Ink jet cartridge, ink jet apparatus and ink container

Information

  • Patent Grant
  • 6203149
  • Patent Number
    6,203,149
  • Date Filed
    Monday, April 26, 1999
    25 years ago
  • Date Issued
    Tuesday, March 20, 2001
    23 years ago
Abstract
An ink container connectable with an ink inlet portion of an ink jet head having a plurality of ink ejection outlets, having an improvement in which a surface of the ink container to be connected with the ink jet head is inclined from a plane perpendicular to a direction in which the ink container is connected with the ink supply portion.
Description




FIELD OF THE INVENTION AND RELATED ART




The present invention relates to an ink jet cartridge, an ink jet apparatus and an ink container, more particularly to an ink jet head detachably mountable on an ink jet apparatus and detachably mountable relative to an ink container, a small size ink jet cartridge using the same, and an ink jet apparatus usable with the ink jet cartridge.




Recently, various types of recording systems have been developed. Among them, an ink jet recording system in which ink is ejected through an ejection outlet in accordance with a recording signal, is widely used because the size reduction and the noise reduction are easily accomplished.




The ink jet recording apparatus are classified into a serial type recording system in which a recording head provided with a plurality of nozzles is mounted on a carriage, and the ink is ejected through the nozzles while the carriage is moved in a direction substantially perpendicular to the recording sheet feeding direction, and a line type recording system in which a recording head having a plurality of nozzles arranged in a direction substantially perpendicular to the recording sheet feeding direction, and the ink is ejected through the nozzles while the recording sheet is being fed. Because of the recent demand for the small size apparatus, the serial type apparatus is widely used. As for the driving method in these recording systems, it is avoided that the ink is ejected simultaneously through a plurality of nozzles because of the necessity for supplying the consumed amount df the ink to the recording head and in order to avoid the supply of large electric current to the recording head as a result of the simultaneous driving of the nozzles. More particularly, the ejection timing is deviated for each nozzles, or the nozzles are grouped into a plurality of blocks, and the driving timing is deviated for the respective blocks. However, in the above-described serial type recording system, the carriage carrying the ink jet head is moved, or the recording sheet is fed, while the ink is ejected through the nozzles, and therefore, when the block driving system is used, the deviation of the ejection timing appears as the deviation of the record positions.




In the prior art, when the driving signals are applied to the nozzles #1−#m at the timing shown in

FIG. 26B

, the respective nozzles are arranged such that the nozzle array is inclined by d=V×tm, where tm is the amount of deviation in the ejection timing, and V=R/t cycle is a feeding speed of the carriage. By doing so, the deviation (d in

FIG. 26A

) in the above-described recording operation, is corrected to accomplish the recording shown in FIG.


27


.





FIGS. 28A and 28B

are schematic views of an example of an ink jet cartridge as seen from the nozzle, on the carriage when the nozzle array is inclined by a predetermined angle from a direction perpendicular to the scanning direction (X


1


, X


2


).




In

FIG. 28A

, an ink jet cartridge in the form of a recording head


200


having an array of ejection outlets


5


, and an ink container


201


combined therewith, is carried on a carriage


203


. In this Figure, the scanning direction of the carriage


203


(X


1


, X


2


) is a longitudinal direction of the carriage


201


. However, the ink jet cartridge on the carriage


203


is inclined relative to the scanning direction of the carriage


203


, as shown in the Figure, by which the array of the ejection outlets (nozzle array) is inclined by a predetermined degree.




On the other hand, in

FIG. 28B

, the position of the ink jet cartridge on the carriage


203


is the same as the longitudinal direction of the carriage, but the longitudinal direction of the carriage


203


is different from the carriage scanning direction, by which the ejection outlet array is inclined by a predetermined amount. In

FIGS. 28A and 28B

, Xa designates a direction in which the recording head and the ink container are separated or combined.

FIG. 28C

, shows this inclination of the nozzle array of the recording head shown in

FIGS. 28A and 28B

as seen from behind the recording head. The direction of the nozzle array is inclined by θ from a perpendicular direction relative to the carriage moving direction X


1


, X


2


, and the mounting and demounting direction Xa between the recording head and the ink container, is inclined by θ.




If the mounting and demounting direction between the recording head and the ink container, is inclined by θ relative to the carriage movement direction, the lateral expansion of the recording head and the ink container in the direction of the carriage movement, is increased by Lsinθ, where L is the total length of the recording head and the ink container.




For example, when L=60 mm, and θ=1 degree, the increase is approx. 1 mm. Accordingly, the above-described arranged gives rise to the difficulty in reducing the size of the carriage and/or the size of the recording apparatus. In a recent small size ink jet apparatus, an ink jet cartridge is provided in which the ink jet head and the ink container are separable from each other to permit replacement of the ink container in consideration of the larger length of the service life of the ink jet head. In such a system in which the ink jet head and the ink container are separable, an additional space is required to permit the junction or separation between the ink jet head and the ink container, in the apparatus. Therefore, the shown system involves the difficulty in reducing the size of the apparatus.




On the other hand, as a method of connecting a replaceable ink container to an ink jet recording head, there is a method in which an ink container plugged with elastic member such as rubber member, is pierced with a needle integral with a pipe to establish an ink passage to the ink jet recording head. In this case, the ink is contained in a bladder made of polymer or the like in the ink container. However, this method involves a drawback that a required volume is large because of the length of the needle and the existence of the plug of the ink container, and therefore, it is not suitable in view of the recent demand for the size reduction.




