Ink jet delivery system comprising an improved perfume mixture

Information

  • Patent Grant
  • 10066114
  • Patent Number
    10,066,114
  • Date Filed
    Thursday, September 12, 2013
    10 years ago
  • Date Issued
    Tuesday, September 4, 2018
    5 years ago
Abstract
Ink jet delivery systems comprising a fluid composition comprising a perfume mixture having a boiling point of less than 250° C. and an ink jet to deliver the fluid composition into the air, whereby scent longevity, perfume character, room fill, and/or functional benefits (e.g. odor elimination) are provided.
Description
FIELD OF THE INVENTION

The present invention relates to an ink jet delivery system comprising an improved perfume mixture and a method of delivering a perfume mixture into the air.


BACKGROUND OF THE INVENTION

Various systems exist to deliver volatile compositions, such as perfume mixtures, into the air by an energized (i.e. electrically/battery powered) atomization system. Such attempts include battery-powered automatic aerosol air fresheners, sold under the tradename AIRWICK by Reckitt Benckiser. Another attempt is a piezoelectric actuator that atomizes a volatile composition into fluid droplets in the air, sold under the tradename GLADE by S.C. Johnson & Son.


Recent attempts have been made to deliver scents by means of an ink jet head. But, these attempts are directed to printing ink-based scented fluids onto a substrate or surface medium. As such, there remains a need to effectively deliver a perfume mixture into the air via an ink jet delivery system.


SUMMARY OF THE INVENTION

In one embodiment, there is provided a delivery system comprising a fluid composition comprising from about 50% to about 100%, by weight of said composition, of a perfume mixture, wherein about 3% to about 25%, by weight of said perfume mixture, has a boiling point less than 250° C.; and an ink jet head for delivering said fluid composition into the air.


In another embodiment, there is provided a delivery system comprising a fluid composition comprising from about 50% to about 100%, by weight of said composition, of a perfume mixture, wherein about 3% to about 25%, by weight of said perfume mixture, has a boiling point less than 200° C.; a reservoir containing said fluid composition and at least partially containing a wick; and an ink jet head in fluid communication with said wick and comprising and 8 to 32 nozzles, wherein said ink jet head emits 1-4 picoliters of said fluid composition into the air from each of said 8 to 32 nozzles.







DETAILED DESCRIPTION OF EMBODIMENTS

The present invention provides a delivery system comprising an ink jet and a volatile composition and methods for delivering such volatile compositions into the air by an ink jet.


Delivery system may comprise a reservoir containing a fluid composition, an ink jet head, a power source, and a housing for containing such elements. It is to be understood that the delivery system is not limited to the construction and arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or of being practiced or carried out in various ways.


Ink Jet Head


The delivery system of the present invention employs an ink jet head typically used in ink jet printing. There are two major categories of ink jet printing: “drop-on-demand” and “continuous” ink jet printing.


For continuous ink jet printing, an ink is supplied under pressure to an ink jet nozzle and forced out through a small orifice. Prior to passing out of the nozzle, the pressurized ink stream proceeds through a ceramic crystal which is subjected to an electric current. This current causes a piezoelectric vibration equal to the frequency of the AC electric current. This vibration, in turn, generates the ink droplets from the unbroken ink stream. The ink stream breaks up into a continuous series of drops which are equally spaced and of equal size. Surrounding the jet, at a point where the drops separate from the fluid stream in a charge electrode, a voltage is applied between the charge electrode and the drop stream. When the drops break off from the stream, each drop carries a charge proportional to the applied voltage at the instant at which it breaks off. By varying the charge electrode voltages at the same rate as drops are produced, it is possible to charge every drop to a predetermined level. The drop stream continues its flight and passes between two deflector plates which are maintained at a constant potential. In the presence of this field, a drop is deflected towards one of the plates by an amount proportional to the charge carried. Drops which are uncharged are undeflected and collected into a gutter to be recycled to the ink nozzle. Those drops which are charged, and hence deflected, impinge on a substrate traveling at a high speed at right angles to the direction of drop deflection. By varying the charge on individual drops, the desired pattern can be printed.


