1. Field of Invention
The invention relates to an ink ejecting device, such as an ink-jet head of an ink-jet printer and, more specifically, to an ink ejecting device that effectively uses deformation of a piezoelectric actuator.
2. Description of Related Art
A piezoelectric ink ejecting mechanism has been conventionally proposed for a printhead. In the piezoelectric ink ejecting mechanism, a piezoelectric actuator deforms to change the volume of an ink chamber. Ink in the ink channel is ejected from a nozzle when the volume of the ink chamber is reduced, while ink is drawn into the ink channel when the volume of the ink chamber is increased. A plurality of such ink ejecting mechanisms are disposed adjacent to each other, and ink is selectively ejected from an ink ejecting mechanism at a particular position to form desired characters and images.
An ink-jet head using such a conventional piezoelectric ink ejecting mechanism is disclosed in U.S. patent application Publication No. 2001/0020968, which is incorporated herein by reference.
The pressure generating portion 280 is defined between a drive electrode 240 and a common electrode 250 in a piezoelectric sheet 220 of the piezoelectric actuator 200, and is polarized in a direction from the drive electrode 240 toward the common electrode 250. When an electric field generated parallel to the polarization direction is applied to the pressure generating portion 280, the pressure generating portion 280 expands in a direction of the thickness of the piezoelectric actuator 200. The deformed piezoelectric actuator 200 reduces the volume of the pressure chamber 160 and pressurize the ink therein. As a result, an ink droplet is ejected from the nozzle 150 that communicates with the pressure chamber 160.
The pressure generating portion 280 expands toward the pressure chamber 160 as well as toward the opposite direction, which may cause a pressure loss. Due to such a pressure loss, a relatively high voltage is required for the pressure generating portion 280 to expand as required toward the pressure chamber 160, and thus the cost of a power supply system is increased.
Another problem arises when the piezoelectric ink-jet head is formed by stacking the piezoelectric actuator 200 made of piezoelectric ceramic and the cavity plate 100 made of metal. Because there is a big difference in the linear expansion coefficient between the piezoelectric ceramic and the metal, the piezoelectric actuator 200 and the cavity plate 100 are likely to bend at a different rate with temperature changes when they are bonded or used for printing. This may cause positional shifts of ink dots and degrade print quality.
The present invention addresses the foregoing problems and provides an ink ejecting device that effectively uses deformation of a pressure generating portion of a piezoelectric actuator to reduce a drive voltage required for the pressure generating portion and ultimately reduce the cost of a power supply system. The invention also provides an ink ejecting device that has a piezoelectric actuator and a cavity plate that are unlikely to bend with temperature changes when they are bonded or used for printing.
According to one aspect of the invention, an ink ejecting device includes a nozzle from which ink is ejected, an actuator having a pressure generation portion between its opposed surfaces, a first pressure chamber disposed to face one of the opposed surfaces of the actuator, and a second pressure chamber disposed to face the other surface of the actuator. The pressure generating portion is deformable to shift the opposed surfaces of the actuator substantially symmetrically to pressurize the ink stored in the first and second pressure chambers. The first and second pressure chambers communicate with each other and also communicate with the nozzle. The first and second pressure chambers may communicate with each other via a through-hole formed in the actuator and via a second through-hole formed in the actuator and leading to the nozzle. When the pressure generating portion deforms to shift two opposed surfaces of the actuator, the ink in the first pressure chamber flows toward the nozzle, and the ink in the second pressure chamber flows through the second through-hole toward the nozzle.
According to another aspect of the invention, an ink ejecting device includes a first cavity plate formed with a common ink chamber and a first pressure chamber, a second cavity plate formed with a second pressure chamber, an actuator disposed between the first and second cavity plates, a first ink passage, a second ink passage, and a nozzle. A deformable portion of the actuator is placed between the first and second pressure chambers. The ink in the common ink chamber is supplied to the first and second pressure chambers through the first ink passage. The ink flows from the first and second pressure chambers through the second ink passage to the nozzle.
One embodiment of the invention will be described in detail with reference to the following figures, in which like elements are labeled with like numbers and in which:
One embodiment of the invention applied to an ink-jet head will be described with reference to the attached figures.