With the tendency of the small size apparatus, the apparatus is more frequently carried around, and in view of the fact, the stabilized retention of the ink in the container in the apparatus is highly desired. So, a high polymer porous absorbing material is preferably used as an ink accommodating material, in the container. However, in this case, it becomes difficult to supply the ink to the recording head using the above-described needle.




The reason is as follows. A gap in communication with the external ambience is formed around the needle with the result that the air is sucked through the gap despite the amount of the ink remaining in the absorbing material is sufficient. This may lead to failure of the ink jet apparatus. In order to avoid this problem, as shown in

FIG. 29

, a method will be considered in which the porous material containing the ink is press-contacted to the needle. However, in this case, it becomes difficult to supply the ink to the recording head using the needle. This is because a gap communicating with external ambience is formed around the needle so that the air is sucked through the gap despite a sufficient amount of the ink remains in the absorbing material. If this occurs, the printing operation becomes not possible, as the case may be.




It would be considered in order to avoid this problem that an ink inlet portion


208


of the recording head is press-contacted to the porous absorbing material containing the ink. In this case, the hermetical sealing to the prevent introduction of the air into the ink passage through the connecting portion between the recording head and the ink container, is required. In order to provide a solution to this problem, it would be required that an O-ring


206


is provided on the circumferential periphery of the connecting pipe to provide the hermetical sealing between the recording head and the ink container. In this system, the O-ring is already mounted on the recording head in the plant, and therefore, when a user connects the ink container to a new recording head, the air may be introduced between the recording head and the ink container, or on the contrary, the ink is leaked out.




The causes for this, have been investigated, and it has been found that upon the connection of the ink container, the O-ring does not smoothly slide on the ink inlet portion of the recording head by the connecting surface of the ink container with the result of deformation of the O-ring. When this occurs, the gap is produced between the connecting surface of the ink container and the connecting surface of the recording head. This trouble does not always occurs, and the frequency is not so high. However, the frequency is increased depending on the variation of the dimension of the recording head and the variation in the dimension of the O-ring. If the elastic member constituting O-ring is kept being stressed, it may stick to the ink supply portion of the recording head, so that the above-described problem is increased. In such a case, even if the ink container is moved in the mounting or demounting direction, the O-ring does not slides easily with the result of twisting, even to such an extent that the O-ring is damaged or torn.




Therefore, when the ink container is connected for the first time after the manufacturing, it is desirable that the force is applied in a direction perpendicular to the sliding surface with the O-ring, that is, in the direction away from the sliding surface. On the other hand, in the case of the recording head with which the ink containers have been replaced a number of times, the ink connecting portion is wetted with the ink in many cases. Therefore, the friction between the O-ring and the ink supply portion, is very small, so that hardly any trouble occurs.




However, when the ink container is to be taken out, the O-ring may be slightly raised from the connecting surface of the recording head because of the small friction. If the apparatus is left with this state, the ink may be dried, and the similar problem arises when a new ink container is connected.




SUMMARY OF THE INVENTION




Accordingly, it is a principal object of the present invention to provide an ink container, an ink jet head and an ink jet cartridge using the same in which when the nozzle array is inclined by a predetermined degree, the operativity is satisfactory, and the size is small.




It is another object of the present invention to provide an ink container, ink jet head and an ink jet cartridge of an ink container detachable type, in which the ink container and the ink jet head are securedly connected, and it is effectively avoided that the air is introduced into the ink passage through the connecting portion and that the ink leaks out through the ink passage.




According to an aspect of the present invention, the mounting and demounting direction of the ink container is in accord with the carriage feeding direction even if a direction in which the plurality of ejection outlets are arranged is inclined relative to the mounting and demounting direction between the ink jet head and the ink container. By doing so, even if the nozzle array is inclined from the perpendicular direction relative to the carriage feeding direction, the width in the direction perpendicular to the carriage feeding direction when the recording head and the ink container are connected with each other, can be minimized, and therefore, the size of the ink jet recording apparatus can be reduced.




The surface of the recording head and the surface of the ink container at the connecting portion between them, are inclined relative to a plain perpendicular to the mounting and demounting direction between the recording head and the ink container. By doing so, even if the ink container is connected for the fist time after the manufacturing of the apparatus, a part of the O-ring is first urged to the inclined connecting surface of the ink container, thus permitting smooth motion.




These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic perspective view of an ink jet recording apparatus according to an embodiment of the present invention.





FIG. 2

is a schematic perspective view of a carriage used in the ink jet recording apparatus shown in FIG.


1


.





FIG. 3

is an enlarged schematic perspective view of the carriage according to the embodiment of the present invention.





FIG. 4

is a schematic perspective view illustrating the connection between the carriage and the head cartridge in the ink jet recording apparatus according to the embodiment.





FIG. 5

is a schematic view illustrating the positioning method between the carriage and the head cartridge in an ink jet recording apparatus according to the embodiment.





FIGS. 6A

,


6


B and


6


C are schematic views illustrating the mounting and demounting directions among the carriage, the recording head and the ink container in the ink jet recording apparatus according to the embodiment of the present invention.





FIGS. 7A and 7B

are schematic views illustrating the mounting and demounting directions among the carriage, the recording head and the ink container in an ink jet recording apparatus according to an embodiment of the present invention.





FIG. 8

is a timing chart of ink ejection of the recording head of the first embodiment of the present invention.





FIG. 9

shows a result of record by an ink jet recording apparatus according to the first embodiment of the present invention.





FIGS. 10A and 10B

illustrates the mounting and demounting directions among the carriage, the recording head and the ink container in an ink jet recording apparatus according to an embodiment of the present invention;





FIGS. 11A and 11B

illustrates a relation between an O-ring and an ink container in an embodiment of the present invention.





