Information
-
Patent Grant
-
6364468
-
Patent Number
6,364,468
-
Date Filed
Friday, November 12, 199925 years ago
-
Date Issued
Tuesday, April 2, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Harness, Dickey & Pierce, P.L.C.
-
CPC
-
US Classifications
Field of Search
US
- 347 68
- 347 70
- 347 71
- 347 72
- 347 54
- 347 20
- 438 21
- 029 8901
-
International Classifications
-
Abstract
The method of manufacturing an ink-jet head of this invention includes the steps of forming plural individual electrodes and plural piezoelectric devices stacked in this order on a supporting substrate; flattening a top surface of the supporting substrate including the individual electrodes and the piezoelectric devices by filling a filler in a portion on the supporting substrate where the individual electrodes and the piezoelectric devices are not formed up to substantially the same level as a level of upper surfaces of the piezoelectric devices; forming a common electrode on the entire flattened top surface of the supporting substrate; fixing a pressure chamber part for forming pressure chambers on the common electrode; and removing the supporting substrate after fixing the pressure chamber part on the common electrode. Thus, the entire plane on which the common electrode is to be formed is flattened before forming the common electrode.
Description
BACKGROUND OF THE INVENTION
The present invention relates to an ink-jet head for jetting ink by using a piezoelectric effect of a piezoelectric device and a method of manufacturing the same.
Recently, ink-jet printers are widely used in offices and households. Various systems have been proposed for ink-jet heads used in the ink-jet printers in order to meet recent demands for low noise and high print quality. In general, the systems for the ink-jet heads can be roughly divided into the following two systems:
In a first system, part of an ink passage and an ink chamber is formed into a pressure chamber by using a piezoelectric actuator having a piezoelectric device, and a pulse voltage is applied to the piezoelectric device so as to deform the piezoelectric actuator. Thus, the pressure chamber is deformed to have a smaller volume, thereby generating a pressure pulse within the pressure chamber. By using the pressure pulse, ink drops are jetted through a nozzle hole communicating with the pressure chamber.
In a second system, an exothermic resistance is provided in an ink passage, and a pulse voltage is applied to the exothermic resistance so as to generate heat therein. Thus, ink contained in the passage is boiled with vapor bubble generated. By using the pressure of the vapor bubble, ink drops are jetted through a nozzle hole.
The present invention relates to an ink-jet head of the first system, and hence, this system will be further described in detail.
FIGS. 7 through 9
show an exemplified conventional ink-jet head of the first system, and the ink-jet head comprises a head body
101
including a plurality of pressure chamber concaves
102
each having a supply port
102
a
for supplying ink and a discharge port
102
b
for discharging ink. The concaves
102
of the head body
101
are arranged along one direction at predetermined intervals.
The head body
101
includes a pressure chamber part
105
forming the side walls of the concaves
102
, an ink passage part
106
forming the bottoms of the concaves
102
and including plurality of thin plates adhered to one another, and a nozzle plate
113
. Within the ink passage part
106
, an ink supply passage
107
communicating with the supply port
102
a of each concave
102
and an ink discharge passage
108
communicating with the discharge port
102
b
of each concave
102
are formed. Each ink supply passage
107
communicates with an ink supply chamber
110
extending in the direction of arranging the concaves
102
, and the ink supply chamber
110
communicates with an ink supply hole
111
formed in the pressure chamber part
105
and the ink passage part
106
and connected with an external ink tank (not shown). In the nozzle plate
113
, nozzle holes
114
respectively connected with the ink discharge passages
108
are formed.
On the upper surface of the pressure chamber part
105
of the head body
101
, a piezoelectric actuator
121
is disposed. The piezoelectric actuator
121
includes one common electrode
122
of Cr that covers all the concaves
102
of the head body
101
so as to form pressure chambers
103
together with the concaves
102
and is shared by all piezoelectric devices
123
described below. The common electrode
122
also works as the so-called vibration plate. Furthermore, the piezoelectric actuator
121
includes the piezoelectric devices
123
of lead zirconate titanate (PZT) disposed on the upper surface of the common electrode
122
correspondingly to the respective pressure chambers
103
, and an individual electrode
124
of Pt disposed on each piezoelectric device
123
for applying a voltage to the corresponding piezoelectric device
123
together with the common electrode
122
.
