Ink jet apparatus

Information

  • Patent Grant
  • 6739690
  • Patent Number
    6,739,690
  • Date Filed
    Tuesday, February 11, 2003
    21 years ago
  • Date Issued
    Tuesday, May 25, 2004
    20 years ago
Abstract
A drop emitting device that includes a drop generator and a drive signal waveform that includes in sequence a first negative pulse, a positive pulse and a second negative pulse.
Description




BACKGROUND OF THE DISCLOSURE




Drop on demand ink jet technology for producing printed media has been employed in commercial products such as printers, plotters, and facsimile machines. Generally, an ink jet image is formed by selective placement on a receiver surface of ink drops emitted by a plurality of drop generators implemented in a printhead or a printhead assembly. For example, the printhead assembly and the receiver surface are caused to move relative to each other, and drop generators are controlled to emit drops at appropriate times, for example by an appropriate controller. The receiver surface can be a transfer surface or a print medium such as paper. In the case of a transfer surface, the image printed thereon is subsequently transferred to an output print medium such as paper.




A known ink jet drop generator structure employs an electromechanical transducer to displace ink from an ink chamber into a drop forming outlet passage, and it can be difficult to control drop velocity and/or drop mass.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a schematic block diagram of an embodiment of a drop-on-demand drop emitting apparatus.





FIG. 2

is a schematic block diagram of an embodiment of a drop generator that can be employed in the drop emitting apparatus of FIG.


1


.





FIG. 3

is a schematic depiction of an embodiment of a drive signal that can be employed to drive the drop generator of FIG.


2


.





FIG. 4

is a schematic depiction of another embodiment of a drive signal that can be employed to drive the drop generator of FIG.


2


.











DETAILED DESCRIPTION OF THE DISCLOSURE





FIG. 1

is schematic block diagram of an embodiment of a drop-on-demand printing apparatus that includes a controller


10


and a printhead assembly


20


that can include a plurality of drop emitting drop generators. The controller


10


selectively energizes the drop generators by providing a respective drive signal to each drop generator. Each of the drop generators can employ a piezoelectric transducer. As other examples, each of the drop generators can employ a shear-mode transducer, an annular constrictive transducer, an electrostrictive transducer, an electromagnetic transducer, or a magnetorestrictive transducer. The printhead assembly


20


can be formed of a stack of laminated sheets or plates, such as of stainless steel.





FIG. 2

is a schematic block diagram of an embodiment of a drop generator


30


that can be employed in the printhead assembly


20


of the printing apparatus shown in FIG.


1


. The drop generator


30


includes an inlet channel


31


that receives ink


33


from a manifold, reservoir or other ink containing structure. The ink


33


flows into a pressure or pump chamber


35


that is bounded on one side, for example, by a flexible diaphragm


37


. An electromechanical transducer


39


is attached to the flexible diaphragm


37


and can overlie the pressure chamber


35


, for example. The electromechanical transducer


39


can be a piezoelectric transducer that includes a piezo element


41


disposed for example between electrodes


43


that receive drop firing and non-firing signals from the controller


10


. Actuation of the electromechanical transducer


39


causes ink to flow from the pressure chamber


35


to a drop forming outlet channel


45


, from which an ink drop


49


is emitted toward a receiver medium


48


that can be a transfer surface, for example. The outlet channel


45


can include a nozzle or orifice


47


.




The ink


33


can be melted or phase changed solid ink, and the electromechanical transducer


39


can be a piezoelectric transducer that is operated in a bending mode, for example.





FIGS. 3 and 4

are schematic diagrams of embodiments of a drive drop firing signal or waveform


51


that is provided to the printhead during a firing interval T to cause an ink drop to be emitted. The time varying drop firing waveform


51


is shaped or configured to actuate the electromechanical transducer such that the drop generator emits an ink drop. By way of illustrative example, the firing interval T can be in the range of about 56 microseconds to about 28 microseconds, such that the drop generator can be operated in the range of about 18 KHz to about 36 KHz. As another example, the firing interval T can be in the range of about 1000 microseconds to about 28 microseconds, such that the drop generator can be operated in a range of about 1 KHz to about 36 KHz.