FIGS. 12A

,


12


B and


12


C show an ink container according to an embodiment of the present invention.





FIGS. 13A

,


13


B,


13


C,


14


A,


14


B,


14


C,


15


A,


15


B,


15


C,


16


A,


16


B,


16


C,


16


D,


17


A,


17


B,


17


C, and


17


D show ink containers according to other embodiments of the present invention.





FIG. 18

illustrates an ink container using a sealing device with the sliding surface.





FIG. 19

illustrates the sealing function.





FIGS. 20A

,


20


B,


20


C,


21


A,


21


B, and


21


C show ink containers according to other embodiments of the present invention.





FIG. 22

is a perspective view illustrating the advantageous effects of the present invention.





FIGS. 23A

,


23


B and


23


C schematically show the container usable with an ink jet cartridge according to an embodiment of the present invention.





FIG. 24

is a schematic perspective view of an information processing apparatus comprising the ink jet recording apparatus according to the first embodiment of the present invention.





FIG. 25

is a block diagram of an electric circuit of the information processing apparatus including the ink jet recording apparatus according to the first embodiment.





FIGS. 26A and 26B

respectively illustrates timing charts, the nozzle arrangement and the ejection timing of a recording head according to background art.





FIG. 27

shows result of recording in the background art.





FIGS. 28A

,


28


B and


28


C are schematic views illustrating the mounting and demounting direction among the carriage, the recording head and the ink container of the background art ink jet recording apparatus.





FIG. 29

illustrates an ink jet cartridge according to background art.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to the accompanying drawings, the embodiments of the present invention will be described in detail.




First, the description will be made as to an ink jet apparatus using an ink jet cartridge in which the ink container and the ink jet head are integral.




Referring to the accompanying drawings, the embodiments of the present invention will be described in detail.




Referring to

FIG. 1

, there is shown a recording apparatus according to an embodiment of the present invention, in the perspective view. In the figure, a reference numeral


203


designates a carriage for carrying thereon a recording head cartridge


202


having a recording head


200


constituting the recording means and an ink container


202


integral with recording head


200


. An end of the carriage


203


adjacent the recording head


200


is engaged with a lead screw


213


for sliding movement in the axial direction, the lead screw


13


being rotatably mounted in a frame


1


. The carriage


203


is provided with a guide at another end, and the guide is engaged with a guide rail


2


in the frame


1


for sliding movement in the direction parallel to the axis of the lead crew


213


. The carriage


203


is reciprocable in the axial direction with rotation of the lead crew


13


, while the pose thereof is maintained constant.




As shown in the figure, a lead screw gear


257


fixed to the left end of the screw and a pinion gear


256


fixed to an output shaft of the carriage motor


255


, are in meshing engagement, and a lead screw pin


209


mounted to the carriage


203


is engaged in a guide groove


268


helically formed at a predetermined pitch on the lead screw


213


. Therefore, when the lead screw


213


rotates by the forward or backward rotation of the carriage motor


255


, the carriage


203


reciprocates. The detail of the scanning operation of the carriage


203


will be described in detail hereinafter.




A flexible cable transmits the printing signal to the recording head


200


from electric circuit which will be described hereinafter. It is supported on a pinch roller frame


11


at a predetermined position by a flexible cable holder


16


.




The recording head


203


is moved in synchronism with the reciprocal movement of the carriage


203


, and the ink is ejected in accordance with the recording signal, thus effecting recording on the recording material


3


in one line. The recording head


200


comprises fine liquid ejection outlets (orifice), liquid passages, energy application portions in the parts of the liquid passages, and energy generating means for generating energy for formation of liquid droplet.




As for the energy generating means, there are electromechanical transducer element such as a piezoelectric element, electromagnetic wave such as laser to produce heat to eject the liquid, and electrothermal transducer element in the form of a heat generating resistor or the like to heat the liquid to eject it.




Among them, in a recording head of ink jet recording type in which the liquid is ejected using thermal energy, the liquid ejection outlets for formation of the droplets of the liquid can be arranged at high density, and therefore, a high resolution recording is possible. Particularly, the recording head using the electrothermal transducer element as the energy generating means, can be easily reduced in the size. In addition, the advantages of IC manufacturing techniques and micro-machining techniques which are recently significantly developed and which are recently reliable, can be used, and therefore, high density arrangement is possible with the advantage of low manufacturing cost.




When one line recording is completed by the scan of the carriage


203


, the recording material


3


is fed by one line by feeding means, and the next line recording operation is carried out. The feeding of the recording material


3


is accomplished by a pair of feeding roller


4


and a pinch roller


8


press-contacted thereto, and a pair of discharging roller


7


and spurs


6


contacted thereto.




More particularly, the recording material


3


having a recording surface faced to the ejection side surface of the recording head


200


is press-contacted to the feeding roller


4


by the pinch roller


8


, and the feeding roller


4


is rotated by a sheet feed motor


5


, by which the recording material


3


is fed through a proper distance. After the recording operation, the recording material is press-contacted to the discharging roller


7


by the spurs


6


, and the recording material is discharged to the outside of the apparatus by the rotation of the discharging roller


7


.




The feeding roller


4


and the discharging roller


7


are driven by the feeding motor


5


through a reduction gear train


15


.




A paper sensor


14


functions to detect presence or absence of the recording material


3


. A reference numeral


270


designates a home position sensor, which detects whether the carrier


203


is back at the home position (left side in the figure) before the recording is started.




Designated by a reference numeral


270


is a home position sensor which detects the resetting of the carriage


203


at the home position (left side in Figure), before the start of the recording operation.





