Claims
- 1. A method of driving an ink jet apparatus that comprises a nozzle from which an ink droplet is ejected, an ink channel filled with ink and connected to the nozzle, an actuator that changes a volumetric capacity of the ink channel to generate a pressure wave in the ink channel, and a controller that applies an ejection pulse signal to the actuator to cause ink droplet ejection from the nozzle, the driving method, which is applied when an ink droplet smaller than or equal to 20 pl in volume is ejected to form a dot, comprising:ejecting an ink droplet to form the dot using an ejection pulse signal having a first drive waveform when there are no ejection commands either immediately before or after the dot to be formed, the first drive waveform including a first ejection pulse and an ink droplet reducing pulse for retrieving a portion of an ink droplet about to leave the nozzle, the first ejection pulse being equal in crest value to the ink droplet reducing pulse; and ejecting an ink droplet to form the dot using an ejection pulse signal having a second drive waveform except when there are no ejection commands either immediately before or after the dot to be formed, the second drive waveform including a second ejection pulse and an ejection stabilizing pulse for suppressing residual vibrations generated by the second ejection pulse, the second ejection pulse being equal in crest value to and shorter in pulse width than the first ejection pulse, and the ejection stabilizing pulse being equal in crest value to the first ejection pulse.
- 2. The driving method according to claim 1, wherein when T represents a one-way propagation time of the pressure wave along the ink channel, a pulse width of the first ejection pulse is substantially equal to T, a pulse width of the ink droplet reducing pulse is within a range of 0.2T to 0.3T, a time period between the first ejection pulse and the ink droplet reducing pulse is within a range of 0.4T to 0.6T, a pulse width of the second ejection pulse is within a range of 0.5T to 0.7T, a pulse width of the ejection stabilizing pulse is within a range of 0.2T to 0.3T, and a time period between the second ejection pulse and the ejection stabilizing pulse is within a range of 2.0T to 2.2T.
- 3. The driving method according to claim 1, wherein the ejecting step using an ejection pulse signal having the first drive waveform ejects an ink droplet to form the dot when the printing frequency is higher than 7.5 kHz and there is no dot before and after the dot to be formed.
- 4. The driving method according to claim 1, further comprising judging whether there is an ejection command to eject an ink droplet smaller than or equal to 20 pl in volume.
- 5. An ink jet apparatus, comprising:a nozzle from which an ink droplet is ejected to form a dot; an ink channel filled with ink and connected to the nozzle; an actuator that changes a volumetric capacity of the ink channel to generate a pressure wave in the ink channel and cause ejection of the ink droplet from the nozzle; and a controller that applies an ejection pulse signal to the actuator to cause ejection of the ink droplet smaller than or equal to 20 pl in volume from the nozzle, the controller comprising: a memory for storing a first drive waveform and a second drive waveform as ejection pulse signals, the first drive waveform including a first ejection pulse and an ink droplet reducing pulse for retrieving a portion of an ink droplet about to leave the nozzle, the first ejection pulse being equal in crest value to the ink droplet reducing pulse, the second waveform including a second ejection pulse and an ejection stabilizing pulse for suppressing residual vibrations generated by the second ejection pulse, the second ejection pulse being equal in crest value to and shorter in pulse width than the first ejection pulse, and the ejection stabilizing pulse being equal in crest value to the first ejection pulse; and an output device that judges whether there are no ejection commands either immediately before or after the dot to be formed and, if so, applies an ejection pulse signal having the first drive waveform to the actuator to form the dot and, if not so, applies an ejection pulse signal having the second drive waveform to the actuator to form the dot.
- 6. The ink jet apparatus according to claim 5, wherein the memory stores the first drive waveform and the second drive waveform such that when T represents a one-way propagation time of the pressure wave along the ink channel, a pulse width of the first ejection pulse is substantially equal to T, a pulse width of the ink droplet reducing pulse is within a range of 0.2T to 0.3T, a time period between the first ejection pulse and the ink droplet reducing pulse is within a range of 0.4T to 0.6T, a pulse width of the second ejection pulse is within a range of 0.5T to 0.7T, a pulse width of the ejection stabilizing pulse is within a range of 0.2T to 0.3T, and a time period between the second ejection pulse and the ejection stabilizing pulse is within a range of 2.0T to 2.2T.
- 7. The ink jet apparatus according to claim 5, wherein the output device applies an ejection pulse signal having the first drive waveform to the actuator to form the dot when a printing frequency is higher than 7.5 kHz and there is no dot before and after the dot to be formed.
- 8. The ink jet apparatus according to claim 5, wherein the output device judges whether there is an ejection command to eject any ink droplet smaller than or equal to 20 pl in volume.