When a pulse voltage is applied between the common electrode
122
and each individual electrode
124
, each piezoelectric device
123
shrinks in a lateral direction perpendicular to a thickness direction, but the common electrode
122
and the individual electrode
124
do not shrink. Therefore, a portion of the common electrode
122
corresponding to the piezoelectric device
123
is deformed into a convex projecting toward the pressure chamber
103
due to the so-called bimetal effect. This deformation causes a pressure within the pressure chamber
103
, and owing to the pressure, ink contained in the pressure chamber
103
is jetted from the nozzle hole
114
through the discharge port
102
b
and the ink discharge passage
108
.
In the ink-jet head for jetting ink by using the piezoelectric actuator
121
as described above, various improvements have been recently made so as to meet strict demands for compactness and light weight, a low driving voltage, low noise, low cost, and high controllability in jetting ink. In order to attain further compactness and higher performance, the common electrode
122
, the piezoelectric devices
123
and the individual electrodes
124
can be formed from thin films easily subjected to refined processes.
In this case, for example, a method of manufacturing an ink-jet head shown in FIGS.
10
(
a
) through
10
(
g
) can be adopted. In FIGS.
10
(
a
) through
10
(
g
), the ink-jet head is shown upside down, namely, inversely to that shown in
FIGS. 7 and 8
.
Specifically, a Pt film
142
is formed on the entire surface of a supporting substrate
141
of MgO as is shown in FIG.
10
(
a
), and then, the Pt film
142
is patterned (separated), thereby forming a plurality of individual electrodes
124
as is shown in FIG.
10
(
b
).
Subsequently, a PZT film
143
is formed on the entire supporting substrate
141
bearing the individual electrodes
124
as is shown in FIG.
10
(
c
), and the PZT film
143
is patterned into the same shape as the Pt film
142
. Thus, a plurality of piezoelectric devices
123
are formed as is shown in FIG.
10
(
d
).
Next, on the piezoelectric devices
123
, a common electrode
122
(of a Cr film) is formed as is shown in FIG.
10
(
e
), and the common electrode
122
is fixed on a pressure chamber part
105
as is shown in FIG.
10
(
f
).
Then, the supporting substrate
141
is melted and removed by using heated phosphoric acid or the like, and the pressure chamber part
105
is fixed on an ink passage part
106
and a nozzle plate
113
previously integrated as is shown in FIG.
10
(
g
). Thereafter, wiring of the individual electrodes
124
and other necessary processes are conducted, resulting in completing the ink-jet head.
In the above-described method of manufacturing an ink-jet head, however, it is particularly difficult to form the common electrode
122
in the shape of a thin film. Specifically, in a method where the common electrode
122
is formed by adhering a previously formed Cr film onto the piezoelectric devices
123
with an adhesive, the film is so thin that it is difficult to adhere it onto the piezoelectric devices
123
. On the other hand, in a method in which the common electrode
122
is directly formed on the piezoelectric devices
123
by sputtering or the like, good adhesion can be attained and the thickness can be very small. However, the common electrode
122
cannot be formed into a flat shape on the entire surface of the supporting substrate
141
because the portion thereof on the supporting substrate
141
where the individual electrodes
124
and the piezoelectric devices
123
are not formed is placed at a lower level. Specifically, a portion of the common electrode
122
corresponding to an interval between the piezoelectric devices
123
can be formed in a lower level down to the surface of the supporting substrate
141
as is shown in FIG.
11
(
a
). As a result, portions of the common electrode
122
corresponding to the respective piezoelectric devices
123
can be separated from one another. Alternatively, the portion of the common electrode
122
corresponding to the interval between the piezoelectric devices
123
can be largely bent toward the supporting substrate
141
as is shown in FIG.
11
(
b
). When the common electrode
122
is separated as described above, it is troublesome because the separated portions of the common electrode
122
should be electrically connected through a wire. When the common electrode
122
is bent as described above, the displacement characteristic is varied in the piezoelectric actuator
121
and the common electrode
122
can be easily damaged.
In the above-described manufacturing method, another method can be adopted as follows instead of patterning the PZT film
143
: The common electrode
122
is formed on the entire PZT film
143
, and the common electrode
122
is fixed on the pressure chamber part
105
. After removing the supporting substrate
141
, the PZT film
143
is patterned on its face on the same side as the individual electrodes
124
, thereby forming the piezoelectric devices
123
. This method is not impossible but is actually difficult to adopt because the common electrode
122
and the piezoelectric devices
123
cannot resist heat applied during the patterning. In particular, when the common electrode
122
and the piezoelectric devices
123
have small sizes, this method is further difficult to adopt.
The present invention was devised in view of the aforementioned problems and disadvantages, and an object of the invention is attaining compactness of an ink-jet head for jetting ink by using the piezoelectric effect of a piezoelectric device with the displacement characteristic and durability of a piezoelectric actuator improved as far as possible.