As shown in
The drive unit 65 includes a carriage shaft 71 disposed at the lower end of the carriage 64 to extend parallel to the platen roller 66, a guide plate 72 disposed at the upper end of the carriage 64 to extend parallel to the carriage shaft 71, two pulleys 73, 74 disposed at both ends of the carriage shaft 71 to be sandwiched between the carriage shaft 71 and the guide plate 72, and an endless belt 75 looped over the pulleys 73, 74. When the pulley 73 is driven by a motor 76 to rotate forward and in reverse, the carriage 64 attached to the endless belt 75 reciprocates linearly along the carriage shaft 71 and the guide plate 72.
The sheet 62 is supplied from a sheet feed cassette (not shown) provided at one side of the color ink-jet printer 1, and is guided between the ink-jet heads 6 and the platen roller 66, where the ink-jet heads 6 eject ink to print a predetermined image on the sheet 62. Thereafter, the sheet 62 is discharged. A sheet feed mechanism and a sheet discharge mechanism are omitted from FIG. 1.
The purge unit 67 is disposed at one side of the platen roller 66 to face the ink-jet heads 6 when the head unit 63 is in the reset position. The purge unit 67 includes a cap 81 that contacts and covers the nozzles of the ink-jet heads 6, a pump 82, a cam 83, and an ink tank 84. When the head unit 63 is in the reset position, the nozzles of each ink-jet head 6 is covered with the cap 81, and the purge unit 67 sucks defective ink containing air bubbles from the ink-jet head 6 using the pump 82 driven by the cam 83. As a result, the ink-jet head 6 is restored to the operable state. Sucked ink is discharged into the ink tank 84. Purging operation prevents poor ink ejection that is caused by the ink or bubbles trapped in the ink-jet head 6 when ink is initially supplied to the ink-jet head 6.
The head unit 63 will now be described with reference to
As shown in
The bottom plate 5 projects downwardly from the cartridge mount 3 and extends horizontally. As shown in
Communicating holes 46a, 46b, 46c, 46d are provided at one end of the supports 8 to communicate with the ink cartridges 61 through the ink supply passages 4a, 4b, 4c, 4d. Grooves 48 shaped like a figure eight as viewed from the top are provided around the communicating holes 46a, 46b, 46c, 46d. Ring-shaped packings 47 made of rubber or other materials are inserted into the grooves 48. When each ink-jet head 6 is bonded to the support 8, the packings 47 are press-fitted around the ink supply holes 19a (FIG. 8), thereby hermetically sealing the ink supply holes 19a.
A protective cover 44 is attached to the bottom plate 5 to cover the ink-jet heads 6 bonded to the bottom plate 5. The protective cover 44 is formed with two oval openings in its longitudinal direction such that the nozzles 15 are exposed through the openings. The protective cover 44 is folded at its both ends into an angular C shape, and is fixed to the head unit 63 such that a flexible flat cable 40 is folded upwardly along the folded portions of the protective cover 44.
The structure of the piezoelectric ink-jet head 6 will now be described with reference to
As shown in
As shown in
As shown in
As shown in
The sectional area of the common ink chambers 12a, 12b decreases at an end portion C gradually at a constant rate toward a direction away from the ink supply holes 19a, 19b. This prevents bubbles from being trapped in the end portion C. The common ink chambers 12a, 12b are scaled by stacking the nozzle plate 11 and the spacer plate 13 to sandwich the two manifold plates 12.
The ink ejection nozzles 15 having a very small diameter (about 25 μm in this embodiment) are formed in the nozzle plate 11 along the longitudinal center lines 11a, 11b with a small pitch P in a staggered configuration. The nozzles 15 are aligned with the corresponding through-holes in the two manifold plates 12.
