In printing devices that utilize ink, the uncontrolled flow of ink can result in splashing. As the ink splashes, it can adhere to some parts of the printing device. Over time, the carrier liquid is evaporated and the accumulated layers of concentrated ink (or sludge) can block or limit the flow of ink, which in turn can result in malfunctions and breakdowns. Cleaning the parts that contain the accumulated ink can be time-consuming and costly. Also, cleaning the accumulated ink can be difficult without disassembling the device, which sometimes makes this option infeasible in the field.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
Exemplary implementations for provision and/or utilization of an ink developer foil are described. The implementations provide efficient and/or low-cost solutions for limiting or eliminating ink splashes that may accumulate on some portions of a printing device over time. In one implementation, a fluid foil partially surrounds a main electrode of an ink developer unit. Moreover, the fluid foil may be electrically charged such that the splashed ink does not readily adhere to the foil.
Exemplary Ink Developer Device
The device 100 is coupled to a photo-conductive drum 102 that is charged and then selectively exposed to a laser (not shown) to form a charge pattern corresponding to an image. The device 100 includes an ink developer roller (104) that is contacted with the drum 102 to selectively transfer a liquid ink pattern to the charged pattern. Next, the liquid ink pattern is transferred from the photoconductive drum 102 to a media such as paper or to an intermediate transfer member (not shown) to form an image on the media.
The device 100 also includes an ink tray 106 (e.g., to hold excess ink and direct it to an ink outlet 108), a main electrode (back wall) 110 (e.g., to support the various parts of the device 100 such as the illustrated rollers), a squeegee roller 112 (e.g., to remove excess ink from the developer roller 104), a cleaning roller 114 (e.g., to clean the developer roller 104), a sponge roller 116 (e.g., to absorb excess ink from a wiper blade 126 and/or the cleaning roller 114), a squeegee roller 118 (e.g., to squeeze the sponge roller 116 to remove excess ink), an ink inlet 120 (e.g., to supply fresh or recycled ink (such as from the ink outlet 108) to the device 100), a main electrode (front wall) 122 (e.g., to support the various parts of the device 100 such as the illustrated rollers), and an ink drain passage 124 (e.g., to allow drainage of excess ink from the main electrode (110, 122)). The wiper blade 126 may come in contact with the sponge roller 116 and/or the cleaning roller 114 to clean one or both of them.
Exemplary Ink Flow
As illustrated in
In some implementations, the devices 100 and 200 are wholly replaceable. Various life-limiting aspects of the device 100 (or 200) may include: (1) limited life of the developer roller 104; (2) sludge buildup inside the device 100 (or 200); and (3) wear of various internal parts. Moreover, sludge may accumulate in several areas of the device 100 (or 200) such as one or more of the following: (a) between the main electrode (whether front wall 122 or back wall 110) and the developer roller 104; (b) on the outside wall of the main electrode (i.e., the side facing towards the ink tray 106); and (c) on the sides or bottom of the ink tray 106. Also, the device 100 (or 200) may be a consumable, and, e.g., made from custom and/or off the shelf parts. In one implementation, upon failure of any component of this consumable, the entire device is replaced.
Exemplary Fluid Foil
The ink developer device 300 further includes a foil 302 which may be adjacent to and/or at least partially surround the main electrode (110, 122). As illustrated in
In one implementation, the fluid foil 302 may be electrically charged such that the splashed ink does not readily adhere to the foil. For example, the fluid foil 302 may be charged to the same potential level as the main electrode (110, 122) to discourage the splashed ink from attaching to either the main electrode or the fluid foil. For example, the main electrode and the foil may be electrically coupled to each other, or alternatively to a same voltage source. In an implementation, the electrode and the fluid foil may be charged to about −1,500 V, whereas the squeegee roller 112 may be charged to about −750 V and the developer roller 104 to about −450 V.
Additionally, the gap between the fluid foil 302 and the main electrode (110, 122) (or other parts of the ink developer device 300) may be at about 2 mm. The gap between the rollers (e.g., 112 and 104) and the foil 302 may be at about 1 mm or less. Furthermore, the fluid foil 302 may be made of any electrically conductive material that may be chemically non-reactive with the fluids utilized in the ink developer (e.g., ink and/or carrier liquid), such as steel, stainless steel, plastic with coating (e.g., Ultem® brand coating which may include polyetherimide and/or Teflon® brand coating which may include polytetrafluoroethylene), combinations thereof, and the like. Accordingly, the back and front wall foils illustrated in
In various implementations, the utilization of the fluid foil 302 is envisioned to provide a tray-less ink developer unit (i.e., by eliminating the cost associated with providing the tray 106), eliminate or limit stagnation points where ink accumulates (e.g., along the top sides of the main electrode (110, 122) such as discussed with reference to
Exemplary Stagnation Point Removal
As illustrated in
Reference in the specification to “one implementation” or “an implementation” means that a particular feature, structure, or characteristic described in connection with the implementation is included in at least an implementation. The appearances of the phrase “in one implementation” in various places in the specification are not necessarily all referring to the same implementation.
Thus, although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
4423134 | Miyakawa | Dec 1983 | A |
4883018 | Sagiv | Nov 1989 | A |
5481342 | Arcaro et al. | Jan 1996 | A |
5506372 | Guth et al. | Apr 1996 | A |
5923412 | Ertel | Jul 1999 | A |
5943536 | Okada et al. | Aug 1999 | A |
6125254 | Chang et al. | Sep 2000 | A |
6337963 | Kusayanagi | Jan 2002 | B1 |
20040175206 | Landa et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
0989471 | Feb 2002 | EP |
61262767 | Nov 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20060153597 A1 | Jul 2006 | US |