By way of illustrative example, the drop firing waveform


51


can be a bi-polar voltage signal having in sequence a first negative pulse component


61


, a positive pulse component


71


, and a second negative pulse


62


component. The pulses are negative or positive relative to a reference such as zero volts. Each pulse is characterized by a pulse duration DN


1


, DP, DN


2


which for convenience is measured between the pulse transition times (i.e., the transition from the reference and the transition to the reference). Each pulse is also characterized by a peak pulse magnitude MN


1


, MP, and MN


2


which herein is a positive number.




The first negative pulse


61


can have a duration DN


1


in the range of about 5 microseconds to about 10 microseconds. The positive pulse


71


can have a duration DP in the range of about 7 microseconds to about 14 microseconds. The second negative pulse


62


can have a duration DN


2


in the range of about 3 microseconds to about 8 microseconds. In this manner, the positive pulse


71


can have a duration that is greater than the duration DN


1


of the first negative pulse


61


and greater than the duration DN


2


of the second negative pulse


62


. The duration DN


1


of the first negative pulse


61


can be less than or greater than the duration DN


2


of the second negative pulse


62


. The durations DN


1


, DN


2


of the first and second negative pulses


61


,


62


can be similar.




The first negative pulse


61


can have a peak magnitude MN


1


in the range of about 20 volts to about 35 volts. For example, the peak magnitude MN


1


of the first negative pulse


61


can be less than 30 volts. The positive pulse


71


can have a peak magnitude MP in the range of about 30 volts to about 45 volts. For example, the peak magnitude MP of the positive pulse


71


can be less than about 40 volts. The second negative pulse


62


can have a peak magnitude MN


2


that is in the range of about 30 volts to about 45 volts. For example, the peak magnitude MN


1


of the first negative pulse


61


can be less than 40 volts. The first negative pulse


61


can have a peak magnitude MN


1


that is less than the peak magnitude MP of the positive pulse


71


and is less than the peak magnitude MN


2


of the second negative pulse


62


.




By way of illustrative examples, the first negative pulse


61


can be generally trapezoidal (

FIG. 3

) or generally triangular (FIG.


4


). Other shapes can be employed.




The first negative pulse component is a pre-pulse that adds energy to the jet, which can reduce the peak magnitude MP of the positive pulse


71


and can reduce the peak magnitude MN


2


of the second negative pulse


62


. The portion of the positive pulse that has a non-negative slope causes the ink chamber to fill while the negative going portion of the positive pulse causes a drop to be emitted.




The first negative pulse can be timed so that its energy will add constructively with the positive pulse. The magnitude of the first negative pulse is preferably configured such that it does not cause a drop to be emitted. The magnitude of the first negative pulse can also be configured such that it does not cause air to be ingested into the jet.




The invention has been described with reference to disclosed embodiments, and it will be appreciated that variations and modifications can be affected within the spirit and scope of the invention.