FIG. 2

is a perspective view of the head cartridge and the carriage of the recording apparatus according to this embodiment of the present invention. In this figure, reference numeral


200


designates a recording head for ejecting the ink in accordance with electric signal;


201


, an ink container for containing the ink to be supplied to the recording head;


203


, a carriage in the main assembly of the apparatus effective to carry the recording head


200


and the ink container


201


;


204


, a head lever for supporting and releasing the recording head;


205


, an ink container lever for detachably mounting the ink container


201


;


207


, a head holder spring for fixing the recording head


200


to the carriage


203


;


208


, a container case for supporting the ink container


201


. By these elements, the head cartridge and the carriage are constituted.




The recording head


200


comprises a base plate having a plurality of electrothermal transducer elements for producing thermal energy used for ink ejection and driving circuit for driving them, a top plate for forming ejection outlets and liquid passages corresponding to the respective electrothermal transducer elements and for forming a common liquid chamber communicating with the liquid passage, and electric contacts for supplying electric signals from the main assembly to the driving circuit. The recording head


200


may be provided with sensors for permitting the main assembly of the recording apparatus to detect the states of the recording head. More particularly, the sensors include a temperature sensor for detecting the temperature of the recording head in the neighborhood of the electrothermal transducer elements, ink sensor for detecting a remaining amount of the ink in common liquid chamber, and head identification sensor for identification of types of the head cartridge when different types of heads are exchangeably usable. The signals from the sensors are discriminated by the main assembly of the recording apparatus, and the signals applied to the electrothermal transducer elements are controlled, accordingly, thus providing the optimum printing conditions.




The ejection side surface having the ejection outlets of the recording head is faced to the recording material in the recording apparatus.




The description will be made as to the mechanical and electrical connection between the recording head


200


and carriage


203


.





FIG. 3

is a sectional view taken along a line a in

FIG. 2

, illustrating the connection between the carriage


203


and recording head


200


.

FIG. 4

is a perspective view illustrating the process. In the Figures, reference numeral


225


designates positioning pins engageable with corresponding holes of a recording head on the carriage


203


to accurately position the recording head


200


in a direction a and a direction b in

FIG. 4

;


226


designates a stopper fixed on the carriage


203


to stop the recording head


200


urged in the direction a in

FIG. 3

;


211


is a flexible cable for electrically connecting the recording head


200


and the main assembly of the recording apparatus;


211




a


, a positioning hole in the flexible cable


211


;


211




b


, a positioning hole in the flexible cable


211


; and


212


, a flexible cable pad elastically supporting the flexible cable


211


and sandwiched between the flexible cable


211


and the carriage


203


. In addition, reference numeral


212




a


designates a positioning hole in the flexible cable pad


212


;


212




b


, a positioning hole in the flexible cable pad


212


;


212




c


, an ink barrier for preventing ink entrance to the contact position;


222


, a head contact portion electrically connected with the heater in the recording head


200


;


227




a


, a positioning hole in the head contact


227


;


227




b


, a positioning hole in the head contact portion


227


; and


227




c


, a'stopper abutment for abutting with the end surface of the stopper


226


.




The recording head


200


is urged in the direction a through an unshown lever by the head holder spring


207


. The position thereof is definitely determined by the engagement between the hole of the recording head


200


and the positioning pin


225


and by the interference with the stopper


226


. In this manner, the recording head


200


and the carriage


203


are mechanically connected.




On the end surfaces of the head contact portion


227


of the recording head


200


and the flexible cable


211


, there are provided corresponding plural electric contacts. They are pressed to each other with a predetermined pressure, so that the main assembly of the recording apparatus and the recording head


200


are electrically connected. It is necessary that the respective contacts are pressed at once. For the purpose of uniform pressing, there is provided a flexible cable pad


212


of elastic material. The material of the flexible cable pad


212


is of silicone rubber. It comprises plural projections at positions corresponding to the electric contacts to concentrate the pressure on the contact points. The electric contacts of the flexible cable


211


may be in the form of projection sin order to further assure the pressure concentrated on the contact points.




Since the reaction force produced upon the pressing is designed to be far smaller than the force of the head holder spring


207


for urging the recording head


200


, and therefore, the recording head


200


is prevented from deviation by the reaction force from the flexible cable pad


212


.




The carriage


203


, the flexible cable pads


212


, the flexible cable


211


, the head contact portion


227


and the head cartridge


203


are required to be correctly positioned relative to each other in order to assure the electric connection and the high print quality. In order to accomplish this, the following structure is used.




One of the positioning point


225


commonly engages with the positioning hole


212




a


, the positioning hole


211




a


and positioning hole


227




a


, and the other positioning pins


225


commonly engages with the positioning hole


212




b


, the positioning hole


227




b


, by which the positioning in the directions a and b in

FIG. 4

are accomplished.




In this embodiment, stoppers


226


are provided, being inclined by relative to the directions X


1


and X


2


in which the carrier


203


is moved. As for the nozzles #1−#m of the recording head


200


, they are aligned with a predetermined pitch of P and also, in such a manner so that the nozzle alignment line is inclined to give the nozzle #m a deviation of d relative to the nozzle alignment length of H. Further, in order to assure precisely the predetermined amount of d, a distance G between the stoppers


226


is established to be larger relative to the nozzle alignment length.




The description will be made as to an ink jet head, an ink container and an ink jet cartridge according to an embodiment of the present invention.





FIGS. 6A and 6C

is a schematic view of the ink jet head


200


and the ink container


201


, as seen from the ink ejection side, illustrating the connecting relation between them.

