colorant is a dye, a pigment, or mixtures thereof.
- 4. An ink in accordance with claim 1 wherein said acid is selected from the group consisting of (1) trans-3-hexenoic acid, (2) trans-2-hexenoic acid, (3) 2-octenoic acid, (4) cis-5-dodecenoic acid, (5) cis-9-tetradecenoic acid, (6) cis-9-hexadecenoic acid, (7) eladic acid, (8) cis-11-eicosenoic acid, (9) cis-13-docosenoic acid, (10) cis-15-tetracosenoic acid, (11) linoleic acid, (12) linolenic acid, (13) cis-8,11,14-eicosatrienoic acid, (14) 5,8,11,14-eicosa tetraenoic acid, and (15) cis-5,8,11,14,17-eicosapentaenoic acid.
- 5. An ink in accordance with claim 1 wherein the polymer is present in an amount of from about 1 to about 98 percent by weight, the acid is present in an amount of from about 59 to about 1 percent by weight, the conductive component is present in an amount of from about 20 to about 0.25 percent by weight, the lightfastness compound is present in an amount of from about 10 to about 0.25 percent by weight, and the colorant is present in an amount of from about 15 to about 0.50 percent by weight, and wherein the total of said ink components is about 100 percent.
- 6. An ink in accordance with claim 1 wherein said m, p, and n each represent a number of from about zero (0) to about 20.
- 7. An ink in accordance with claim 1 wherein said m, p, and n each represent a number of from about 1 to about 10.
- 8. A conductive ink comprised of (1) a polymeric additive selected from the group consisting of (a) poly[(o-cresyl glycidyl ether)-co-formaldehyde], (b) poly[(phenyl glycidyl ether)-co-dicyclopentadiene], and (c) poly(bisphenol A-co-epichlorohydrin), glycidyl end-capped, (2) an acid compound of the general formula CH3(CH2)m(CH2CH═CH)p(CH2)nCOOH wherein m, n, and p independently each represent a number of from about 0 to about 15, (3) a conductive compound, (4) a lightfastness component, and (5) a colorant.
- 9. A conductive ink composition in accordance with claim 8 wherein (1) said polymeric additive has a melting point of from about 60° C. to 100° C., and possesses a hardness value of from about 80 to about 95, (2) and said acid, which functions primarily as ink viscosity controlling compound, possesses an acoustic-loss value of from about 15 to about 60 dB/mm.
- 10. A conductive ink composition in accordance with claim 8 and which ink provides developed images with crease values of from about 5 to about 13, haze values of from about 10 to about 15, gloss values of from about 80 to about 90, conductivity values of from about 6 to about 8 [log(pico.mho/cm), and which ink possesses an acoustic-loss value of from about 10 to about 80 dB/mm, and a viscosity of from about 5 centipoise to about 15 centipoise at a temperature of from about 125° C. to about 165° C.
- 11. A conductive ink composition in accordance with claim 8 wherein the polymer is present in an amount of from about 1 to about 98 percent by weight, the viscosity component is present in an amount of from about 59 to about 1 percent by weight, the conductive component is present in an amount of from about 20 to about 0.25 percent by weight, the lightfastness compound is present in an amount of from about 10 to about 0.25 percent by weight, and the colorant is present in an amount of from about 15 to about 0.50 percent by weight, and wherein the total of said ink components and compounds is about 100 percent.
- 12. A conductive ink composition in accordance with claim 8 wherein said acid is selected from the group consisting of (1) trans-3-hexenoic acid, (2) trans-2-hexenoic acid, (3) 2-octenoic acid, (4) cis-5-dodecenoic acid, (5) cis-9-tetradecenoic acid, (6) cis-9-hexadecenoic acid, (7) eladic acid, (8) cis-11-eicosenoic acid, (9) cis-13-docosenoic acid, (10) cis-15-tetracosenoic acid, (11) linoleic acid, (12) linolenic acid, (13) cis-8,11,14-eicosatrienoic acid, (14) 5,8,11,14-eicosa tetraenoic acid, and (15) cis-5,8,11,14,17-eicosapentaenoic acid.
- 13. A conductive ink composition in accordance with claim 8 wherein said conductive compound is selected from the group consisting of (1) azidotris(diethylamino) phosphonium bromide, (2) tetrabutylphosphonium chloride, (3) dodecyltriphenylphosphonium bromide, (4) stearyl tributyl phosphonium bromide, (5) trimethylsulfonium methyl sulfate, (6) 3-ethyl-5-(2-hydroxyethyl)-4-methylthiazolium bromide, and (7) 3,4-dimethyl-5-(2-hydroxyethyl) thiazolium iodide.