As shown in
A common electrode 25 is provided on the upper surface of the piezoelectric sheet 22 in the middle. End potions 25a of the common electrode 25 are also exposed to the side surfaces 20c. Areas in the piezoelectric sheet 22 sandwiched by the drive electrodes 24 and the common electrodes 25 constitute pressure generating portions 28a, which correspond to the first pressure chambers 16. As shown in
Surface electrodes 26 corresponding to the drive electrodes 24 and surface electrodes 27 corresponding to the end portions 25a of the common electrode 25 are provided along the side surfaces 20c. First recesses 30 are formed at the end portions 24a of the drive electrodes 24 so as to extend in the laminating direction, and second recesses 31 are formed at the end portions 25a of the common electrode 25 so as to extend in the laminating direction. As shown in
Outer holes 57 and inner holes 58 are formed as many as the first pressure chambers to penetrate the piezoelectric actuator 20 vertically by laser machining or other methods. The outer holes 57 are aligned with the ink supply holes 16b of the first pressure chambers 16, and the inner holes 58 are aligned with the end portions 16a of the first pressure chambers 16. The drive electrodes 24 and the common electrode 25 are formed around the outer and inner holes 57, 58 so as not to contact ink and cause a short circuit between the electrodes 24, 25.
As shown in
A plurality of second pressure chambers 56 are provided in a staggered configuration in the base plate 53. Each second pressure chamber 56 is narrow and extends perpendicularly to longitudinal center lines 54a, 54b. Ink supply holes 56a are provided for the second pressure chambers 56 at lateral ends of the base plate 53. Recessed restricting portions 56d are provided between the second pressure chambers 56 and the ink supply holes 56b such that each second pressure chamber 56 is connected to the corresponding ink supply hole 56b via a restricting portion 56d. Each ink supply hole 56b communicate with an ink supply hole 16b of the corresponding first pressure chamber 16 via the corresponding outer hole 57 formed in the piezoelectric actuator 20. The sectional area of the restricting portion 56d in the direction perpendicular to the ink flow direction is smaller than the sectional area of the second pressure chamber 56. With this structure, the resistance to the flow of ink passing from the second pressure chamber 56 to the ink supply hole 56b is increased, thereby preventing backflow of the ink from the second pressure chamber 56 to the ink supply hole 56b. An end portion 56a of each second pressure chamber 56 communicates with an end portion 16a of the corresponding first pressure chamber 16 via the corresponding inner hole 58 formed in the piezoelectric actuator 20.
The piezoelectric ink-jet head 6 is formed by sandwiching the piezoelectric actuator 20 between the first and second cavity plates 10, 50. When the first and second cavity plates 10, 50 and the piezoelectric actuator 20 are stacked, each first pressure chamber 16 and the corresponding second pressure chamber 56, pressure generating portion 28a, and common ink chamber 12a or 12b are aligned substantially vertically, that is, perpendicularly to the actuator extending direction.
The piezoelectric actuator 20 is sandwiched between the first and second cavity plates 10, 50 that are made of the same metal and have the same linear expansion coefficient. Thus, the piezoelectric ink-jet head 6 is less likely to bend during assembly where the first and second cavity plates 10, 50 are thermally bonded to the piezoelectric actuator 20 using a thermosetting adhesive, or during printing operation that involves temperature changes. The first and second cavity plates 10, 50 are not necessarily made of metal, as described above. However, if the first and second cavity plates 10, 50 are made of a material having the same linear expansion coefficient, the same effect is obtained and the resultant piezoelectric ink-jet head 6 is less likely to bend even when the temperature changes.
The flow of ink in the piezoelectric ink-jet head 6 will now be described briefly. Ink flows from the ink cartridge 61 into the common ink chamber 12a or 12b via the ink supply holes 19a, 19b formed at one end of the base plate 14 and the spacer plate 13. The ink in the common ink chamber 12a or 12b flows into each first pressure chamber 16 via the corresponding ink supply hole 16b and restricting portion 16d. As a branch flow, the ink flowing into each ink supply hole 16b further flows into the corresponding second pressure chamber 56 via the corresponding outer hole 57, ink supply hole 56b and restricting portion 56d. The ink in each second pressure chamber 56 flows toward the corresponding end portion 56a, passes the corresponding inner hole 58, and joins into the main flow at the end portion 16a of the corresponding first pressure chamber 16. Then, the ink passes through the corresponding through-hole 17 and reaches the corresponding nozzle 15.
