1. Field of the Invention
The present invention relates to a circuit board for an ink jet head that ejects ink for printing, a method of manufacturing the circuit board, and an ink jet head using the circuit board.
2. Description of the Related Art
An ink jet printing system has an advantage of low running cost because an ink jet head as a printing means can easily be reduced in size, print a high-resolution image at high speed and even form an image on so-called plain paper that is not given any particular treatment. Other advantages include low noise that is achieved by a non-impact printing system employed by the print head and an ability of the print head to easily perform color printing using multiple color inks.
There are a variety of ejection methods available for the ink jet head to realize the ink jet printing system. Among others, ink jet heads using thermal energy to eject ink, such as those disclosed in U.S. Pat. Nos. 4,723,129 and 4,740,796, generally have a construction in which a plurality of heaters to heat ink to generate a bubble in ink and wires for heater electrical connection are formed in one and the same substrate to fabricate an ink jet head circuit board and in which ink ejection nozzles are formed in the circuit board over their associated heaters. This construction allows for easy and high-precision manufacture, through a process similar to a semiconductor fabrication process, of an ink jet head circuit board incorporating a large number of heaters and wires at high density. This helps to realize higher print resolution and faster printing speed, which in turn contributes to a further reduction in size of the ink jet head and a printing apparatus using it.
In such an ink jet head circuit board, the heater 102 is placed in an onerous environment in which it is subjected to a temperature rise and fall of about 1,000° C. in as little as 0.1-10 microseconds, to mechanical impacts caused by cavitations from repeated creation and collapse of bubbles, and also to erosion. For protection and insulation from ink, the heater 102 is provided with a protective insulation layer 108. This protective insulation layer is required to exhibit good performance in heat resistance, liquid resistance, liquid ingress prevention capability, oxidation stability, insulation, scratch or breakage resistance, and thermal conductivity, and is generally formed of inorganic compounds such as SiO and SiN. Further, because the single protective insulation layer alone may not be able to offer a sufficient protection of the resistor layer, there are cases where a layer of a more mechanically stable metal (e.g., Ta; this layer is generally called an anticavitation layer because of its capability to withstand damages from cavitations) is formed over the protective insulation layer 108 of SiO or SiN (see
The construction of these protective layers on the ink jet head circuit board constitutes an important factor that determines the performance of the ink jet head, such as its power consumption and service life.
In the construction of the conventional protective layer, however, reducing the power consumption and increasing the reliability of the layer and therefore its longevity are contradictory requirements.
For example, as the thickness of a layer between the heater resistor and a surface in contact with ink decreases, a heat conduction improves and the amount of heat escaping to other than ink decreases, reducing power consumption required to create bubbles. That is, the smaller the effective thickness of the protective layer deposited over the heater resistor, the better the energy efficiency. If on the other hand the protective layer is too thin, pin holes may be formed in the protective layer to expose the heater resistor or the protective layer may not be able to fully cover stepped portions of wires. As a result, ink may infiltrate through these insufficiently covered stepped portions, causing corrosions of wires and heater resistors, which in turn results in degraded reliability and shorter life span.
To deal with these problems, Japanese Patent No. 3382424 proposes a construction using first and second protective insulation layer, in which the first protective insulation layer is removed from above heaters to enhance energy efficiency, lower power consumption and increase reliability of the protective layers as a whole thereby prolonging their longevity.
As ink jet printers are becoming more common in recent years, there are growing demands for higher printing resolution, higher image quality and faster printing speed. Of these demands, the high resolution and high image quality may be met, for example, by reducing the amount of ink ejected for one dot (reducing a diameter of an ink droplet when ink is ejected as a droplet). Conventional practice to achieve a reduction in the volume of ink ejected involves changing the shape of the nozzle (to reduce an orifice area) and reducing an area of each heaters.
It is known that although the heater is heated over its entire surface, a bubble is generated only in a central area excluding a peripheral area, the peripheral area ranging from the edge of the heater to several μm inside, because a greater quantity of heat escapes from the periphery. This central area is called an effective bubble generation area.