FIG. 6A

shows a state in which the recording head


200


and the ink container


201


are mounted on the carriage


203


movable in directions X


1


and X


2


. The recording head and the ink container are on the way of connection.




In

FIG. 6A

, in order to incline the ejection outlets #1−#m, from a direction perpendicular to the carriage movement directions X


1


and X


2


, the recording head


200


per se is inclined in accordance with the positioning portion


225


of the carriage. In this embodiment, even if the recording head is inclined, the ink inlet portion


220


is in accord with the carriage movement direction (longitudinal direction of the carriage in this embodiment) so that the direction of connection with the ink container is substantially in accord with the movement direction of the carriage. The connecting surface


221


with the ink container is inclined so that it is perpendicular to the carriage movement direction (the longitudinal direction of the carriage).




The junction or connection surface


221


of the recording head relative to the ink container, is not necessarily in contact with each other, and is inclined relative to the ejection outlet array. The ink supply portion


220


is inclined from a direction perpendicular to the array of the ejection outlets.





FIG. 6B

is a plan view illustrating the inclined relation in various directions, as seen from the front side of the recording sheet. The ink container mounting direction Xa is substantially parallel with the carriage movement direction X


1


and X


2


during the printing operation. The direction of the nozzle array is inclined by angle θ from a direction perpendicular to the ink container mounting (demounting) direction Xa.




In

FIG. 6C

, the ink container


201


has been connected with the recording head


200


.




By disposing the connecting surface


221


inclinedly relative to the array of the ejection outlets, the array can be inclined from the carriage movement direction by a predetermined degree, without size increase of the carriage or the ink jet apparatus or without the influence to the operativity in the engagement or disengagement between the head and the ink container. Therefore, the size reduction of the apparatus and the correct recording can be accomplished, simultaneously.





FIGS. 7A and 7B

shows another embodiment of the present invention. As shown in

FIG. 7A

, the connecting plane between the recording head


200


and the ink container


201


is not perpendicular to the mounting or demounting direction Xa. It may be along the nozzle array direction (it is not necessarily completely parallel, if the advantageous effects of the present invention are provided). As described in the foregoing, the same advantageous effects can be provided when the connecting surface of the ink container rather than that of the recording head is inclined.




In the foregoing embodiment, ink inlet portion, is provided on the recording head


200


, but it (projection) may be provided in the ink container


201


side, as shown in FIG.


7


B.




In the foregoing, the description has been made as to a recording head for monochromatic recording. However, the advantageous effects of the invention, are more significant when a plurality of recording heads and ink containers for different colors, are used.




The description will be made as to the recording method and the inclination of the ejection outlet array, using an ink jet cartridge comprising an ink jet head and an integral ink container.




Referring to

FIG. 8

, there is shown the timing of ink ejection of the recording head.




In

FIG. 8

, the recording head


200


ejects the ink to accomplish the record shown in

FIG. 9

, while the carriage


203


is moved in the direction X


1


(FIGS.


1


and


5


).




The ink is ejected in the order from nozzle #1 to nozzle #m. Ejection time difference between nozzle #1 and #2 is designated by t1; the difference of times of ejections between nozzle #1 and nozzle #m, is indicated by tm−1; and the period of ejections of one nozzle is indicated by cycle. Usually, the time difference between the adjacent nozzle ejections, is preferably constant. Therefore, tm−1=(m−1)×t1. The ink ejecting operations are carried out at tm−1=d×tcycle/R, while the carriage


203


is moved in the direction X


1


at a speed R/tcycle. By doing so, the time difference tm−1 of the ink ejection through the nozzles and the inclination d of the nozzle array (

FIG. 5

) are combined to provide the record without the deviation (inclination), as shown in FIG.


9


. When the recording operation is carried out while the carriage


203


is moved in the direction X


2


, the order of ejections are reversed, that is, from #m to #1.




The degree of the nozzle inclination d is preferably tm−1=tcycle/2−tcycle, from the standpoint of the uniform energy application to the recording head and the ink supply. Therefore, d=R/2−R is preferable. Usually, pitch P of the nozzle is equal to R. In this case, the degree of inclination d is preferably P/2−P.




In the foregoing, the description has been made as to the structure in which the ejection outlet array is inclined without increasing the size of the carriage or without deterioration of the operativity. In an embodiment shown in

FIG. 7A

, the following problems can be solved.





FIG. 10A

shows the state in which the connection between the recording head and the ink container of an ink jet cartridge according to this embodiment, mounted on the carriage, is not completed. It is a view as seen from the ejection outlet side. In this embodiment, in order to increase the sealing between the ink container and the ink jet head, a sealing member (O-ring)


222


in the form of a ring is provided at an ink supply portion of the ink jet head.




The connecting surface of the ink container


201


with the recording head is inclined from a direction perpendicular to the connecting direction between the ink jet head and the ink container.





FIG. 10B

shows a relationship between the head cartridge portion and the carriage after the ink container


201


is mounted. In this Figure, the O-ring


222


shown in

FIG. 10A

, is not seen, because it is behind the recording head and the ink container. In

FIG. 11A

, the connection is illustrated between the recording head and the ink container shown in

FIGS. 10A and 10B

. In this Figure, the ink container


201


is on the way of connection relative to the recording head


200


, more particularly, at the instance when the connecting surface of the ink container starts to contact the left part of the O-ring


222


. In this embodiment, the connecting surface of the ink container is inclined from a direction perpendicular to the connecting direction, relative to the ink inlet portion


220


. Therefore, a part of the connecting surface is first brought into contact with a part of the O-ring


222


, and applies force thereto.