- 14. A conductive ink composition in accordance with claim 8 wherein said lightfastness component compound is selected from the group consisting of (1) tetrakis (2,4-ditert butyl phenyl)-4,4′-biphenyl diphosphonite, (2) antimony dialkyl phosphoro dithioate, (3) nickel-bis(o-ethyl 3,5-di-tert-butyl-4-hydroxy benzyl) phosphonate, (4) tetra sodium-N-(1,2-dicarboxyethyl)-N-octadecyl sulfosuccinamate, and (5) 2,2,4-trimethyl-1,2-hydroquinoline.
- 15. A conductive ink composition in accordance with claim 8 wherein the polymeric additive compound possesses a melting point of from about 60° C. to about 100° C., and present in an amount of from about 30 to about 90 percent by weight is poly[(o-cresyl glycidyl ether)-co-formaldehyde], or poly(bisphenol A-co-epichlorohydrin), glycidyl end-capped, and wherein the end groups are glycidyl molecules, the acid compound possessing a boiling point of from about 150° C. to about 360° C. and is present in an amount of from about 50 to about 7 percent by weight and is selected from the group consisting of linolenic acid, linoleic acid, trans-2-hexenoic acid, and cis-13-docosenoic acid; the conductive compound is present in an amount of from about 5 to about 1 percent by weight and is selected from the group consisting of stearyltributylphosphonium bromide, and 3-ethyl-5-(2-hydroxyethyl)-4-methyl thiazolium bromide; the lightfastness compound is present in an amount of from about 5 to about 1 percent by weight and is tetrakis (2,4-ditert butyl phenyl)-4,4′-biphenyl diphosphonite, and the colorant is present in an amount of from about 10 to about 1 percent by weight.
- 16. A printing process which comprises incorporating into an acoustic ink jet printer the ink of claim 1.
- 17. A printing process which comprises incorporating into an acoustic ink jet printer the ink of claim 8.
- 18. A printing process which comprises (a) providing an acoustic ink printer having a pool of the liquid ink of claim 1 with a free surface, and a printhead including at least one droplet ejector for radiating the free surface of said ink with focused acoustic radiation to eject individual droplets of ink therefrom on demand, said radiation being brought to focus with a finite waist diameter in a focal plane, and causing droplets of the ink to be ejected in imagewise pattern onto a substrate.
- 19. An ink in accordance with claim 1 wherein the colorant is selected in an amount of from about 0.5 to about 15 percent by weight.
- 20. An ink in accordance with claim 1 wherein the colorant is a pigment, or a dye.
- 21. An ink in accordance with claim 1 wherein the colorant is a pigment of carbon black.
- 22. An ink in accordance with claim 1 wherein the colorant is a cyan, magenta, yellow, black, or mixtures thereof.
- 23. An ink in accordance with claim 1 with a viscosity of from about 5 centipoise to about 20 centipoise, crease values of from about 5 to about 13, haze values of from about 7 to about 12, gloss values of from about 80 to about 90, conductivity values of from about 6 to about 8 [log (pico.mho/cm), and which ink possesses an acoustic-loss value of from about 10 to about 80 dB/mm.
- 24. An ink in accordance with claim 1 with a viscosity of from about 5 centipoise to about 20 centipoise, crease values of from about 5 to about 14, haze values of from about 7 to about 12, gloss values from about 80 to about 85, conductivity values of from about 6 to about 7 [log (pico.mho/cm), and which ink possesses an acoustic-loss value of from about 10 to about 80 dB/mm.
- 25. An ink in accordance with claim 1 wherein said polymer is a solid and is present in an amount of from about 1 to about 98 percent by weight, the acid is present in an amount of from about 59 to about 1 percent by weight, the conductive component is present in an amount of from about 20 to about 0.25 percent by weight, the lightfastness component is present in an amount of from about 5 to about 0.25 percent by weight, and the colorant is present in an amount of from about 15 to about 0.5 percent by weight.
- 26. An ink in accordance with claim 1 wherein the polymer is a solid present in an amount of from about 30 to about 90 percent by weight, the acid compound is present in an amount of from about 50 to about 7 percent by weight, the conductive component is present in an amount of from about 5 to about 1 percent by weight, the lightfastness component is present in an amount of from about 5 to about 1 percent by weight, and the colorant is present in an amount of from about 10 to about 1 percent by weight.
- 27. An ink composition comprised of (1) polymer, (2) an acid compound of the formula CH3(CH2)m(CH2CH═CH)p(CH2)nCOOH where m, p and n represent the number of CH3(CH2) segments, (3) a conductive component, and (4) a colorant.
- 28. An ink in accordance with claim 27 further containing a lightfastness component.
- 29. An ink in accordance with claim 27 wherein each of said m, p, and n represent a number of from about 1 to about 100.