SUMMARY OF THE INVENTION
In order to achieve the object, according to the invention, a plane where a common electrode is to be formed is flattened before forming the common electrode.
Specifically, the method of manufacturing an ink-jet head for jetting ink by using a piezoelectric effect of a piezoelectric device of this invention comprises the steps of forming plural individual electrodes and plural piezoelectric devices stacked in this order on a supporting substrate; flattening a top surface of the supporting substrate including the individual electrodes and the piezoelectric devices by filling a filler in a portion on the supporting substrate where the individual electrodes and the piezoelectric devices are not formed up to substantially the same level as a level of upper surfaces of the piezoelectric devices; forming a common electrode on the entire flattened top surface of the supporting substrate; fixing a pressure chamber part for forming pressure chambers on the common electrode; and removing the supporting substrate after fixing the pressure chamber part on the common electrode.
In this manner, the top surface of the supporting substrate where the common electrode is to be formed is flattened, and hence, the common electrode can be formed uniformly in a flat shape on the entire top surface of the supporting substrate by sputtering or vacuum evaporation. As a result, even a compact ink-jet head can be free from variation of the displacement characteristic of the piezoelectric actuator and damage of the common electrode. Thus, the ink-jet head attains high ink-jetting performance and high durability.
In the method of manufacturing an ink-jet head, the filler is preferably made from an organic resin, a photosensitive resin or polyimide. Thus, the filler can be easily filled by spin coating or the like, resulting in improving the productivity.
Alternatively, the filler can be made from an inorganic insulating material. Thus, the filler of SiO
2
or the like can be easily formed by sputtering or the like, and the filler can attain high environment resistance and reliability.
When the filler is made from an inorganic insulating material, the step of flattening the top surface of the supporting substrate preferably includes steps of forming an inorganic insulating material film on the entire top surface of the supporting substrate; and removing, by lapping followed by polishing, a portion of the inorganic insulating material film disposed above the upper surfaces of the piezoelectric devices. In this manner, the portion of the inorganic insulating material film disposed above the upper surfaces of the piezoelectric devices can be roughly abraded by lapping and mirror-ground by polishing. As a result, the entire top surface of the supporting substrate can be uniformly and definitely flattened.
In this case, the step of removing the portion of the inorganic insulating material film disposed above the upper surfaces of the piezoelectric devices preferably includes lapping by using abrasive grains of cerium oxide and polishing by using a non-metal soft material. Thus, even when there is a large difference in hardness between the inorganic insulating material to be abraded and the material for the piezoelectric devices, the entire top surface of the supporting substrate can be uniformly flattened.
Also, when the filler is made from an inorganic insulating material, the step of flattening the top surface of the supporting substrate can include steps of forming an inorganic insulating material film on the entire top surface of the supporting substrate; flattening an upper surface of the inorganic insulating material film by etch back; and removing a portion of the inorganic insulating material film, whose upper surface has been flattened, disposed above the upper surfaces of the piezoelectric devices. In this manner, the upper surface of the hard inorganic insulating material film can be easily flattened to some extent, resulting in easing removal of the inorganic insulating material film through lapping and polishing.
Furthermore, when the filler is made from an inorganic insulating material, the step of flattening the top surface of the supporting substrate can include steps of forming an inorganic insulating material film on the entire top surface of the supporting substrate by bias sputtering; and removing a portion of the inorganic insulating material film disposed above the upper surfaces of the piezoelectric devices. In this manner, the upper surface of the inorganic insulating material film can be flattened to some extent in forming the inorganic insulating material film by the bias sputtering, resulting in easing removal of the inorganic insulating material film through lapping and polishing.
Alternatively, the ink-jet head of this invention comprises a head body including plural concaves for pressure chambers each having a supply port for supplying ink and a discharge port for discharging ink; and a piezoelectric actuator including a common electrode covering the concaves for forming the pressure chambers together with the concaves; piezoelectric devices separately disposed on a surface of the common electrode opposite to the pressure chambers respectively correspondingly to the pressure chambers; individual electrodes separately disposed on surfaces of the piezoelectric devices opposite to the common electrode for applying a voltage to the piezoelectric devices together with the common electrode; and a filler filled in a portion on the surface of the common electrode opposite to the pressure chambers where the piezoelectric devices and the individual electrodes are not formed, for placing a surface of the filler opposite to the pressure chambers at substantially the same level as surfaces of the individual electrodes opposite to the pressure chambers, and the piezoelectric actuator is deformed, under application of a voltage to the piezoelectric devices through the individual electrodes and the common electrode, so as to reduce a volume of the pressure chambers, whereby allowing ink contained in the pressure chambers to be discharged through the discharge ports.