When the contact portion of the O-ring is first urged by this force, an inside of the O-ring, that is, such a part of the recording head as is contacted to the ink supply portion


222


, and the neighborhood thereof, are slightly apart from the contact surface, so that the friction between the O-ring and the surface of the ink inlet portion, is abruptly reduced to permit smooth sliding motion. Particularly when the ink container is first connected with the recording head, all parts are dried , and the elastic member (silicone rubber) constituting the O-ring, is attracted to the ink inlet portion, and therefore, the force effective to urge the O-ring away from the contact surface, is significantly advantageous, even if the force is small. In the case of a recording head with which the ink containers have been exchanged a large number of times, the portion is wetted with the ink in many cases, and therefore, the friction force between the O-ring and the projected side surface, is extremely small. For this reason, hardly any problem arises. However, when the ink container is dismounted, the O-ring may be away from the contact surface of the recording head because of the small friction force, in some cases. If the O-ring is left in this state for a long period of time, the ink is dried, and when the ink container is connected again, the problem described above may arise. For this reason, the advantageous effects provided by moving a part of the O-ring by the connecting surface of the ink container, at first, is significant.




In the case of

FIG. 11A

, the force tending to separate the O-ring from the sliding surface of the ink supply portion of the recording head (lateral surface) is applied only at the left portion. At the right hand portion, the urging force toward the sliding surface rather than the separating force is applied because of the tension from the left portion. Therefore, it seams that the sliding motion is easy at the left, but it is difficult at the right hand portion. Actually however, once the left side part is separated from the first sliding surface, the motion of the O-ring as an entirety thereof becomes easy. The reason for this is considered as follows.

FIG. 11B

illustrates this. A part (left part) of the O-ring


222


mounted to the ink inlet portion


220


is deformed by the force applied by the connecting surface of the ink container. In this Figure, the O-ring partly separated from the original position is still stacked on the ink inlet portion


220


at the right hand portion beyond a boundary P. However, the left half has already been separated from the ink supply portion. Therefore, the force produced by being urged to the connecting surface of the ink container, is concentrated only on the point P as a tension F


1


along the O-ring. Therefore, the O-ring is easily removed by the component force F


2


at the point P. As a result, the boundary P moves to the right. This continuously occurs, and therefore, the O-ring is completely becomes slidable on the ink inlet portion


220


, thus permitting the movement thereof to be closely contacted to the connecting surface of the recording head. The inclination angle relative to the surface perpendicular to the ink container mounting and demounting direction, is advantageous when it is about 1 degree, but may be larger. However, if it is too large, the volume efficiency of the ink container is deteriorated.





FIGS. 12A

,


12


B and


12


C shows an ink container according to an embodiment of the present invention. For the sake of simplicity of explanation, the inside structure is omitted in the Figure.

FIG. 12A

is a lateral sectional view of the ink container,

FIG. 12B

is a sectional plan view, and

FIG. 12C

is a view as seen from the connecting surface.




The ink container comprises two members, namely, a cover


205


and a main body


201


. The connecting surface is indicated by a reference numeral


199


. A hole


183


receives a projection of a recording head into the ink container. A reference numeral


184


designates a claw for engagement with a recording head portion. A sealing portion


185


functions as a sealing portion when the ink supply ports


186


and


202


are connected by ultrasonic fusing or the like. In this example, the cover is connected with the main body with inclination to provide an inclination angle at the connecting surface. The height of the sealing portion


185


is different along the surface of the cover.





FIGS. 13A

,


13


B and


13


C show an ink container according to another embodiment. In

FIGS. 12A and 12B

, the thickness of the cover is constant. In this embodiment, however, the thickness of the cover


205


is changed to provide the inclination angle at the connecting surface


199


. In this embodiment, the height of the sealing portion


185


is constant along the circumference.





FIGS. 14A

,


14


B and


14


C shows an ink container according to a further embodiment. This embodiment is similar to that of

FIGS. 12A



12


B and


12


C, but a recess


188


is formed around the hole


189


, and therefore, the connecting surface


199


is provided by the bottom of the recess.





FIGS. 15A

,


15


B and


15


C show another example of the ink container, in which only the engaging hole


189


of the connecting surface of the ink container is inclined. In this structure, the difficulty of motion of the O-ring can be avoided even in the ink container of

FIGS. 6A

,


6


B, and


6


C.





FIGS. 16A

,


16


B,


16


C and


16


D show a modification of

FIG. 13

the container of

FIGS. 13A

,


13


B and


13


C. The cover in

FIGS. 16A

,


16


B and


16


C is integral with the main body of the ink container.




The embodiment shown in

FIGS. 17A

,


17


B,


17


C and


17


D is a similar modification of that shown in

FIGS. 15A

,


15


B and


15


C, in which the member having the inclined surface and the container main body are integral with each other.





FIG. 18

shows motion of the O-ring in a further embodiment in which the function of the O-ring is different from described above. The sealing operation of the O-ring is accomplished by a surface


201


which is parallel with the ink demounting direction. The sliding surface


201




c


of the ink container of FIG.


18


and the side surface


220


of the ink inlet portion of the recording head, are concerned with the sealing function. In this system, the sealing is maintained even if no large force is applied in the demounting direction, and therefore, the mechanism is advantageous over the foregoing embodiments.