Thus, if the construction disclosed in Japanese Patent No. 3382424 is adopted, the first protective insulation layer 108a is removed from an area whose boundary is shifted inwardly of the heater 102 from those ends of the electrode wire layer 103 facing the heater. In other words, the first protective insulation layer 108a lies up to a position inside the heater. As a result, the actual bubble generation area further decreases, degrading the heat efficiency. That is, in a present situation calling for reduced areas of the heaters, if the technique disclosed in Japanese Patent No. 3382424 is adopted as is, there is a problem of further degrading the heat efficiency.
It is therefore a main object of this invention to provide an ink jet head circuit board which can reduce the areas of heaters to achieve an improved printing resolution and a higher image quality while at the same time preventing a degradation of heat efficiency, increasing reliability and reducing power consumption.
Another object of this invention is to provide a small, highly reliable ink jet head with nozzles formed at high density.
In a first aspect of the present invention, there is provided an ink jet head circuit board having heaters to generate thermal energy for ejecting ink as they are energized; the ink jet head circuit board comprising:
In a second aspect of the present invention, there is provided a method of manufacturing an ink jet head circuit board, wherein the ink jet head circuit board has heaters to generate thermal energy for ejecting ink as they are energized, the manufacturing method comprising the steps of:
In a third aspect of the present invention, there is provided an ink jet head comprising:
The basic construction of this invention is characterized by forming a protective layer in two layers and by removing one of the two layers from an area above the heater associated with power consumption of the ink jet head to reduce the effective thickness of the protective layer over the heater, thereby improving the heat efficiency and reducing power consumption. Further, because the resistor layer is deposited over the electrode wire layer, the patterning for removing the first protective layer can be done in a wider range than the gap of the electrode wire in which to form the heater. This allows the areas of the heaters to be reduced for higher printing resolution and higher image quality, without reducing the effective bubble generation area.
With this invention, a small, highly reliable ink jet head having nozzles formed at high density can be provided.
The above and other objects, effects, features and advantages of the present invention will become more apparent from the following description of embodiments thereof taken in conjunction with the accompanying drawings.
Now, the present invention will be described in detail by referring to the accompanying drawings.
This embodiment, as in Japanese Patent No. 3382424, employs a basic construction in which an insulating protective layer is formed in two layers (108a, 108b) and in which one of the two layers (first protective insulation layer 108a) is removed from above heater 102, areas associated with power consumption of the ink jet head, to reduce an effective thickness of the protective layer above the heater. Further, in addition to having the above basic construction, this embodiment performs patterning of the electrode wire layer 103 over a heat accumulating layer 106 formed on the substrate 120 and then forms a resistor layer 107 over the electrode wire layer 103.
Referring to
First, as shown in
Next, over the electrode wire layer 103 a resistor layer 107 of, say, TaSiN is deposited, by reactive sputtering, to a thickness of about 50 nm. At this time, immediately before depositing the resistor layer 107, a reverse sputtering operation (radio frequency etching) is executed to etch away several nm from the substrate surface to expose a clean surface. This reverse sputtering is performed in the same apparatus in which the resistor layer is formed, by applying a RF field to the substrate in the presence of Ar gas.
By performing the reverse sputtering (radio frequency etching) as described above, a clean surface are exposed and edges at the ends of the electrode wire layer are removed to form a smoother tapered profile and to improve the coverage of the electrode wire layer. Then, the reactive ion etching (RIE) method using photolithography is performed to form a desired pattern of the resistor layer 107 over the electrode wire layer 103 and the heater 102, as shown in
Next, a SiO layer that forms the first protective insulation layer 108a is deposited by a plasma CVD method to a thickness of about 200 nm. Then, as shown in
Then, a SiN layer that forms the second protective insulation layer 108b is deposited by a plasma CVD method to a thickness of about 200 nm. Further, a Ta layer 110 as an anticavitation and ink resistant layer is sputtered to a thickness of about 230 nm and then dry-etched into a desired shape as shown in
This embodiment, as in Japanese Patent No. 3382424, adopts a basic construction in which the insulating protective layer is formed of two layers and in which one of the two protective insulation layers (first protective insulation layer 108a) is removed from above the heater 102, which is associated with power consumption of the ink jet head, to reduce an effective thickness of the protective layer. In this basic construction, where a step coverage needs to be improved, i.e., on the wire pattern, both of the protective insulation layers are used to make the insulation protective layer thick, thereby reducing power consumption while maintaining reliability.