Owing to this structure, an ink-jet head having high ink-jetting performance and high durability can be manufactured by the aforementioned manufacturing method. Furthermore, the filler can protect the piezoelectric actuator from a mechanical external force derived from some accident or mis-operation as well as can make stress transmission between the common electrode and the side walls of the piezoelectric devices smooth. As a result, the life of the piezoelectric devices can be elongated.
In the ink-jet head, the filler is preferably made from an insulating material whose Young's modulus is set to be {fraction (1/20)} or less of a Young's modulus of the piezoelectric devices. Thus, the filler can be substantially prevented from obstructing the operation of the piezoelectric actuator. As a result, the piezoelectric actuator can attain a very good displacement characteristic.
Furthermore, in the ink-jet head, the common electrode and the piezoelectric devices preferably have a thickness of 5 μm or less. Thus, by adopting the aforementioned method, the effects of the invention of attaining a good displacement characteristic and high durability of a piezoelectric actuator can be maximumly exhibited in a compact ink-jet head.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a sectional view of an ink-jet head according to an embodiment of the invention taken along a lateral direction of a piezoelectric device (corresponding to line I—I of FIG.
3
);
FIG. 2
is a sectional view of the ink-jet head taken along a longitudinal direction of the piezoelectric device (corresponding to line II—II of FIG.
3
);
FIG. 3
is a plan view of the ink-jet head;
FIGS.
4
(
a
) through
4
(
h
) are schematic diagrams for showing a method of manufacturing the ink-jet head;
FIGS.
5
(
a
) through
5
(
g
) are schematic diagrams for showing another method of manufacturing the ink-jet head;
FIGS.
6
(
a
) through
6
(
h
) are schematic diagrams for showing still another method of manufacturing the ink-jet head;
FIG. 7
is a sectional view of a conventional ink-jet head taken along a lateral direction of a piezoelectric device (corresponding to line VII—VII of FIG.
9
);
FIG. 8
is a sectional view of the conventional ink-jet head taken along a longitudinal direction of the piezoelectric device (corresponding to line VIII—VIII of FIG.
9
);
FIG. 9
is a plan view of the conventional ink-jet head;
FIGS.
10
(
a
) through
10
(
g
) are schematic diagrams for showing a method of manufacturing the conventional ink-jet head; and
FIGS.
11
(
a
) and
11
(
b
) are schematic diagrams for showing states of a common electrode directly formed on piezoelectric devices by sputtering or the like in the manufacture of the conventional ink-jet head.
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the invention will now be described with reference to the accompanying drawings.
FIGS. 1 through 3
show an ink-jet head according to an embodiment of the invention. The ink-jet head comprises a head body
1
including a plurality of concaves
2
for pressure chambers each having a supply port
2
a
for supplying ink and a discharge port
2
b
for discharging ink. The respective concaves
2
of the head body
1
are formed on one outside surface (upper surface) of the head body
1
each in a substantially rectangular shape and arranged along one direction with predetermined intervals. Although merely three concaves
2
(each including a nozzle hole
14
, a common electrode
22
, a piezoelectric device
23
, an individual electrode
24
and the like described below) are shown for the sake of simplification in
FIG. 3
, a large number of concaves are actually formed.
The side walls of each concave
2
of the head body
1
are formed from a pressure chamber part
5
of photosensitive glass having a thickness of approximately 200 μm, and the bottom of each concave
2
is made from an ink passage part
6
fixed on the pressure chamber part
5
and including plural thin stainless steel plates adhered to one another. In the ink passage part
6
, an ink supply passage
7
communicating with the supply port
2
a
of each concave
2
and an ink discharge passage
8
communicating with the discharge port
2
b
are formed. The ink supply passage
7
communicates with an ink supply chamber
10
extending in the direction of arranging the concaves
2
, and the ink supply chamber
10
communicates with an ink supply hole
11
formed in the pressure chamber part
5
and the ink passage part
6
and connected with an external ink tank (not shown). On the surface of the ink passage part
6
opposite to the pressure chamber
5
(namely, on the lower surface), a nozzle plate
13
of a polymer resin, such as polyimide, with a thickness of approximately 10 through 75 μm is provided. In the nozzle plate
13
, nozzle holes
14
each with a diameter of approximately 20 μm are formed so as to be respectively connected with the ink discharge passages
8
. The nozzle holes
14
are linearly arranged in the direction of arranging the concaves
2
.