In a typical “drop-on-demand” ink jet printing process, a fluid ink is forced under pressure through a very small orifice of a diameter typically about 0.0024 inches (5-50 microns) in the form of minute droplets by rapid pressure impulses. The rapid pressure impulses are typically generated in the print head by either expansion of a piezoelectric crystal vibrating at a high frequency or volatilization of a volatile composition (e.g. solvent, water, propellant) within the ink by rapid heating cycles. The piezoelectric crystal expansion causes the ink to pass through the orifice as minute droplets in proportion to the number of crystal vibrations. Thermal ink jet printers employ a heating element within the print head to volatilize a portion of the composition that propels the vast majority of fluid through the orifice nozzle to form droplets in proportion to the number of on-off cycles for the heating element. The ink is forced out of the nozzle when needed to print a spot on a substrate as part of a desired image. The minute droplets may be energized to achieve an electrical charge and deflected as in the continuous ink jet printing. Conventional ink jet printers are more particularly described in U.S. Pat. Nos. 3,465,350 and 3,465,351.


Another type of ink jet printing process is an electrostatic ink jet process which employs an electrostatic field to draw the ink through the nozzle to the substrate. Charged ink droplets are drawn to an oppositely charged platen behind the receiving substrate. Such devices have been developed by Technology International Corp. of Boulder, Colo., under the trade name ESIJET.


While the present invention may employ any of the above described ink jet head delivery processes, the ink jet head of the present invention may include a membrane of 8 to 48 nozzles, alternatively 8 to 32 nozzles, alternatively 8 to 16 nozzles, alternatively 8 to 12 nozzles, that delivers 1-4 picoliters of fluid composition per nozzle, alternatively 1-2 picoliters per nozzle on an ink jet head that may be less than about 25 mm2. In some embodiments, the ink jet head delivers from about 5 mg to about 40 mg of fluid composition per hour into the air. One type of membrane suitable for the present invention is an integrated membrane of nozzles obtained via MEMs technology as described in US 2010/0154790.


Reservoir


The delivery system includes a reservoir for containing the fluid composition. In some embodiments, the reservoir is configured to contain from about 5 to about 50 ml of fluid composition, alternatively from about 10 to about 30 ml of fluid composition, alternatively from about 15 to about 20 ml of fluid composition. The delivery system may be configured to have multiple reservoirs, each containing the same or a different composition. The reservoir may be formed as a separate construction, so as to be replaceable (e.g. a refill). The reservoir can be made of any suitable material for containing a fluid composition. Suitable materials for the containers include, but are not limited to, glass and plastic. Examples of such reservoirs are readily available in the marketplace.


The reservoir may comprise a capillary element made of any commercially available wicking material such as a fibrous or porous wick that contains multiple interconnected open cells which form capillary passages to draw a fluid composition up from the reservoir to come in contact with the fluid feed of the ink jet engine. Non-limiting examples of suitable compositions for the capillary element include polyethylene, ultra-high molecular weight polyethelene (UHMW), nylon 6 (N6), polypropylene (PP), polyester fibers, ethyl vinyl acetate, polyether sulfone, polyvinylidene fluoride (PVDF), and polyethersulfone (PES), polytetrafluoroethylene (PTFE), and combinations thereof.


In some embodiments, the capillary element may be a high density wick composition to aid in containing the scent of a perfume mixture. In one embodiment, the capillary element is made from a plastic material chosen from high-density polyethylene (HDPE). As used herein, high density wick compositions include any conventional wick material known in the art having a pore diameter or equivalent pore diameter (e.g. in the case of fiber based wicks) ranging from about 20 microns to about 150 microns, alternatively from about 30 microns to about 70 microns, alternatively from about 30 microns to about 50 microns, alternatively, about 40 microns to about 50 microns.


In some embodiments, the capillary element is free of a polyurethane foam. Many ink jet cartridges use an open cell polyurethane foam which can be incompatible with perfume mixtures over time (e.g. after 2 or 3 months) and can break down.


Regardless of the material of manufacture, the capillary element can exhibit an average pore size from about 10 microns to about 500 microns, alternatively from about 50 microns to about 150 microns, alternatively about 70 microns. The average pore volume of the wick is from about 15% to about 85%, alternatively from about 25% to about 50%. Good results have been obtained with wicks having an average pore volume of about 38%. The capillary element can also be of variable length, such as, from about 1 mm to about 100 mm, or from about 5 mm to about 75 mm, or from about 10 mm to about 50 mm.


The capillary element is in fluid communication with the fluid composition and may extend at least partially outside the reservoir. In some embodiments, the capillary element may be completely surrounded by the walls of the reservoir. Depending upon the configuration of the delivery system, a fluid composition may travel up or down the capillary element. After flowing from the reservoir, the fluid composition may continue traveling downstream to a holding tank from which the ink jet head draws fluid from to atomize the fluid into the air.