FIG. 19

shows the connecting portion in more detail. The sealing portion of the ink container and the sealing portion of the recording head, are indicated by C. In this example, the diameter of the sliding surface of the ink container is slightly smaller than the outer diameter of the O-ring. For this reason, the force perpendicular to the sliding surface is applied to accomplish the sealing function. In this embodiment, the inclination angle relative to a plane perpendicular to the ink container mounting and demounting direction is significant. Similarly to the foregoing, the O-ring sticks to the ink inlet portion of the recording head, after substantial time period elapses after the manufacturing. Therefore, upon the first connection between the ink container and the recording head, does not slide smoothly with the result of improper sealing function. Therefore, similarly to the foregoing embodiment, it is desirable to urge the O-ring at one side at the initial stage. This is accomplished, in this embodiment, by inclining the connecting surface of the recording head and the connecting surface of the ink container, are inclined with respect to a plane perpendicular to the mounting and demounting direction of the ink container, as shown in FIG.


19


. Because of the inclination angle, upon the connection with the ink container, a point Q which is an edge of the connecting surface of the ink container


201


, is first contacted to the O-ring. Similarly to the foregoing embodiments, the O-ring starts to be urged at one side. Thus, the stuck O-ring becomes movable to accomplish the proper sealing function.





FIGS. 20A

,


20


B,


20


C,


21


A,


21


B and


21


C show the ink containers of this example. In these examples, the thickness of the cover of the ink container is different. Similarly to

FIGS. 14A

,


14


B and


14


C, a recess for receiving O-ring is provided, but in order to provide large area of the sliding portion at the side of the recess, the depth of the recess is large.




In the foregoing descriptions, an O-ring has been used for the close contactness between the ink container and the recording head. However, the O-ring is not inevitable, but another member, for example a washer (flat disklike member of a rubber material which may be produced by punching), may be used. In that case, the present invention is advantageous for the same reasons.




The angle between the connecting surfaces of the ink container and the ink jet recording head, are preferably empirically 0.5 degree relative to a surface perpendicular to the ink container mounting and demounting direction. It is preferably large. However, if the angle is too large, a space not contributable to the ink container or recording head, is required with the result of lower volume efficiency, and therefore, it is not desirable for a small size printer. For example, in the case that the cross-sectional area of the ink container is 20 mm×20 mm and the length thereof is approx. 40 mm, using foamed polyurethane material as the ink absorber, the limit of the angle is approx. 30 degrees. If the angle is too large, an inside wedged space provided by the inclination angle, can not receive the ink absorbing material sufficiently into the end of the wedge, and therefore, the volume not contributable to the ink absorption is produced. However, this depend on the flexibility of the absorbing material, and therefore, the above-described limit value is not strict.




In the foregoing descriptions, the sealing members are set in the projection of the recording head. Conversely, however, the projection may be formed on the ink container side, and the sealing member may be disposed around the circumference thereof the sealing member is urged by the connecting surface of the recording head without the deterioration of the advantageous effects of the present invention.





FIGS. 23A

,


23


B and


23


C, are perspective views of ink containers of an ink jet head cartridge with which the present invention is usable. The ink container shown in the Figure is an ink container capable of being mounted to a carriage of the recording apparatus in vertically opposite two directions. There are provided an ink supply port (not shown) connected with the ink container portion to supply the ink to the recording head, and an air vent (not shown) for communicating the inside of the ink container with the ambience. A claw


1002


functioning as a stopper when the ink container is removed from the recording apparatus, and a cut-away portion


1001


for engagement with a projection of the recording apparatus upon the mounting on the recording apparatus, are provided at corresponding two positions, corresponding to two vertical opposite positions of the ink container.




In

FIG. 23A

, the cut-away portion described above is disposed inside from the ink container, and therefore, upon the mounting on the recording apparatus, the projection of the recording apparatus can be protected from the external condition.




In

FIGS. 23B and 23C

, there is no side wall of the ink container, and therefore, the above-described protection effect is not provided, but the manufacturing of the ink container is easy.




In the foregoing, the description has been made as to an ink jet head, an ink container and an ink jet cartridge comprises them, and an ink jet apparatus having the ink jet cartridge.




The description will be made as to the recording apparatus using one or more of the above-described embodiments.




Next, an apparatus employing a recording apparatus incorporating the aforementioned various elements will be described.





FIG. 24

is a perspective view of an outer appearance of an information processing apparatus


604


incorporating the recording apparatus of this embodiment. In the Figure, a reference numeral


601


designates a printer described above;


602


, a keyboard provided with character numerical, other character keys and command keys;


603


, a display portion with a display;


606


, a window for permitting exchange of the recording head


200


and/or the ink container


21


described hereinbefore;


607


, an openable cover for covering the window


606


other than when they are exchanged. The window


606


has a size enough to permit manipulation of the head lever


204


and the container lever


205


upon the ink container


201


exchange. A reference numeral


608


designates an exchanging switch for exchange of the recording head


200


and/or the ink container


201


. When the exchanging switch


608


is actuated, the carriage motor


402




a


is driven, so that the carriage


203


is moved from the home position or the recording region to the window


606


position. At this position, when the exchange of the recording head


200


or the ink container


201


is completed, a release switch


609


is actuated. Then, the carriage


203


is returned to the home position, and thereafter, the recovery unit


271


carries out the recovery operation including sucking or ejecting the ink and wiping the recording head. Subsequently, the state before the exchange switch


608


is actuated, is established. The recording material is supplied to the printer


601


through a sheet supply port


610


. The keyboard


602


is openable in a direction a for setting the recording material


6


.





FIG. 25

is a block diagram of the electric circuit structure of the information processing apparatus. In this Figure, a reference numeral


501


is a controller for the main control operation;


502


, a CPU in he form of a microcomputer, for example, for carrying out various processes;


503


, a RAM including an area for developing text data or image data and a work area;


504


, a ROM for storing fixed data such as the program for the sequential operations and font data;


505


, a timer for producing executing cycle of the CPU


502


and producing necessary timing for the recording operation of the printer


401


;


506


, an interface for supplying the signals from the CPU


502


to the peripheral device.