In addition to the above basic construction, this embodiment patterns the electrode wire layer 103 over the heat accumulating layer 106 formed on the substrate 120 and then deposits the resistor layer 107 over the electrode wire layer 103. This construction produces the following notable effects.
First, since the resistor layer 107 covers the electrode wire layer 103, including those portions outside the stepped portions of the wire ends facing the heater 102, a layer removing patterning can be done so that the first protective insulation layer 108a can be removed not only from the heater but also from outside the wire ends, i.e., from an area wider than the end-to-end gap of the electrode wire layer 103 forming the heater 102. Compared with the conventional construction in which the first protective insulation layer 108a is removed from an area shrunk inwardly of the heater 102 from the wire ends, the construction of this embodiment has an advantage of being able to prevent a reduction in the effective bubble generation area. This construction is particularly effective in reducing the area of the heater to minimize ink ejection volumes and thereby achieve higher resolution and image quality.
Using the process described above, the inventors of this invention manufactured an ink jet head having square heaters (26 μm on one side). For comparison with this head, the inventors also fabricated another ink jet head capable of ejecting ink droplets of virtually equal size by using the fabrication method disclosed in Japanese Patent No. 3382424. The same test images were formed by these two print heads. The comparison found that the ink jet head manufactured by the process of this embodiment consumed nearly 10% less electricity. It was also found that the print head of this embodiment has almost as high durability as the comparison example.
When an ambient temperature during the protective layer forming process exceeds 400° C., the formation of hillocks on the Al and Al alloy generally used in electrode wire layers becomes significant. These hillocks will degrade the coverage of the electrode wire layer and thus the protective layer for the electrode wire layer needs to have a sufficient thickness. However, if a resistor layer is formed on the electrode wires, the formation of hillocks can be suppressed even when the temperature during the protective layer formation exceeds 400° C. because the presence of the resistor layer containing a high-melting point metal can prevent hillock formation.
Further, since, before the resistor layer 107 is formed, a reverse sputtering is performed on the substrate that was patterned with the electrode wire layer 103, spikes or projections formed on the tapered portions during the patterning of the electrode wire layer 103 can be eliminated, thus preventing possible degradations of the coverage.
Further, since the electrode wire layer 103 is formed prior to the formation of the resistor layer 107, the patterning of the electrode wire layer can be done by RIE. This offers the following advantages.
Therefore, forming the resistor layer over the patterned electrode wire layer as described above can improve the coverage of the resistor layer and also allows the stepped portions of the electrode wire layer to be protected reliably by a thinner protective insulation layer 108b and an anticavitation layer.
The first embodiment concerns an ink jet head circuit board in which, as shown in
This construction has an advantage that since the two heaters combined offer a high resistance, a heat loss by other than the heaters (such as wire resistance) can be reduced. Other notable advantages are described below.
When a technique disclosed in Japanese Patent No. 3382424 is used, the first protective insulation layer 108a must be removed from an area smaller than and situated inside each of the heaters 102. So, if the areas of the first protective layer removed from the two heaters differ, the effective bubble generation areas naturally differ. This means the bubble generation conditions at the two heaters (bubble generation timing and size of bubble formed) differ. In this construction, since the two bubbles produced by boiling on the two heaters are used as a driving force to eject ink, the differing bubble generation conditions have great influences on the ink ejection characteristics, degrading the printed quality. If this invention is applied, on the other hand, the patterning to remove the first protective insulation layer 108a can be done on the outside of those end portions of the electrode wire facing each of the heaters. This method does not affect the effective bubble generation areas which are therefore equal at the two heaters. This means that the bubble generation conditions can be made equal among individual nozzles. This invention therefore is free from the problems experienced with the conventional technique.