In some embodiments, the delivery system may include a fluid channel positioned in a flow path between the capillary element and the holding tank. A channel may be useful in configurations where the reservoir and holding tank are placed laterally from one another. The length of the channel, measured from the capillary element to center of the reservoir, may be about 12 mm, alternatively about 13 mm, alternatively, about 14 mm, alternatively about 15 mm, alternatively about 11 mm, alternatively about 10 mm.


Fluid Composition


To operate satisfactorily within an ink jet delivery system, many characteristics of a fluid composition are taken into consideration. Some factors include formulating fluids with viscosities that are optimal to emit from the ink jet head, formulating fluids with limited amounts or no suspended solids that would clog the ink jet head, formulating fluids to be sufficiently stable to not dry and clog the ink jet head, etc. Operating satisfactorily within an ink jet delivery system, however, addresses only some of the requirements necessary for a fluid composition having more than 50 wt % of a perfume mixture to atomize properly from an ink jet delivery system and to be delivered effectively as an air freshening or malodor reducing composition.


The fluid composition of the present invention may exhibit a viscosity of less than 20 centipoise (“cps”), alternatively less than 18 cps, alternatively less than 16 cps, alternatively from about 5 cps to about 16 cps, alternatively about 8 cps to about 15 cps. And, the volatile composition may have surface tensions below about 35, alternatively from about 20 to about 30 dynes per centimeter. Viscosity is in cps, as determined using the Bohlin CVO Rheometer system in conjunction with a high sensitivity double gap geometry.


In some embodiments, the fluid composition is free of suspended solids or solid particles existing in a mixture wherein particulate matter is dispersed within a liquid matrix. Free of suspended solids is distinguishable from dissolved solids that are characteristic of some perfume materials.


The fluid composition of the present invention comprises a perfume mixture present in an amount greater than about 50%, by weight of the fluid composition, alternatively greater than about 60%, alternatively greater than about 70%, alternatively greater than about 75%, alternatively greater than about 80%, alternatively from about 50% to about 100%, alternatively from about 60% to about 100%, alternatively from about 70% to about 100%, alternatively from about 80% to about 100%, alternatively from about 90% to about 100%. In some embodiments, the fluid composition may consist entirely of the perfume mixture (i.e. 100 wt. %).


The perfume mixture may contain one or more perfume materials. The perfume materials are selected based on the material's boiling point (“B.P.”). The B.P. referred to herein is measured under normal standard pressure of 760 mm Hg. The B.P. of many perfume ingredients, at standard 760 mm Hg can be found in “Perfume and Flavor Chemicals (Aroma Chemicals),” written and published by Steffen Arctander, 1969.


In the present invention, the perfume mixture may have a B.P. of less than 250° C., alternatively less than 225° C., alternatively less than 200° C., alternatively less than about 150° C., alternatively less than about 120° C., alternatively less than about 100° C., alternatively about 50° C. to about 200° C., alternatively about 110° C. to about 140° C. In some embodiments, about 3 wt % to about 25 wt % of the perfume mixture has a B.P. of less than 200° C., alternatively about 5 wt % to about 25 wt % of the perfume mixture has a B.P. of less than 200° C.


Table 1 lists some non-limiting, exemplary individual perfume materials suitable for the perfume mixture of the present invention.













TABLE 1







CAS Number
Perfume Raw Material Name
B.P. (° C.)




















105-37-3
Ethyl propionate
99



110-19-0
Isobutyl acetate
116



928-96-1
Beta gamma hexenol
157



80-56-8
Alpha Pinene
157



127-91-3
Beta Pinene
166



1708-82-3
cis-hexenyl acetate
169



124-13-0
Octanal
170



470-82-6
Eucalyptol
175



141-78-6
Ethyl acetate
77










Table 2 shows an exemplary perfume mixture having a total B.P. less than 200° C.












TABLE 2





CAS Number
Perfume Raw Material Name
Wt %
B.P. (° C.)


