In addition, a reference numeral


507


designates a controller for the printer


401


;


508


, is a recording head detector for detecting information on the recording head such as outputs of sensors for detecting presence or absence of the recording head


200


, the types thereof and the temperature thereof and outputs of the sensor for detecting presence or absence of the ink in the ink container


201


;


509


, a line buffer for storing record data for the recording head


200


;


510


, a head driver for supplying the recording signal and the electric power to the recording head


200


;


511




a


,


511




b


and


511




c


are motor drivers for supplying necessary signals and electric power for operation of the carriage motor


4




255


, the sheet feeding motor


5


and automatic sheet feed motor


323


;


512


, sensor detectors for detecting outputs of sensors such as the home position sensor


270


, the paper sensor


14


, the sheet feed initial sensor


320




a


, the sheet feed switch sensor


320




b


or the like. Furthermore, a reference numeral


404


designates an external memory such as FDD, HDD, RAM card or the like; and


405


is an external interface for connection directly with another information processing apparatus or for connection directly with an internal bus to control the peripheral devices. Although not shown in the block diagram, there is a power source for supplying electric power to the above electric circuits. The power source may be in the form of a chargeable battery, a disposable dry battery or an AC source converter fixedly used with the main assembly of the information processing apparatus.




As described in the foregoing, according to the embodiments of the present invention, the carriage movement direction is in accord with the mounting or demounting direction of the ink container by inclining the connecting surface of the ink container or the recording head with respect to the mounting and demounting direction of the recording head and the ink container, even if the array of the nozzles in the recording head is inclined to prevent the recording position deviation. Furthermore, the projection area, in the carriage movement direction of the connected recording head and ink container, is minimized. Therefore, without the difficulty in the connection between the recording head and the container the size of the ink jet recording apparatus can be reduced. In addition, the connecting direction between the ink container and the recording head, is inclined with respect to the direction of the array of the ejection outlets, and therefore, the correct recording position can be accomplished irrespective of the state of the mounting of the ink jet cartridge on the carriage. According to embodiments of the present invention, the connecting surfaces of the ink container and the recording head, are inclined with respect to a surface perpendicular to the ink container mounting and demounting direction. Therefore, particularly after the time elapses after the manufacturing, the O-ring is prevented from stacking on the sliding surface upon the connection of the ink container by the user. Therefore, the inconveniences of improper printing due to the ink disconnection or large amount of unusable ink remained.




Because of the inclination angle relative to a plane vertical to the mounting direction of the ink container, a force along the connecting surface is produced as a component force of the force applied in the mounting direction, upon the connection of the ink container. The force tends to produce relative deviation between the ink container and the ink jet recording head along the connecting surface. This force is eventually received by an engaging claw or the like. Therefore, it may be correctly position in the direction along the connecting surface, without the necessity for a particular fixing pin or force producing means not concerned with the mounting or demounting action. Therefore, an ink jet recording cartridge which is highly reliable even against the vibration or the like, can be provided.




The inclination angle is effective to prevent erroneous insertion of the ink container or the like. For example, an erroneous insertion preventing groove may be provided at a side opposite from the connecting surface, as shown in FIG.


22


. This groove remarkably reduces the inside volume of the ink container. By using the inclination angle of this invention, the erroneous insertion can be avoided without significantly reducing the usable volume of the ink container. It may be used for distinction of the color by using different inclination angles for the respective colors, in the recently demanded color printing machines.




While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.



Claims
  • 1. An ink jet cartridge including an ink jet recording head for ejecting ink through a plurality of ejection outlets to effect recording on a recording material by scanning in a scanning direction and an ink container for containing ink to be supplied to the recording head, the ink container being detachably mountable relative to the recording head in a mounting direction parallel to the scanning direction;wherein a line along which said ejection outlets are arranged is inclined with respect to a plane perpendicular to the mounting direction and is different from the scanning direction.
  • 2. An ink jet cartridge according to claim 1, wherein said ejection outlets are arranged into an array of ejection outlets, and further comprising an ink receiving portion for receiving the ink to be ejected through the array of ejection outlets.
Priority Claims (2)
Number Date Country Kind
5-006986 Jan 1993 JP
5-336703 Dec 1993 JP
Parent Case Info

This application is a division of Application Ser. No. 08/631,033, filed Apr. 18, 1996, now U.S. Pat. No. 5,940,102, which was a continuation of Application Ser. No. 08/181,180 filed Jan. 13, 1994, abandoned.

US Referenced Citations (11)
Number Name Date Kind
4419678 Kasugayama Dec 1983
4760408 Kanayama Jul 1988
4760409 Kiyohara Jul 1988
4791439 Guiles Dec 1988
4878069 Kiyohara Oct 1989
5023629 Kiyohara Jun 1991
5138344 Ujita Aug 1992
5216448 Unosawa Jun 1993
5245361 Kashimura Sep 1993
5583549 Ujita et al. Dec 1996
6113223 Tanaka et al. Sep 2000
Foreign Referenced Citations (10)
Number Date Country
299360 Apr 1992 DE
59256 Sep 1982 EP
83511 Jul 1983 EP
380199 Aug 1990 EP
443722 Aug 1991 EP
546832 Jun 1993 EP
57-100081 Jun 1982 JP
59-194854 Nov 1984 JP
60-204331 Oct 1985 JP
61-20752 Jan 1986 JP
Continuations (1)
Number Date Country
Parent 08/181180 Jan 1994 US
Child 08/631033 US