- 30. An ink in accordance with claim 27 wherein each of said m, p, and n represent a number of from about 5 to about 25.
- 31. An ink in accordance with claim 27 and which ink is substantially free of water.
- 32. An ink in accordance with claim 27 and which ink contains no water.
- 33. An ink in accordance with claim 1 wherein each of said m, p, and n represent a number of from about 1 to about 100.
- 34. An ink in accordance with claim 1 wherein each of said m, p, and n represent a number of form about 5 to about 25.
- 35. An ink in accordance with claim 1 and which ink is substantially free of water.
- 36. An ink in accordance with claim 1 and which ink contains no water.
- 37. An ink composition in accordance with claim 1 wherein said conductive compound is selected from the group consisting of (1) azidotris (diethylamino) phosphonium bromide, (2) tetrabutylphosphonium chloride, (3) dodecyltriphenylphosphonium bromide, (4) stearyl tributyl phosphonium bromide, (5) trimethylsulfonium methyl sulfate, (6) 3-ethyl-5-(2-hydroxyethyl)-4-methylthiazolium bromide, and (7) 3,4-dimethyl-5-(2-hydroxyethyl) thiazolium iodide.
- 38. A conductive ink composition in accordance with claim 8 wherein said lightfastness component compound is selected from the group consisting of (1) tetrakis (2,4-ditert butyl phenyl)-4,4′-biphenyl diphosphonite, (2) antimony dialkyl phosphoro dithioate, (3) nickel-bis(o-ethyl 3,5-di-tert-butyl-4-hydroxy benzyl) phosphonate, (4) tetra sodium-N-(1,2-dicarboxyethyl)-N-octadecyl sulfosuccinamate, and (5) 2,2,4-trimethyl-1,2-hydroquinoline.
- 39. An ink in accordance with claim 27 wherein said polymer is poly[(o-cresyl glycidyl ether)-co-formaldehyde], (b) poly[(phenyl glycidyl ether)-co-dicyclopentadiene], or (c) poly(bisphenol A-co-epichlorohydrin), glycidyl end-capped.
- 40. An ink in accordance with claim 27 wherein said colorant is a dye, a pigment, or mixtures thereof.
- 41. An ink in accordance with claim 27 wherein said acid is selected from the group consisting of (1) trans-3-hexenoic acid, (2) trans-2-hexenoic acid, (3) 2-octenoic acid, (4) cis-5-dodecenoic acid, (5) cis-9-tetradecenoic acid, (6) cis-9-hexadecenoic acid, (7) eladic acid, (8) cis-11-eicosenoic acid, (9) cis-13-docosenoic acid, (10) cis-15-tetracosenoic acid, (11) linoleic acid, (12) linolenic acid, (13) cis-8,11,14-eicosatrienoic acid, (14) 5,8,11,14-eicosa tetraenoic acid, and (15) cis-5,8,11,14,17-eicosapentaenoic acid.
- 42. An ink in accordance with claim 27 wherein the polymer is present in an amount of from about 5 to about 60 percent by weight, the acid is present in an amount of from about 10 to about 30 percent by weight, the conductive component is present in an amount of from about 5 to about 15 percent by weight, the lightfastness compound is present in an amount of from about 0.1 to about 10 percent by weight, and the colorant is present in an amount of from about 1 to about 15 percent by weight, and wherein the total of said ink components and compounds is about 100 percent.
- 43. An ink in accordance with claim 1 with a conductivity of from about 6 to about 10 (log(pico.mho/cm).
- 44. An ink in accordance with claim 1 with a conductivity of from about 6 to about 7 [log(pico.mho/cm).
- 45. An ink in accordance with claim 1 with a conductivity of about 7 [log(pico.mho/cm).
COPENDING PATENT APPLICATIONS AND PATENTS
[0001] Inks are illustrated in copending patent applications U.S. Ser. No. 935,929, U.S. Ser. No. 935,889, U.S. Ser. No. 935,639, U.S. Ser. No. 933,914, U.S. Ser. No. 09/300,210, U.S. Ser. No. 09/300,193, U.S. Ser. No. 09/300,373, U.S. Ser. No. 09/300,298, U.S. Ser. No. 09/300,331, U.S. Ser. No. 09/300,333, U.S. Ser. No. 09/300,332, U.S. Ser. No. (not yet assigned—D/98763), and U.S. Pat. No. 5,876,492, the disclosures of each being totally incorporated herein by reference.
[0002] The appropriate components of the above copending applications may be selected for the inks and processes of the present invention in embodiments thereof.
Continuations (1)
|
Number |
Date |
Country |
Parent |
09342947 |
Jun 1999 |
US |
Child |
10046411 |
Jan 2002 |
US |