123-68-2
Allyl Caproate
2.50
185


140-11-4
Benzyl Acetate
3.00
214


928-96-1
Beta Gamma Hexenol
9.00
157


18479-58-8
Dihydro Myrcenol
5.00
198


39255-32-8
Ethyl 2 Methyl Pentanoate
9.00
157


77-83-8
Ethyl Methyl Phenyl Glycidate
2.00
260


7452-79-1
Ethyl-2-Methyl Butyrate
8.00
132


142-92-7
Hexyl Acetate
12.50
146


68514-75-0
Orange Phase Oil 25X1.18%-
10.00
177



Low Cit. 14638


93-58-3
Methyl Benzoate
0.50
200


104-93-8
Para Cresyl Methyl Ether
0.20
176


1191-16-8
Prenyl Acetate
8.00
145


88-41-5
Verdox
3.00
223


58430-94-7
Iso Nonyl Acetate
27.30
225



TOTAL:
100.00









When formulating fluid compositions for the present invention, one may also include solvents, diluents, extenders, fixatives, thickeners, or the like. Non-limiting examples of these materials are ethyl alcohol, carbitol, diethylene glycol, dipropylene glycol, diethyl phthalate, triethyl citrate, isopropyl myristate, ethyl cellulose, and benzyl benzoate.


In some embodiments, the fluid composition may contain functional perfume components (“FPCs”). FPCs are a class of perfume raw materials with evaporation properties that are similar to traditional organic solvents or volatile organic compounds (“VOCs”). “VOCs”, as used herein, means volatile organic compounds that have a vapor pressure of greater than 0.2 mm Hg measured at 20° C. and aid in perfume evaporation. Exemplary VOCs include the following organic solvents: dipropylene glycol methyl ether (“DPM”), 3-methoxy-3-methyl-1-butanol (“MMB”), volatile silicone oil, and dipropylene glycol esters of methyl, ethyl, propyl, butyl, ethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, or any VOC under the tradename of Dowanol™ glycol ether. VOCs are commonly used at levels greater than 20% in a fluid composition to aid in perfume evaporation.


The FPCs of the present invention aid in the evaporation of perfume materials and may provide a hedonic, fragrance benefit. FPCs may be used in relatively large concentrations without negatively impacting perfume character of the overall composition. As such, in some embodiments, the fluid composition of the present invention may be substantially free of VOCs, meaning it has no more than 18%, alternatively no more than 6%, alternatively no more than 5%, alternatively no more than 1%, alternatively no more than 0.5%, by weight of the composition, of VOCs. The volatile composition, in some embodiments, may be free of VOCs.


Perfume materials that are suitable as a FPC may have a KI, as defined above, from about 800 to about 1500, alternatively about 900 to about 1200, alternatively about 1000 to about 1100, alternatively about 1000.


Perfume materials that are suitable for use as a FPC can also be defined using odor detection threshold (“ODT”) and non-polarizing scent character for a given perfume character scent camp. ODTs may be determined using a commercial GC equipped with flame ionization and a sniff-port. The GC is calibrated to determine the exact volume of material injected by the syringe, the precise split ratio, and the hydrocarbon response using a hydrocarbon standard of known concentration and chain-length distribution. The air flow rate is accurately measured and, assuming the duration of a human inhalation to last 12 seconds, the sampled volume is calculated. Since the precise concentration at the detector at any point in time is known, the mass per volume inhaled is known and concentration of the material can be calculated. To determine whether a material has a threshold below 50 ppb, solutions are delivered to the sniff port at the back-calculated concentration. A panelist sniffs the GC effluent and identifies the retention time when odor is noticed. The average across all panelists determines the threshold of noticeability. The necessary amount of analyte is injected onto the column to achieve a 50 ppb concentration at the detector. Typical GC parameters for determining ODTs are listed below. The test is conducted according to the guidelines associated with the equipment.


Equipment:

    • GC: 5890 Series with FID detector (Agilent Technologies, Ind., Palo Alto, Calif., USA);
    • 7673 Autosampler (Agilent Technologies, Ind., Palo Alto, Calif., USA);
    • Column: DB-1 (Agilent Technologies, Ind., Palo Alto, Calif., USA) Length 30 meters ID 0.25 mm film thickness 1 micron (a polymer layer on the inner wall of the capillary tubing, which provide selective partitioning for separations to occur).


Method Parameters:

    • Split Injection: 17/1 split ratio;
    • Autosampler: 1.13 microliters per injection;
    • Column Flow: 1.10 mL/minute;
    • Air Flow: 345 mL/minute;
    • Inlet Temp. 245° C.;
    • Detector Temp. 285° C.


Temperature Information:

    • Initial Temperature: 50° C.;
    • Rate: 5C/minute;
    • Final Temperature: 280° C.;
    • Final Time: 6 minutes;
    • Leading assumptions: (i) 12 seconds per sniff
      • (ii) GC air adds to sample dilution.