On the surface of the pressure chamber part
5
of the head body
1
opposite to the ink passage part
6
(namely, on the upper surface), a piezoelectric actuator
21
is disposed. The piezoelectric actuator
21
includes a common electrode
22
of Cr that covers all the concaves
2
of the head body
1
so as to form pressure chambers
3
together with the concaves
2
and is shared by all piezoelectric devices
23
described below. The common electrode
22
also works as the so-called vibration plate, and preferably has a thickness of 5 μm or less, which is 1 through 3 μm in this embodiment.
The piezoelectric actuator
21
includes a piezoelectric device
23
of lead zirconate titanate (PZT) provided correspondingly to each pressure chamber
3
on the surface (upper surface) of the common electrode
22
opposite to the corresponding pressure chamber
3
, and an individual electrode
24
of Pt with a thickness of approximately 0.1 μm provided on the surface (upper surface) of each piezoelectric device
23
opposite to the common electrode
22
for applying a voltage to the piezoelectric device
23
together with the common electrode
22
. Each piezoelectric device
23
preferably has a thickness of 5 μm or less, which is 2 through 5 μm in this embodiment.
On the surface of the common electrode
22
opposite to the pressure chambers
3
, a filler
25
of polyimide is provided in portions where the piezoelectric devices
23
and the individual electrodes
24
are not formed. The surface (upper surface) of the filler
25
opposite to the pressure chambers
3
is placed at substantially the same level as the surfaces (upper surfaces) of the individual electrodes
24
opposite to the pressure chambers
3
.
Now, procedures in a method of manufacturing this ink-jet head will be described with reference to FIGS.
4
(
a
) through
4
(
h
). In FIGS.
4
(
a
) through
4
(
h
), the ink-jet head is shown upside down, namely, inversely to that shown in
FIGS. 1 and 2
.
First, a Pt film
42
is formed on the entire surface of a supporting substrate
41
of MgO by sputtering as is shown in FIG.
4
(
a
). Then, the Pt film
42
is patterned (separated) into the plural individual electrodes
24
as is shown in FIG.
4
(
b
). Subsequently, on the entire top surface of the supporting substrate
41
bearing the individual electrodes
24
, a PZT film
43
is formed as is shown in FIG.
4
(
c
), and the PZT film
43
is patterned into the same shape as the Pt film
42
, thereby forming the plural piezoelectric devices
23
as is shown in FIG.
4
(
d
). In other words, the plural individual electrodes
24
and the plural piezoelectric devices
23
are formed so as to be stacked up with the individual electrodes
23
placed closer to the supporting substrate
41
. Alternatively, the individual electrodes
24
and the piezoelectric devices
23
can be obtained by forming the Pt film
42
and the PZT film
43
successively on the entire surface of the supporting substrate
41
and etching these films
42
and
43
substantially simultaneously.
Next, the filler
25
is filled in portions on the supporting substrate
41
where the individual electrodes
24
and the piezoelectric devices
23
are not formed up to substantially the same level as the upper surfaces of the piezoelectric devices
23
, thereby flattening the top surface of the supporting substrate
41
including the individual electrodes
24
and the piezoelectric devices
23
as is shown in FIG.
4
(
e
). Specifically, the filler
25
is filled by using a spin coater, and the top surface of the supporting substrate
41
is flattened through photolithography.
Then, a Cr film is formed by sputtering on substantially the entire flattened surface of the supporting substrate
41
, thereby forming the common electrode
22
as is shown in FIG.
4
(
f
). At this point, since substantially the entire top surface of the supporting substrate
41
is flattened, the common electrode
22
can be uniformly formed in a flat shape over the supporting substrate
41
even when the Cr film is thin.
Subsequently, the pressure chamber part
5
is fixed on the common electrode
22
as is shown in FIG.
4
(
g
). Then, the supporting substrate
41
is removed by melting with heated phosphoric acid or the like, and the ink passage part
6
and the nozzle plate
13
previously integrated are fixed on the pressure chamber part
5
as is shown in FIG.
4
(
h
). Then, although not shown in the drawings, wiring of the individual electrodes
24
and other necessary processes are conducted, resulting in completing the ink-jet head. In removing the supporting substrate
41
by melting with heated phosphoric acid or the like, the piezoelectric devices
23
could be damaged by the heated phosphoric acid or the like if the filler
25
was not provided. The piezoelectric devices
23
are, however, covered with the filler
25
and the individual electrodes
24
, and hence are prevented from being damaged by the heated phosphoric acid or the like.
