At present, particular types of ink jet printers apply side shooting print heads. Typically, these print heads involve nozzles that shoot in a side direction with respect to a piezoelectric element, and parallel to the silicon wafer. Side shooting piezo print heads allow firing chambers to be placed on both sides of a silicon wafer. This feature allows maximizing the nozzles per linear inch per area of silicon wafer and allows tight packing of print heads in a printer which reduces the carefully controlled paper print zone
Manufacturing these types of print heads involves cutting out a nozzle and an ink chamber in a photolithographic silicon etch process, adhering a flexible membrane above the nozzle and chamber, and adhering a piezoelectric actuator on the membrane positioned above the nozzle and ink chamber. A nozzle orifice surface and the nozzle orifice of the print head are formed by dicing the wafer. The nozzle consists of a converging zone that provides a fluidic path between the chamber and the nozzle orifice. The nozzle orifice consists of a near rectangular opening with a short straight wall region normal to nozzle orifice. A straight region, the chimney, is provided between the converging zone and the orifice, and directs the accelerating fluid flow that will eventually produce the ink drop. The piezoelectric element deforms the membrane which in part provides the acoustic pressure in the ink chamber that ejects the ink from the nozzle orifice in a direction perpendicular with respect to the piezoelectric element/membrane primary deflection direction.
As the nozzle orifice is formed by wafer dicing, process irregularities such as chips are formed along the edges of the nozzle orifice. These irregularities may adversely affect nozzle orifice ink wetting consistency and meniscus shape that is formed near the nozzle orifice. In practice, the drop trajectory may deviate significantly from the intended direction due to interaction of the fluid with the irregularities. Furthermore, the chimney length may vary significantly between different print heads due to the relatively large tolerance imposed by the sawing process.
Currently the nozzle orifice surface is polished to counter irregularities in the sawn surface. Afterwards, the entire die, both outside and inside the nozzles and the chamber, are cleaned. Such polishing and cleaning is a slow and expensive process and generally produces significant yield fall out due to incomplete cleaning and other grit particle induced defects.
Furthermore, during etching undesirable irregularities are formed on nozzle surface opposed to the membrane surface in the chimney region of the nozzle. In use, these irregularities cause asymmetric meniscus shape in the nozzle orifice, that further affect drop trajectory.
A goal of the invention is to alleviate at least one of above drawbacks.
For the purpose of illustration, certain embodiments of the present invention will now be described with reference to the accompanying diagrammatic drawings, in which:
In the following detailed description, reference is made to the accompanying drawings. The embodiments in the description and drawings should be considered illustrative and are not to be considered as limiting to the specific embodiment of element described. Multiple embodiments may be derived from the following description through modification, combination or variation of certain elements. Furthermore, it may be understood that also embodiments or elements that may not be specifically disclosed in this disclosure may be derived from the description and drawings.
The ink ejection device 1 may form part of a side shooting piezoelectric inkjet printhead (not shown). The printhead may comprise a front surface 2 having multiple recessed portions 3, for example a grid of recessed portions 3, wherein a nozzle 5 opens into each of the recessed portions 3. The nozzle 5 and the ink chamber 4 may together comprise one cutout in a wafer 8. Such cutout may be achieved by photolithography, as will be explained further below, and/or another manufacturing process.
The ink ejection device 1 may comprise a piezoelectric actuator 9. The actuator 9 may comprise a membrane 10 and a piezoelectric element 11, as shown schematically in
Below, for an understanding of possible common geometrical relationships between features of the side shooting ink ejection device 1, the terms “common plane”, “shooting direction” and “middle axis” are introduced.
The nozzle 5 may comprise a side shooting nozzle, shooting in a side direction with respect to the actuator 9, for example, in a shooting direction Z. The shooting direction Z may be approximately perpendicular to a normal vector that defines the surface of the actuator 9, such as direction X, or the surface of the membrane wall 10. An imaginary common plane C may extend through the nozzle 5, the fluid chamber 4 and the recessed portion 3 so that the nozzle 5, the fluid chamber 4 and the recessed portion 3 may be arranged in line. The common plane C may extend through the ink ejection orifice 6 and the chimney 7 and may be parallel to the membrane 10. A normal vector of the common plane may be direction X. The shooting direction Z and/or the nozzle 5 may be arranged approximately perpendicular to the normal vector defining common plane C, i.e. direction X. The shooting direction Z may lie in the common plane C. As can be seen from
The actuator 9 may extend next to the common plane C. “Next to” may refer to the common plane C not intersecting the actuator 9. For example, in the drawing, the actuator 9 extends above and parallel to the common plane C. However, depending on the orientation of the print head, the actuator 9 may extend under or at the sides of the common plane C. The actuator 9 may act as a top and/or bottom wall of the fluid chamber 4.