FPCs may have an ODT from greater than about 1.0 parts per billion (“ppb”), alternatively greater than about 5.0 ppb, alternatively greater than about 10.0 ppb, alternatively greater than about 20.0 ppb, alternatively greater than about 30.0 ppb, alternatively greater than about 0.1 parts per million.


In one embodiment, the FPCs in a fluid composition of the present invention may have a KI in the range from about 900 to about 1400; alternatively from about 1000 to about 1300. These FPCs can be either an ether, an alcohol, an aldehyde, an acetate, a ketone, or mixtures thereof.


FPCs may be highly volatile, low B.P. perfume materials. Exemplary FPC include iso-nonyl acetate, dihydro myrcenol (3-methylene-7-methyl octan-7-ol), linalool (3-hydroxy-3,7-dimethyl-1,6 octadiene), geraniol (3,7 dimethyl-2,6-octadien-1-ol), d-limonene (1-methyl-4-isopropenyl-1-cyclohexene, benzyl acetate, isopropyl mystristate, and mixtures thereof. Table 3 lists the approximate reported values for exemplary properties of certain FPCs.
















TABLE 3








Clog
Flash






B.P.

P @
point
Vapor


FPC
(° C.)
MW
25° C.
(° C.)
pressure
KI
ODT






















Iso-Nonyl
225
186.3
4.28
79.4
0.11
1178
12 ppb


Acetate


(CAS#


58430-94-7)


Dihydro
198
156.3
3.03
76.1
0.1
1071
32 ppb


Myrcenol


(CAS#


18479-58-8)


Linalool
205
154.3
2.549
78.9
0.05
1107
22 ppb


(CAS#


78-70-6)


Geraniol
237
154.3
2.769
100
0.00519
1253
0.4 ppb 


(CAS#


106-24-1)


D-Limonene
170
136
4.35
47.2
1.86
1034
204 ppb 


(CAS#


94266-47-4)









The total amount of FPCs in the perfume mixture may be greater than about 50%, alternatively greater than about 60%, alternatively greater than about 70%, alternatively greater than about 75%, alternatively greater than about 80%, alternatively from about 50% to about 100%, alternatively from about 60% to about 100%, alternatively from about 70% to about 100%, alternatively from about 75% to about 100%, alternatively from about 80% to about 100%, alternatively from about 85% to about 100%, alternatively from about 90% to about 100%, alternatively about 100%, by weight of the perfume mixture. In some embodiments, the perfume mixture may consist entirely of FPCs (i.e. 100 wt. %).


For purposes of illustrating the present invention in further detail, Table 4 lists a non-limiting, exemplary fluid composition comprising FPCs and their approximate reported values for KI and B.P.












TABLE 4





Material Name
KI
wt. %
B.P. (° C.)


















Benzyl Acetate (CAS # 140-11-4)
1173
1.5
214


Ethyl-2-methyl Butyrate (CAS # 7452-79-1)
850
0.3
132


Amyl Acetate (CAS # 628-63-7)
912
1.0
149


Cis 3 Hexenyl Acetate (CAS # 3681-71-8)
1009
0.5
169


Ligustral (CAS # 27939-60-2)
1094
0.5
177


Melonal (CAS # 106-72-9)
1060
0.5
116


Hexyl Acetate (CAS # 142-92-7)
1016
2.5
146


Dihydro Myrcenol (CAS# 18479-58-8)
1071
15
198


Phenyl Ethyl Alcohol (CAS# 60-12-8)
1122
8
219


Linalool (CAS # 78-70-6)
1243
25.2
205


Geraniol (CAS# 106-24-1)
1253
5
238


Iso Nonyl Acetate (CAS# 40379-24-6)
1295
22.5
225


Benzyl Salicylate (CAS # 118-58-1)
2139
3
320


Coumarin (CAS # 91-64-5)
1463
1.5
267


Methyl Dihydro Jasmonate (CAS# 24851-98-7)
1668
7
314


Hexyl Cinnamic Aldehyde (CAS # 101-86-0)
1770
6
305









It is contemplated that the fluid composition may comprise other volatile materials in addition to or in substitution for the perfume mixture including, but not limited to, volatile dyes; compositions that function as insecticides; essential oils or materials that acts to condition, modify, or otherwise modify the environment (e.g. to assist with sleep, wake, respiratory health, and like conditions); deodorants or malodor control compositions (e.g. odor neutralizing materials such as reactive aldehydes (as disclosed in U.S. 2005/0124512), odor blocking materials, odor masking materials, or sensory modifying materials such as ionones (also disclosed in U.S. 2005/0124512)).