Next, the operation of the ink-jet head will be described. By applying a voltage between the common electrode
22
and each individual electrode
24
, the portion of the common electrode
22
, serving as a vibration plate, corresponding to the pressure chamber
3
can be deformed so as to reduce the volume of the pressure chamber
3
, thereby discharging ink contained in the pressure chamber
3
through the discharge port
2
b
. In other words, when a pulse voltage is applied to each piezoelectric device
23
through the common electrode
22
and the individual electrode
24
, the piezoelectric device
23
shrinks in a lateral direction perpendicular to a thickness direction at a rise of the pulse voltage, but the common electrode
22
does not shrink. Therefore, the portion of the piezoelectric actuator
21
corresponding to the pressure chamber
3
is deformed to displace toward the pressure chamber
3
. This deformation causes a pressure within the pressure chamber
3
, and a predetermined amount of ink contained in the pressure chamber
3
is discharged by this pressure through the discharge port
2
b
and the ink discharge passage
8
to be jetted externally (onto paper to be printed) through the nozzle hole
14
, resulting in adhering onto the paper in the shape of dots. Then, at a fall of the pulse voltage, the piezoelectric device
23
elongates in the lateral direction, so that the common electrode
22
can return to the original state. At this point, fresh ink is filled in the pressure chamber
3
from the ink supply chamber
10
through the ink supply passage
7
and the supply port
2
a
. Not only ink of a single color but also ink of, for example, black, cyan, magenta and yellow can be respectively jetted through different nozzle holes
14
, so as to realize color printing.
In this manner, substantially the entire top surface of the supporting substrate
41
is flattened before forming the common electrode
22
in the aforementioned embodiment. Therefore, the common electrode
22
can be uniformly formed in a flat shape over the entire supporting substrate
41
. As a result, the displacement characteristic can be prevented from varying during the operation of the piezoelectric actuator
21
and the common electrode
22
can be prevented from being damaged. In addition, the filler
25
is made from polyimide and hence has a Young's modulus as small as {fraction (1/20)} or less ({fraction (1/33)} based on a certain measured value) of that of the piezoelectric device
23
. Therefore, there is substantially no fear of the filler
25
obstructing the operation of the piezoelectric actuator
21
. Furthermore, the filler
25
can protect the piezoelectric actuator
21
from a mechanical external force derived from some accident or mis-operation. In addition, the filler
25
can make smooth stress transmission between the common electrode
22
having a large Young's modulus and the side faces of the piezoelectric devices
23
. Accordingly, a compact ink-jet head can be easily manufactured with keeping the ink-jetting performance and the durability satisfactorily.
Although the filler
25
is made from polyimide in the above-described embodiment, the filler
25
can be made from any of various organic resins and photosensitive resins. In view of the operation of the piezoelectric actuator
21
, an insulating material with a Young's modulus set as small as {fraction (1/20)} or less of that of the piezoelectric device
23
is preferably selected as the material for the filler
25
.
Alternatively, the filler
25
can be made from an inorganic insulating material such as alumina, SiO
2
and Si
3
N
4
. A method of manufacturing the ink-jet head by using such a material as the filler
25
will now be described with reference to FIGS.
5
(
a
) through
5
(
g
), in which description of procedures shown in FIGS.
5
(
a
) through
5
(
d
) are omitted because they are respectively the same as the procedures shown in FIGS.
4
(
a
) through
4
(
d
).
In flattening the top surface of the supporting substrate
41
by filling the filler
25
in the portions on the supporting substrate
41
where the individual electrodes
24
and the piezoelectric devices
23
are not formed, an inorganic insulating material film
51
is first formed by sputtering, evaporation or CVD on the entire top surface of the supporting substrate
41
as is shown in FIG.
5
(
e
). Then, a portion of the inorganic insulating material film
51
disposed above the upper surfaces of the piezoelectric devices
23
is removed by lapping followed by polishing so as to expose the upper surfaces of the piezoelectric devices
23
(in general, the piezoelectric devices
23
are slightly removed) as is shown in FIG.
5
(
f
). Specifically, the surface is roughly flattened through lapping conducted with a lapping machine by using cerium oxide with an average particle size of 1 μm as abrasive grains and a mixed solution of glycerin, ethanol and water as a lubricating oil. Then, the surface is mirror-ground by polishing with buffing using a non-metal soft material such as phenol resin. In this manner, the top surface of the supporting substrate
41
can be well flattened even when there is a large difference in hardness between the piezoelectric devices
23
and the inorganic insulating material film
51
. However, the method for flattening is not limited to this method. Thus, the top surface of the supporting substrate
41
is flattened with the filler
25
filled in the portion on the supporting substrate
41
where the individual electrodes
24
and the piezoelectric devices
23
are not formed up to substantially the same level as the upper surfaces of the piezoelectric devices
23
.