A common middle axis M may extend through the middle of the fluid chamber 4, the middle of the chimney 7 and the middle of the recessed portion 6, as seen from a top view (
The ink ejection device 1 may be arranged to guide the fluid towards the ejection orifice 6 by pressure and/or acoustic waves. The actuator 9, or at least the membrane 10, may be arranged parallel to the shooting direction Z of the fluid. The fluid chamber 4 may converge towards the chimney 7. The fluid chamber 4 may comprise a converging portion 12 to guide the fluid towards the nozzle 5. The converging portion 12 may converge in the direction of the chimney 7 and connect to the chimney 7. The bottom and/or the side walls of the fluid chamber 4 may converge and/or taper towards the chimney 7. For example, the fluid chamber 4 may comprise a stepped portion 13. For example, the fluid chamber 4 may comprise a chamber bottom 14 that is deepened with respect to the nozzle 5 and/or the common plane C.
The chimney 7 may comprise substantially parallel walls. The chimney walls may be substantially straight. The walls of the chimney may extend substantially parallel to the shooting direction Z of the fluid. The chimney walls may end at the recessed portion 3, wherein the end edges of the chimney walls may form the ejection orifice 6. The recessed portion 3 may comprise a widening with respect to the ejection orifice 6 and may open into the front surface 2 so that the ejection orifice 6 may be countersunk.
The height Hc of the fluid chamber may be 150 micron or less, as measured between the bottom of the fluid chamber 4 and the surface of the actuator 9 forming the top wall of the fluid chamber 4. The length Lc of the chimney 7 may be between approximately 2 and approximately 40 micron, for example between approximately 5 and approximately 20 micron. The width Wc of the chimney 7 may be between approximately 10 and approximately 100 micron, for example between approximately 20 and approximately 70 micron. These dimensions have shown to be advantageous for obtaining a desired and constant ink drop weight, velocity and frequency.
The depth Dr of the recessed portion 3, as measured between the ejection orifice 6 and the front surface 2, may be between 3 and 30 micron. A width difference between the outer edge of the recessed portion and the outer edge of the ejection orifice may be between 3 and 100 micron, for example between 3 and 20 micron. Herein, the width difference may be calculated by subtracting the width Wc of the Chimney from the width Wr of the recessed portion.
Above features and dimensions may be advantageous for obtaining a desired and constant ink drop weight, velocity and frequency. Above features and dimensions have been tested and have shown to achieve relatively good results with respect to the drop directionality of the respective tested ink drop.
For example, with the use of the recessed portion 3, a meniscus 14 (
An embodiment of a manufacturing process of the side shooting ink ejection device 1 may be explained with reference to
An exemplary wafer 8 for use in a manufacturing process for an ink ejection device 1 may comprise a silicon wafer having a width of approximately 8 inch (approximately 200 millimeter) and a thickness of approximately 1061 micron. The wafer 8 may be coated with a layer 15 of silicon dioxide by any suitable method. In an embodiment, the silicon dioxide layer 15 may comprise Field Oxide (FOX), for example of a thickness of approximately 2 micron.
As shown in
As shown in
The sacrificial portion 20 may correspond to the recessed portion 3. The function of the sacrificial portion 20 will be explained further below. In the shown cross section of the wafer 8, three cutouts 17A corresponding to respective ink ejection devices 1 are shown in cross sectional front view, and one cutout 17B corresponding an ink ejection device 1 is shown in side view. Formation of the cutouts 17 may involve further ashing, stripping and etching processes.
A part of one cutout 17 in a wafer 8 is shown in perspective view in
As shown in
As shown in
As shown in
As shown in
The front surface 2 of the ink ejection device 1 and the recessed portion 3 may be formed by dividing the wafer 8 along the division surface D, wherein the division surface D extends through the sacrificial portion 20, as shown in
In an embodiment, the sacrificial portion 20 may have a depth Ds of more than 20 micron before the division or removal of a part of the wafer 8 and a part of the sacrificial portion 20. The sacrificial portion 20 is indicated in dashed lines in
The recessed portions 3 may allow the ejection opening 6 of the nozzle 5 to extend at a certain distance from the front surface 2. Hence, certain irregularities that may be present on the front surface 2, such as chips, may be kept away from the fluid that is ejected, which may be advantageous for controlling the directionality. Polishing of the front surface and/or the nozzles near the ejection orifices may not be necessary, since the ejection orifice 8 is moved away from the front surface 2, thereby saving time, labor and cost. The depth Dr of the recessed portion 3 may be controlled relatively easily by determining the location of division plane D and sawing or otherwise separating the wafer 8 along that plane D, while the width Wr, Wc of the recessed portion 3, the ejection orifice 6 and the chimney 7 may be manufactured and predetermined relatively precise by photolithography. The shape of the chimney 7 and the ejection orifice 6 may be determined fully be photolithographically, with more precision than state of the art side shooting chimney lengths, which were cut off by singulation and are subject to corresponding relatively large tolerances.