Optional Features


Fan


In another aspect of the invention, the delivery system may comprise a fan to assist in driving room-fill and to help avoid deposition of larger droplets from landing on surrounding surfaces that could damage the surface. The fan may be any known fan used in the art for air freshening systems that delivers 1-1000 cubic centimeters of air/minute, alternatively 10-100 cubic centimeters/minute.


Sensors


In some embodiments, the delivery system may include commercially available sensors that respond to environmental stimuli such as light, noise, motion, and/or odor levels in the air. For example, the delivery system can be programmed to turn on when it senses light, and/or to turn off when it senses no light. In another example, the delivery system can turn on when the sensor senses a person moving into the vicinity of the sensor. Sensors may also be used to monitor the odor levels in the air. The odor sensor can be used to turn-on the delivery system, increase the heat or fan speed, and/or step-up the delivery of the fluid composition from the delivery system when it is needed.


The sensor may also be used to measure fluid levels in the reservoir to indicate the reservoir's end-of-life in advance of depletion. In such case, an LED light may turn on to indicate the reservoir needs to be filled or replaced with a new reservoir.


The sensors may be integral with the delivery system housing or in a remote location (i.e. physically separated from the delivery system housing) such as remote computer or mobile smart device/phone. The sensors may communicate with the delivery system remotely via low energy blue tooth, 6 low pan radios or any other means of wirelessly communicating with a device and/or a controller (e.g. smart phone or computer).


Portable/Battery


The delivery system may be configured to be compact and easily portable. In such case, the delivery system may be battery operated. The delivery system may be capable for use with electrical sources as 9-volt batteries, conventional dry cells such as “A”, “AA”, “AAA”, “C”, and “D” cells, button cells, watch batteries, solar cells, as well as rechargeable batteries with recharging base.


Programming


The delivery system may include programmable electronics to set a precise intensity level and delivery rate (in milligrams per hour). Alternatively, the electronic circuitry of the delivery system may allow a user to adjust the intensity and/or the timing of the delivering the fluid composition for personal preference, efficacy, or for room size. For example, the delivery system may provide 5 intensity levels for a user to select and user selected options of delivering the fluid composition every 6, 12, or 24 hours.


In multiple reservoir delivery systems, a microprocessor and timer could be installed to emit the fluid composition from individual reservoirs at different times and for selected time periods, including emitting the volatile compositions in an alternating emission pattern as described in U.S. Pat. No. 7,223,361. Additionally, the delivery system could be programmable so a user can select certain compositions for emission. In the case of scented perfumes being emitted simultaneously, a customized scent may be delivered to the air.


Throughout this specification, components referred to in the singular are to be understood as referring to both a single or plural of such component.


All percentages stated herein are by weight unless otherwise specified.


Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical range were all expressly written herein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, e.g., 1 to 6.1, 3.5 to 7.8, 5.5 to 10, etc.