Next, the common electrode
22
is formed by forming a Cr film by sputtering on substantially the entire flattened top surface of the supporting substrate
41
as is shown in FIG.
5
(
g
). Subsequently, although not shown in the drawings, the pressure chamber part
5
is fixed on the common electrode
22
, the supporting substrate
41
is melted and removed, and the ink passage part
6
and the nozzle plate
13
previously integrated are fixed on the pressure chamber part
5
in the same manner as in the aforementioned embodiment. Ultimately, the filler
25
of the inorganic insulating material is preferably removed so as not to remain as in the aforementioned embodiment. This is because this filler
25
tends to degrade the displacement characteristic of the piezoelectric actuator
21
differently from the resin such as polyimide used in the aforementioned embodiment. It goes without saying that the filler
25
of polyimide can be also removed in the aforementioned embodiment.
Alternatively, in the case where the filler
25
is made from an inorganic insulating material, after forming the inorganic insulating material film
51
, the upper surface of the inorganic insulating material film
51
can be flattened by etch back, and then, a portion of the flattened inorganic insulating material film
51
disposed above the upper surfaces of the piezoelectric devices
23
can be removed by polishing (or lapping followed by polishing). Procedures for manufacturing the ink-jet head by this method will now be described with reference to FIGS.
6
(
a
) through
6
(
h
), in which procedures shown in FIGS.
6
(
a
) through
6
(
e
) are omitted because they are respectively the same as the procedures shown in FIGS.
5
(
a
) through
5
(
e
). Specifically, after forming the inorganic insulating material film
51
on the entire top surface of the supporting substrate
41
as is shown in FIG.
6
(
e
), an organic film
52
of photoresist or polyimide is formed by spin coating on the entire inorganic insulating material film
51
as is shown in FIG.
6
(
f
). Then, the organic film
52
is dry etched from its upper surface, thereby removing projecting portions on the upper surface of the inorganic insulating material film
51
for rough flattening. At this point, the inorganic insulating material film
51
and the organic film
52
should be etched at substantially the same rate, which can be attained by adjusting the composition of an etching gas to be used. For example, when flon (CF
4
) alone is used as the etching gas, the inorganic S insulating material film
51
of Si
3
N
4
alone is etched. When oxygen is used together, however, the organic film
52
is also etched, and the same etching rate can be attained by appropriately adjusting the mixing ratio between flon and oxygen. Through this etching, the organic film
52
is entirely removed and the upper surface of the inorganic insulating material film
51
is flattened to some extent as is shown in FIG.
6
(
g
). Subsequently, a portion of the inorganic insulating material film
51
disposed above the upper surfaces of the piezoelectric devices
23
is removed by polishing as is shown in FIG.
6
(
h
). At this point, lapping can be conducted before polishing. The procedures for forming the common electrode
22
and the like to be conducted thereafter are the same as those of the aforementioned embodiment. When the upper surface of the inorganic insulating material film
51
is thus flattened by etch back, the portion of the inorganic insulating material film
51
disposed above the upper surfaces of the piezoelectric devices
23
can be efficiently removed.
Alternatively, the inorganic insulating material film
51
can be formed by bias sputtering, so as to remove a portion of the inorganic insulating material film
51
formed by the bias sputtering disposed above the upper surfaces of the piezoelectric devices
23
. The bias sputtering is a kind of sputtering in which a film is formed under application of a negative bias voltage to the supporting substrate
41
. In the bias sputtering, part of ions included in plasma enters the surface of the supporting substrate
41
, so as to cause sputtering etching simultaneously with deposition of the film. When the inorganic insulating material film
51
is formed by the bias sputtering, the inorganic insulating material film
51
can be flattened to some extent by setting the sputtering amount in areas above the upper surfaces of the piezoelectric devices
23
smaller than in the other area. Then, the portion of the inorganic insulating material film
51
disposed above the upper surfaces of the piezoelectric devices
23
is removed by lapping followed by polishing, and the procedures for forming the common electrode
22
and the like to be conducted thereafter are the same as those in the aforementioned embodiment. Also when the inorganic insulating material film
51
is formed by the bias sputtering and the upper surface thereof is flattened, the inorganic insulating material film
51
can be efficiently removed.