- 9. A storage medium for storing a program for outputting an ejection pulse signal to an actuator of an ink jet apparatus so that the actuator changes a volumetric capacity of an ink channel filled with ink and connected to a nozzle to generate a pressure wave in the ink channel and cause ejection of an ink droplet smaller than or equal to 20 pl in volume from the nozzle to form the dot, the program accomplishing the functions of:generating a first drive waveform and a second drive waveform as ejection pulse signals, the first drive waveform including a first ejection pulse and an ink droplet reducing pulse for retrieving a portion of an ink droplet about to leave the nozzle, the first ejection pulse being equal in crest value to the ink droplet reducing pulse, the second waveform including a second ejection pulse and an ejection stabilizing pulse for suppressing residual vibrations generated by the second ejection pulse, the second ejection pulse being equal in crest value to and shorter in pulse width than the first ejection pulse, and the ejection stabilizing pulse being equal in crest value to the first ejection pulse; and judging whether there are no ejection commands either immediately before or after the dot to be formed and, if so, applying an ejection pulse signal having the first drive waveform to the actuator to form the dot and, if not so, applying an ejection pulse signal having the second drive waveform to the actuator to form the dot.
- 10. The storage medium according to claim 9, further comprising data storage storing drive waveform data for each of the first drive waveform and the second drive waveform, wherein when T represents a one-way propagation time of the pressure wave along the ink channel, a pulse width of the first ejection pulse is substantially equal to T, a pulse width of the ink droplet reducing pulse is within a range of 0.2T to 0.3T, a time period between the first ejection pulse and the ink droplet reducing pulse is within a range of 0.4T to 0.6T, a pulse width of the second ejection pulse is within a range of 0.5T to 0.7T, a pulse width of the ejection stabilizing pulse is within a range of 0.2T to 0.3T, and a time period between the second ejection pulse and the ejection stabilizing pulse is within a range of 2.0T to 2.2T.
- 11. The storage medium according to claim 9, wherein the program accomplishes the function of applying an ejection pulse signal having the first drive waveform to eject ink droplets to form the dots when a printing frequency is higher than 7.5 kHz and there is no dot before and after the dot to be formed.
- 12. The storage medium according to claim 9, wherein the program accomplishes the function of judging whether there is an ejection command to eject an ink droplet smaller than or equal to 20 pl in volume.
- 13. A printing apparatus, comprising:a printhead having: at least one ink channel filled with ink; a nozzle plate at one end of the printhead and having a nozzle for each ink channel of the at least one ink channel; and an actuating mechanism that varies a volume of an ink channel for ink ejection to print a dot; and a controller that controls ink ejection from the at least one ink channel to be about 20 pl or less by selecting one of a first drive waveform and a second drive waveform, the first drive waveform is used when no dot is printed before and no dot is to be printed after a current dot and the second drive waveform is used under all other print conditions, the first drive waveform comprising a first ejection pulse and an ejection reduction pulse and the second drive waveform comprising a second ejection pulse, different from the first ejection pulse, and an ejection stabilizing pulse.
- 14. The printing apparatus according to claim 13, wherein the crest value of each pulse is equal.
- 15. The printing apparatus according to claim 13, wherein when T represents a one-way propagation time of a pressure wave along the at least one ink channel, a pulse width of the first ejection pulse is substantially equal to T, a pulse width of the ejection reduction pulse is within a range of 0.2T to 0.3T, a time period between the first ejection pulse and the ejection reduction pulse is within a range of 0.4T to 0.6T, a pulse width of the second ejection pulse is within a range of 0.5T to 0.7T, a pulse width of the ejection stabilizing pulse is within a range of 0.2T to 0.3T, and a time period between the second ejection pulse and the ejection stabilizing pulse is within a range of 2.0T to 2.2T.
- 16. The printing apparatus according to claim 13, wherein the controller applies an ejection pulse signal having the first drive waveform to the actuating mechanism to form the dot when a printing frequency is higher than 7.5 kHz and there is no dot before and after the dot to be formed.
- 17. The printing apparatus according to claim 13, wherein the controller judges whether there is an ejection command to eject an ink droplet smaller than or equal to 20 pl in volume.
Priority Claims (2)
Number |
Date |
Country |
Kind |
9-346721 |
Dec 1997 |
JP |
|
2000-125584 |
Apr 2000 |
JP |
|
Parent Case Info
This Application is a Continuation-in-Part of application Ser. No. 09/200,986, filed Nov. 30 1998 and allowed Feb. 22, 2001, now U.S. Pat. No. 6,257,686 the disclosure of which is incorporated by reference herein.
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
4879568 |
Bartky et al. |
Nov 1989 |
A |
4887100 |
Michaelis et al. |
Dec 1989 |
A |
5028936 |
Bartky et al. |
Jul 1991 |
A |
Foreign Referenced Citations (3)
Number |
Date |
Country |
403222750 |
Oct 1991 |
JP |
405155010 |
Jun 1993 |
JP |
11-170514 |
Jun 1999 |
JP |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/200986 |
Nov 1998 |
US |
Child |
09/841830 |
|
US |