Further, the dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A delivery system comprising: a fluid composition comprising from 60% to 100%, by weight of said fluid composition, of a perfume mixture, wherein the perfume mixture consists of one or more perfume materials, wherein said perfume mixture has an weighted average boiling point of less than 250° C., wherein the fluid composition comprises a functional perfume component and wherein a balance of the fluid composition consists of materials selected from the group consisting of: solvents, diluents, extenders, fixatives, thickeners, and combinations thereof;a reservoir containing said fluid composition and at least partially containing a capillary element; anda thermal ink jet head in fluid communication with said capillary element, wherein the thermal ink jet head comprises a heating element and a nozzle, wherein the heating element is configured to volatilize a portion of the fluid composition to propel the fluid composition through the nozzle in the form of droplets that are emitted into the air, wherein the nozzle comprises an orifice having a diameter of 5 to 50 microns.
  • 2. The delivery system of claim 1, wherein said composition comprises from about 70% to about 100%, by weight of said composition, of the perfume mixture.
  • 3. The delivery system of claim 1, wherein said composition comprises from about 80% to about 100%, by weight of said composition, of the perfume mixture.
  • 4. The delivery system of claim 1, wherein said composition comprises from about 90% to about 100%, by weight of said composition, of the perfume mixture.
  • 5. The delivery system of claim 1, wherein about 3% to about 25% of the perfume mixture has an average boiling point less than 200° C.
  • 6. The delivery system of claim 1, wherein said average boiling point of the perfume mixture is less than 200° C.
  • 7. The delivery system of claim 1, wherein said average boiling point of the perfume mixture is less than 150° C.
  • 8. The delivery system of claim 1, wherein said fluid composition is free of suspended solids.
  • 9. The delivery system of claim 1 wherein said ink jet head comprises 8 to 48 nozzles and emits 1 to 4 picoliters of said fluid composition into the air.
  • 10. The delivery system of claim 1, wherein said ink jet head comprises 16 to 32 nozzles and emits from about 5 mg to about 40 mg of said fluid composition per hour into the air.
  • 11. The delivery system of claim 1 further comprising a sensor selected from the group consisting of a motion sensor, a light sensor, a fluid detection sensor, an odor detection sensor, and combinations thereof.
  • 12. The delivery system of claim 1, wherein the functional perfume component is selected from the group consisting of: ethers, alcohols, aldehydes, acetates, ketones, or mixtures thereof.
  • 13. The delivery system of claim 1, wherein the functional perfume component is selected from the group consisting of: aldehydes, acetates, ketones, or mixtures thereof.
  • 14. The delivery system of claim 1, wherein the function perfume component has an odor detection threshold from greater than about 1.0 parts per billion.
US Referenced Citations (121)
Number Name Date Kind
3465350 Keur et al. Sep 1969 A
3465351 Keur et al. Sep 1969 A
3967286 Andersson et al. Jun 1976 A
4532530 Hawkins Jul 1985 A
5084713 Wong Jan 1992 A
5317339 Braun May 1994 A
5591409 Watkins Jan 1997 A
5610635 Murray Mar 1997 A
5666140 Mitani et al. Sep 1997 A
5714989 Wade et al. Feb 1998 A
5874974 Courian et al. Feb 1999 A
5975675 Kim Nov 1999 A
6010210 Wilson et al. Jan 2000 A
6012799 Silverbrook Jan 2000 A
6024440 Murthy et al. Feb 2000 A
6113228 Pawlowski Sep 2000 A
6126277 Feinn et al. Oct 2000 A
6139131 Prasad et al. Oct 2000 A
6170937 Childers et al. Jan 2001 B1
6261347 Moreland Jul 2001 B1
6282458 Muray et al. Aug 2001 B1
6287550 Trinh Sep 2001 B1
6322200 Feinn et al. Nov 2001 B1
6325475 Hayes Dec 2001 B1
6371451 Choi Apr 2002 B1
6543887 Chang Apr 2003 B2
6672129 Frederickson et al. Jan 2004 B1
6698862 Chol Mar 2004 B1
6808684 Boden et al. Oct 2004 B2
6834937 Killmeier et al. Dec 2004 B2
7097263 Silverbrook Aug 2006 B2
7201916 Schiavo Apr 2007 B2