Claims
  • 1. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval; and the drop firing waveform including in sequence a negative pulse having a duration in a range of about 5 microseconds to about 10 microseconds, a positive pulse having a duration in a range of about 7 microseconds to about 14 microseconds, and a negative pulse having a duration in a range of about 5 microseconds to about 8 microseconds.
  • 2. The drop emitting device of claim 1 wherein the first negative pulse has a generally triangular shape.
  • 3. The drop emitting device of claim 1 wherein the first negative pulse has a generally trapezoidal shape.
  • 4. The drop emitting device of claim 1 wherein the first negative pulse has a peak magnitude that is less than about 30 volts.
  • 5. The drop emitting device of claim 1 wherein the positive pulse has a peak magnitude that is less than about 40 volts.
  • 6. The drop emitting device of claim 1 wherein the second negative pulse has a peak magnitude that is less than about 40 volts.
  • 7. The drop emitting device of claim 1 wherein the electromechanical drop generator comprises a piezo transducer.
  • 8. The drop emitting device of claim 1 wherein the electromechanical drop generator includes a transducer that is selected from the group consisting of a shear-mode transducer, an annular constrictive transducer, an electrostrictive transducer, an electromagnetic transducer, and a magnetorestrictive transducer.
  • 9. The drop emitting device of claim 1 wherein the drop firing interval is no greater than about 56 microseconds.
  • 10. The drop emitting device of claim 1 wherein the drop firing interval is in the range of about 28 microseconds to about 56 microseconds.
  • 11. A drop emitting device comprising:a drop generator; a drop firing waveform applied to the drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse, a positive pulse, and a second negative pulse, wherein the first negative pulse has a generally triangular shape.
  • 12. A drop emitting device comprising:a drop generator; a drop firing waveform applied to the drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse, a positive pulse, and a second negative pulse, wherein the first negative pulse has a peak magnitude that is less than about 30 volts.
  • 13. A drop emitting device comprising:a drop generator; a drop firing waveform applied to the drop generator over a drop firing interval that is no greater than about 56 microseconds; and the drop firing waveform including in sequence a first negative pulse, a positive pulse, and a second negative pulse.
  • 14. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse having a peak magnitude that is less than about 30 volts but not less than about 20 volts, a positive pulse having a peak magnitude that is less than about 40 volts but not less than about 35 volts, and a negative pulse having a peak magnitude that is less than about 40 volts but not less than about 35 volts.
  • 15. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse having a peak magnitude in the range of about 20 volts to about 35 volts, a positive pulse having a peak magnitude in the range of about 35 volts to about 45 volts, and a second negative pulse having a peak magnitude in the range of about 35 volts to about 45 volts, wherein the first negative pulse has a duration that is less than a duration of the positive pulse.
  • 16. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse having a peak magnitude in the range of about 20 volts to about 35 volts, a positive pulse having a peak magnitude in the range of about 35 volts to about 45 volts, and a second negative pulse having a peak magnitude in the range of about 35 volts to about 45 volts, wherein the first negative pulse has a duration that is less than a duration of the second negative pulse.
  • 17. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval; and the drop firing waveform including in sequence a first negative pulse having a peak magnitude in the range of about 20 volts to about 35 volts, a positive pulse having a peak magnitude in the range of about 35 volts to about 45 volts, and a second negative pulse having a peak magnitude in the range of about 35 volts to about 45 volts, wherein the first negative pulse has a generally triangular shape.
  • 18. A drop emitting device comprising:an electromechanical drop generator; a drop firing waveform applied to the electromechanical drop generator over a drop firing interval that is no greater than about 56 microseconds; and the drop firing waveform including in sequence a negative pulse having a peak magnitude in the range of about 20 volts to about 35 volts, a positive pulse having a peak magnitude in the range of about 35 volts to about 45 volts, and a negative pulse having a peak magnitude in the range of about 35 volts to about 45 volts.
  • 19. A method of operating a drop emitting generator having a pump chamber and a transducer, comprising:causing melted solid ink to flow into the pump chamber; and applying to the transducer during a fire interval a drop firing waveform that includes in sequence a first negative pulse, a positive pulse and a second negative pulse, wherein the first negative pulse has a duration that is less than a duration of the positive pulse.
  • 20. A method of operating a drop emitting generator having a pump chamber and a transducer, comprising:causing melted solid ink to flow into the pump chamber; and applying to the transducer during a fire interval a drop firing waveform that includes in sequence a first negative pulse, a positive pulse and a second negative pulse, wherein the first negative pulse has a generally triangular shape.
  • 21. A method of operating a drop emitting generator having a pump chamber and a transducer, comprising:causing melted solid ink to flow into the pump chamber; and applying to the transducer during a fire interval a drop firing waveform that includes in sequence a first negative pulse, a positive pulse and a second negative pulse, wherein the first negative pulse has a peak magnitude that is less than about 30 volts.
  • 22. A method of operating a drop emitting generator having a pump chamber and a transducer, comprising:causing melted solid ink to flow into the pump chamber; and applying to the transducer during a fire interval a drop firing waveform that includes in sequence a first negative pulse, a positive pulse and a second negative pulse, wherein the drop firing interval is no greater than about 56 microseconds.
US Referenced Citations (7)
Number Name Date Kind
5736993 Regimbal et al. Apr 1998 A
6217141 Nakamura et al. Apr 2001 B1
6305773 Burr et al. Oct 2001 B1
6312080 De Roos et al. Nov 2001 B1
6354686 Tanaka et al. Mar 2002 B1
6598950 Hosono et al. Jul 2003 B1
20010022596 Korol Sep 2001 A1