In addition, although each concave
2
of the head body
1
and each piezoelectric device
23
of the piezoelectric actuator
21
are formed in a rectangular shape in the above-described embodiment, the concave
2
and the piezoelectric device
23
can be formed in an elliptical shape or any other shape.
Moreover, various modification can be made in the invention. For example, the materials and the thicknesses of the common electrode
22
, the piezoelectric devices
23
, the individual electrodes
24
and the like of the piezoelectric actuator
21
can be different from those described in the embodiment (for example, the common electrode
22
can be made from Ni or Ti). Also, the materials and the thicknesses of the pressure chamber part
5
, the ink passage part
6
and the nozzle plate
13
of the head body
1
can be different from those described in the embodiment.
Furthermore, without using the common electrode
22
also working as the vibration plate, a separate vibration plate of, for example, ceramic can be provided with forming the common electrode
22
from, for example, Au. In this case, the common electrode
22
can be obtained by forming an Au film by sputtering on substantially the entire flattened top surface of the supporting substrate
41
, and the pressure chamber part
5
is fixed on the common electrode
22
with a vibration plate of ceramic or the like disposed therebetween.
Claims
- 1. A method of manufacturing an ink-jet head for jetting ink by using a piezoelectric effect of a piezoelectric device, comprising the steps of:forming plural individual electrodes and plural piezoelectric devices stacked in this order on a supporting substrate; flattening a top surface of said supporting substrate including said individual electrodes and said piezoelectric devices by filling a filler in a portion on said supporting substrate where said individual electrodes and said piezoelectric devices are not formed up to substantially the same level as a level of upper surfaces of said piezoelectric devices; forming a common electrode on the entire flattened top surface of said supporting substrate; fixing a pressure chamber part for forming pressure chambers on said common electrode; and removing said supporting substrate after fixing said pressure chamber part on said common electrode.
- 2. The method of manufacturing an ink-jet head of claim 1,wherein said filler is made from an organic resin.
- 3. The method of manufacturing an ink-jet head of claim 1,wherein said filler is made from a photosensitive resin.
- 4. The method of manufacturing an ink-jet head of claim 1,wherein said filler is made from polyimide.
- 5. The method of manufacturing an ink-jet head of claim 1,wherein said filler is made from an inorganic insulating material.
- 6. The method of manufacturing an ink-jet head of claim 5,wherein said step of flattening the top surface of said supporting substrate includes steps of: forming an inorganic insulating material film on the entire top surface of said supporting substrate; and removing, by lapping followed by polishing, a portion of said inorganic insulating material film disposed above the upper surfaces of said piezoelectric devices.
- 7. The method of manufacturing an ink-jet head of claim 6,wherein said step of removing the portion of said inorganic insulating material film disposed above the upper surfaces of said piezoelectric devices includes lapping by using abrasive grains of cerium oxide and polishing by using a non-metal soft material.
- 8. The method of manufacturing an ink-jet head of claim 5,wherein said step of flattening the top surface of said supporting substrate includes steps of: forming an inorganic insulating material film on the entire top surface of said supporting substrate; flattening an upper surface of said inorganic insulating material film by etch back; and removing a portion of said inorganic insulating material film, whose upper surface has been flattened, disposed above the upper surfaces of said piezoelectric devices.
- 9. The method of manufacturing an ink-jet head of claim 5,wherein said step of flattening the top surface of said supporting substrate includes steps of: forming an inorganic insulating material film on the entire top surface of said supporting substrate by bias sputtering; and removing a portion of said inorganic insulating material film disposed above the upper surfaces of said piezoelectric devices.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-325508 |
Nov 1998 |
JP |
|
US Referenced Citations (6)
Number |
Name |
Date |
Kind |
4866460 |
Shiozaki |
Sep 1989 |
A |
5818482 |
Ohta et al. |
Oct 1998 |
A |
5933170 |
Takeuchi et al. |
Aug 1999 |
A |
6158847 |
Usui et al. |
Dec 2000 |
A |
6217158 |
Kanaya et al. |
Apr 2001 |
B1 |
6231169 |
Yazaki et al. |
May 2001 |
B1 |
Foreign Referenced Citations (6)
Number |
Date |
Country |
7-148921 |
Jun 1995 |
JP |
7-156384 |
Jun 1995 |
JP |
7-202284 |
Aug 1995 |
JP |
8-1933 |
Jan 1996 |
JP |
10286953 |
Oct 1998 |
JP |
WO97-03834 |
Feb 1997 |
WO |