7223361 Kvietok et al. May 2007 B2
7293849 Tani et al. Nov 2007 B2
7328974 Wang Feb 2008 B2
7367661 Hess et al. May 2008 B2
7389943 Jaworski Jun 2008 B2
7490815 Tollens et al. Feb 2009 B2
7499632 Granger Mar 2009 B2
7669978 Spivey Mar 2010 B2
8020573 Lamers et al. Sep 2011 B2
8087759 Oikawa et al. Jan 2012 B2
8101124 Uchiyama Jan 2012 B2
8142558 Robertson et al. Mar 2012 B2
8201752 Brodbeck Jun 2012 B2
8251500 Yamanda et al. Aug 2012 B2
8727234 Haran May 2014 B2
8821802 Haran Sep 2014 B2
8870090 Feriani Oct 2014 B2
8881999 Blaylock et al. Nov 2014 B2
9174453 Dodd et al. Nov 2015 B1
9211356 Gruenbacher et al. Dec 2015 B2
9211980 Gruenbacher Dec 2015 B1
9377786 Nakamoto et al. Jun 2016 B2
9554459 Gruenbacher et al. Jan 2017 B2
9636430 Gruenbacher et al. May 2017 B2
20010050317 Denen Dec 2001 A1
20020050533 Hirota May 2002 A1
20020063752 Clark May 2002 A1
20020086319 Ellson et al. Jul 2002 A1
20020192255 Schiavo Dec 2002 A1
20030062385 Engel Apr 2003 A1
20030218077 Boticki Nov 2003 A1
20040032468 Killmeier et al. Feb 2004 A1
20040119793 Mutz et al. Jun 2004 A1
20040200907 Martens et al. Oct 2004 A1
20050018016 Silverbrook Jan 2005 A1
20050037945 Gygax et al. Feb 2005 A1
20050062804 Eaton Mar 2005 A1
20050077376 Hess et al. Apr 2005 A1
20050091879 DuVal et al. May 2005 A1
20050124512 Woo et al. Jun 2005 A1
20050205916 Conway et al. Sep 2005 A1
20050279854 Martens et al. Dec 2005 A1
20060065755 Sugita et al. Mar 2006 A1
20060152550 Tomita Jul 2006 A1
20070008380 Ushinohama Jan 2007 A1
20070010645 Vonwiller et al. Jan 2007 A1
20070207174 Pluyter Sep 2007 A1
20070222830 Moynihan Sep 2007 A1
20080023569 O'Leary et al. Jan 2008 A1
20080043063 Bergstedt Feb 2008 A1
20080061163 Kubby et al. Mar 2008 A1
20080073443 Tollens Mar 2008 A1
20080197213 Flashinski et al. Aug 2008 A1
20090096839 Olbrich et al. Apr 2009 A1
20090108094 Ivri Apr 2009 A1
20090126722 Sugita et al. May 2009 A1
20090289127 Tollens Nov 2009 A1
20100001091 Bara et al. Jan 2010 A1
20100154790 Merassi et al. Jun 2010 A1
20100206306 Feriani et al. Aug 2010 A1
20100328957 Hessing Dec 2010 A1
20110024521 Joergensen Feb 2011 A1
20110036365 Chong et al. Feb 2011 A1
20110049266 Joergensen Mar 2011 A1
20110089252 Rosener et al. Apr 2011 A1
20110130877 Lynch Jun 2011 A1
20110221083 Laulicht Sep 2011 A1
20110284653 Butler et al. Nov 2011 A1
20110284656 Kambayashi et al. Nov 2011 A1
20110290911 Tollens et al. Dec 2011 A1
20120093491 Browder Apr 2012 A1
20120097754 Vlad et al. Apr 2012 A1
20130010035 Norikane Jan 2013 A1
20130026250 Burt Jan 2013 A1
20130206857 Ivri Aug 2013 A1
20130292484 Jackson Nov 2013 A1
20140078229 Jackson et al. Mar 2014 A1
20140369895 Turner et al. Dec 2014 A1
20150367013 Gruenbacher et al. Dec 2015 A1
20150367014 Gruenbacher et al. Dec 2015 A1
20150367016 Gruenbacher et al. Dec 2015 A1
20150367356 Gruenbacher et al. Dec 2015 A1
20150368001 Gruenbacher et al. Dec 2015 A1
20160271639 Bush et al. Sep 2016 A1
20160354799 Gruenbacher et al. Dec 2016 A1
20170072085 Gruenbacher et al. Mar 2017 A1
20170072086 Gruenbacher et al. Mar 2017 A1
20170094720 Gruenbacher et al. Mar 2017 A1
20170165390 Gruenbacher et al. Jun 2017 A1
Foreign Referenced Citations (29)
Number Date Country
2 213 066 Feb 1999 CA
2213066 Feb 1999 CA
1393491 Jan 2003 CN
1223637 Oct 2005 CN
101 020 073 Aug 2007 CN
101020073 Aug 2007 CN
204072869 Jan 2015 CN
1510228 Mar 2005 EP
1894727 Mar 2008 EP
2143576 Nov 2012 EP
2410468 Mar 2005 GB
H09123453 May 1997 JP
2002254613 Sep 2002 JP
A-2004-311093 Nov 2004 JP
2005185366 Jul 2005 JP
2005224503 Aug 2005 JP
2005224504 Aug 2005 JP
A2005224504 Aug 2005 JP
2007054446 Mar 2007 JP
A-2008-061937 Mar 2008 JP
A-2009-213901 Sep 2009 JP
100238582 Jan 2000 KR
WO 0130404 May 2001 WO
WO 2004044552 May 2004 WO
WO 2006004902 Jan 2006 WO
WO 2007083164 Jul 2007 WO
WO 2014043424 Mar 2014 WO
WO 2015175527 Nov 2015 WO
WO 2015195994 Dec 2015 WO
Non-Patent Literature Citations (2)
Entry
PCT Search report dated Nov. 18, 2013; 9 Pages; PCT/US2013/059576.
“Perfume and Flavor Chemicals (Aroma Chemicals),” written and published by Steffen Arctander, 1969.
Related Publications (1)
Number Date Country
20140078229 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61700937 Sep 2012 US