As shown in
The pressure generating portion 28a expands toward both sides of the piezoelectric actuator 20, that is, toward the first pressure chamber 16 and the second pressure chamber 56 to reduce the volume of the first and second pressure chambers 16, 56 and increase the internal pressure of the first and second pressure chambers 16, 56. As a result, ink flows through the inner holes 58 toward the nozzle 15 and an ink droplet 90 is ejected from the nozzle 15.
In the piezoelectric ink-jet head 6 of the above-described embodiment, upward and downward deformation of the pressure generating portion 28a of the piezoelectric actuator 20 effectively applies pressure on the ink in the first and second pressure chambers 16, 56 formed on both sides of the piezoelectric actuator 20. Thus, the pressure generating portion 28a can be driven with a relatively low voltage using a less costly power source than in a conventional ink-jet head. If the drive voltage required for a conventional ink-jet head is used, the area of the pressure generating portion 28a, as well as the capacitance of the pressure generating portion 28a, can be reduced.
The pressure generating portion 28a deforms symmetrically toward upper and lower sides of the piezoelectric actuator 20. The first pressure chamber 16 faces the upper side of piezoelectric actuator 20 while the second pressure chamber 56 faces the lower side of the piezoelectric actuator 20. Thus, the deformation of the pressure generating portion 28a acts on the first and second pressure chambers 16, 56 effectively, with a less deformation loss than in a conventional ink-jet head, and the ink is ejected from the corresponding nozzle 15 that communicates with both the first and second pressure chambers 16, 56.
In addition, the piezoelectric ink-jet head 6 is easily formed by sandwiching the piezoelectric actuator 20 between the first and second cavity plates 10, 50. Because the first and second cavity plates 10, 50 are made of the same metal and have the same linear expansion coefficient, the piezoelectric ink-jet head 6 is less likely to bend during assembling and bonding using heat treatment or during printing operation that involves temperature changes. Accordingly, positional shifts of dots are prevented, and high print quality is maintained.
Further, the ink passages to and from the first and second pressure chambers 16, 56 are defined and directed appropriately by the holes provided at both longitudinal ends of the first and second pressure chambers 16, 56. Ink is supplied to the first and second pressure chambers 16, 56 through the holes provided at one of the longitudinal ends, and ink is discharged from the first and second pressure chambers 15 through the holes provided at the other longitudinal end to the corresponding nozzle 15, effectively.
Further, a plurality of ink ejecting mechanisms formed by a plurality of pressure generating portions 28a and a plurality of pairs of pressure chambers 16, 56 are integrated into a plate-shaped ink-jet head 6. Each pressure generating portion 28a is provided between a corresponding one of the first ink chambers 15 and a corresponding one of the second ink chambers 56. Thus, the piezoelectric ink-jet head 6 can accomplish high-resolution printing. Whereas, in the above-described embodiment, the pressure generating portion 28a is controlled to expand upon the application of a voltage, the pressure generating portion 28a may be controlled to contract upon the application of a voltage by reversing the polarization direction P and the direction of the electric field E. In this case, the pressure generating portion 28a contracts to cause pressure change in the first and second pressure chambers 16, 56 and returns to the original state to pressurize the ink and cause ink ejection.
Alternatively, a voltage may be applied to the pressure generating portion 28a constantly when ink is not ejected. In this case, the volume of the first and second pressure chambers 16, 56 is kept reduced normally, and the voltage applied to the pressure generating portion 28a is released upon the input of an ejection signal to increase the volume of the first and second pressure chambers 16, 56. Then, the voltage is applied again to pressurize the ink to cause ink ejection.
While the invention has been described with reference to the specific embodiment, the description of the embodiment is illustrative only and is not to be construed as limiting the scope of the invention. Various other modifications and changes may be possible to those skilled in the art without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2002-132730 | May 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5215446 | Takahashi et al. | Jun 1993 | A |
6284147 | Silverbrook | Sep 2001 | B1 |
6457818 | Kurashima et al. | Oct 2002 | B1 |
20010020968 | Isono et al. | Sep 2001 | A1 |
Number | Date | Country |
---|---|---|
61137753 | Jun 1986 | JP |
2001260347 | Sep 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030210304 A1 | Nov 2003 | US |