During the photolithography process, developer fluid, and in case of wet etching, etch fluid, may flow between the sacrificial portion 20 and the chamber 4, through the chimney 7, forming the chimney 7. The sacrificial portion 20 may allow for a certain buffer zone so that when forming the cutout 17 developer fluid may flow more freely through the chimney 7. As the chimney 7 may be relatively narrow irregular fluid movements could cause irregularities in the chimney walls. Due to the sacrificial portion 20, the fluids used to etch the chimney 7 may flow with less resistance so that relatively straight and/or smooth chimney walls may be formed. Also, the symmetry in the nozzle 5 and recessed portion 3 may be improved. Also, the dimensions and straightness of the features may amongst different ink ejection devices 1 may be relatively constant, e.g. show relatively little variation between different chimneys 7 and recessed portions 6, due to application of the sacrificial portion 20. Better reproducible and straight chimneys 7 may provide for better fluid ejection, for example better control of fluid speed and directionality, as well as better controllable and/or relatively symmetric meniscus shape. The meniscus pinning location may be relatively free of irregularities such as chips. The straight chimney 7 that may be achieved by the sacrificial and/or recessed portion 20, 3, respectively, may have an advantageous effect on the impedance within the nozzle 5.
Good results may be achieved with the dimensions as named above. The depth Ds of the sacrificial portion 20 may be chosen so as to achieve straight, reproducible nozzles 5 with good impedance results. The width Wr of the recessed portion 3 and the sacrificial portion 20 may be chosen in association with the depth Dr of the recessed portion 3, and the width We of the chimney 7 and/or ejection orifice 6, for example so as to achieve a good meniscus pinning location and distance the ejection orifice 6 from the irregularities formed by sawing.
In addition to a photolithography also other methods of manufacturing a side shooting ink ejection device 1 may be suitable. For example, a wafer 8 having cutouts 17 may be formed by building the wafer 8, while leaving open the cutout areas, for example by molding and/or any suitable nano or micro-scale construction technique. In other embodiments, cutouts 17 may be formed by laser techniques and/or or milling. Use of a sacrificial portion 20 may be suitable for application in manufacturing techniques other than photolithography.
With the side shooting ink ejection devices 1, an improved print head for printing ink onto certain media or substrates may be obtained. In a first aspect, a side shooting ink ejection device may be provided comprising a (i) front surface 2, (ii) side shooting nozzles 5 having ejection orifices 36 for ejecting fluid, and (iii) piezoelectric actuators 9 for moving the fluid through vibration for ejecting the fluid out of the nozzle 5. The side shooting nozzles 5 may be arranged to eject fluid in a side direction of the piezoelectric actuator 9. The front surface 2 may comprise recessed portions 3. The side shooting nozzles 5 may open into the recessed portions 3 so that the ejection orifices 6 are countersunk with respect to the front surface 2.
In a second aspect, a method of manufacturing a side shooting ink ejection device 1 may be provided. The method may comprise (i) forming a cutout 17 in a wafer 8, the cutout 17 comprising a chamber 4, a chimney 7 that is narrower than the chamber 4 and a sacrificial portion 20 that is wider than the chimney 7, the chimney 7 being arranged between and in open connection with the chamber 4 and the sacrificial portion 20, wherein a common plane C extends through said chamber 4, chimney 7 and sacrificial portion 20, (ii) at least partly covering the chamber 4 with a piezoelectric actuator 9, next to said common plane C, and (iii) separating a part of the wafer and a part of the sacrificial portion from the ink ejection device so that a front surface of the ink ejection device is formed that intersects with the common plane, and the left over sacrificial portion opens into the front surface.
In a third aspect, a print head for printing ink may be provided, comprising (i) a front surface 2, (ii) side shooting nozzles 5 having ejection orifices 6 for ejecting fluid, (iii) piezoelectric actuators 9 for ejecting the fluid through vibrations, wherein the side shooting nozzles are arranged to eject fluid in a side direction of the piezoelectric actuator 9, the front surface 2 comprises recessed portions 3, and the side shooting nozzles open into the recessed portions 3 so that the ejection orifices 6 are countersunk with respect to the front surface 2.
The above description is not intended to be exhaustive or to limit the invention to the embodiments disclosed. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality, while a reference to a certain number of elements does not exclude the possibility of having more elements. A single unit may fulfil the functions of several items recited in the disclosure, and vice versa several items may fulfil the function of one unit.
The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Multiple alternatives, equivalents, variations and combinations may be made without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6290331 | Agarwal et al. | Sep 2001 | B1 |
6450615 | Kojima et al. | Sep 2002 | B2 |
6527370 | Courian et al. | Mar 2003 | B1 |
7520591 | Suzuki | Apr 2009 | B2 |
7530668 | Tomita et al. | May 2009 | B2 |
7766462 | Haluzak et al. | Aug 2010 | B2 |
20020154191 | Kanda et al. | Oct 2002 | A1 |
20070200896 | Ozawa et al. | Aug 2007 | A1 |
20090051740 | Hiroshima | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110122206 A1 | May 2011 | US |