In the ink jet heads using thermal energy for ink ejection, there are growing demands for increasing the number of nozzles for further miniaturization and higher integration density of circuit board in order to meet the requirements of higher resolution, higher image quality and faster speed. In response to this trend, the number of heaters provided in the circuit board is also increasing and the associated technologies to fabricate the circuit board in small size and at high integration density are being called for. This in turn calls for improved heat efficiency and reduced power consumption. From the standpoint of power saving, it is strongly desired that the resistance of the electrode wires connected to the heater resistors be reduced. The resistance reduction of electrode wire is normally achieved by increasing the width of the electrode wire formed on the substrate. However, as the number of energy generation portions formed on the substrate becomes extremely large for the reasons described above, enough space to allow for increased widths of electrode wires cannot be secured without increasing the size of the circuit board.
This is explained by referring to
In the case of
Thus, when it is attempted to increase the number of heaters to achieve a higher resolution and quality of printed images and a faster printing speed, the size of the circuit board in X direction increases even more significantly, pushing up the cost and limiting the number of heaters that can be integrated. As for the wire portions in direct vicinity of the heaters, increasing the width in Y direction to reduce the wire resistance can impose limitations on the intervals of heaters and the high density arrangement of nozzles.
To deal with this problem, the inventors of this invention studied a construction in which a plurality of electrode wires are stacked through protective insulation layers to prevent an increase in size of the substrate or circuit board and to ensure a high-density integration of the heaters.
In the construction that uses a plurality of layers for the electrode wires to reduce or equalize wire resistances, as shown in
In addition to the basic construction of this invention, the third embodiment, therefore, employs a construction in which the electrode wires are formed of a plurality of layers to realize a high-density integration of heaters designed to prevent an increase in the size of the circuit board, reduce the wire resistance and realize a higher resolution printing, higher image quality and faster printing speed. The construction of the third embodiment is also intended to increase heat efficiency and reduce power consumption.
In this construction, over the resistor layer 107 covering the underlying electrode wire layer 103, an electrode wire layer 104 is formed through the first protective insulation layer 108. These electrode wire layers (the lower layer is referred to as a first electrode wire layer and the upper layer as a second electrode wire layer) are interconnected via through-holes not shown. Over the second electrode wire layer 104 and the heater 102 is formed a second protective insulation layer 109 which protects and insulates them from ink. An anticavitation layer 110 is formed at a location corresponding to the heater 102. The first protective insulation layer 108 is removed, as with the first protective insulation layer 108a described above, to produce the similar effect to that of the first embodiment. Because the electrode wires are formed in two or more layers, the resistances of wires leading to the heaters are reduced without increasing the area of the electrode wires on the circuit board and the wire resistances can be equalized among the heaters.
Referring to
First, in the same process as that shown in
Next as shown in
Then, as shown in
While in the embodiment described above, the electrode wires for the heater 102 are constructed in two layers, the same philosophy can also be applied to constructions in which three or more layers of electrode wires are provided, for example, by stacking a third electrode wire layer and a third protective layer over the second protective insulation layer 109.
Now, an ink jet head using the circuit board of one of the above embodiments will be explained.
This ink jet head has a circuit board 1 incorporating two parallel columns of heaters 102 arrayed at a predetermined pitch. Here, two circuit boards manufactured by the above process may be combined so that their edge portions where the heaters 102 are arrayed are opposed to each other, thus forming the two parallel columns of heaters 102. Or the above manufacturing process may be performed on a single circuit board to form two parallel columns of heaters in the board.
The circuit board 1 is joined with an orifice plate 4 to form an ink jet head 410. The orifice plate has formed therein ink ejection openings or nozzles 5 corresponding to the heaters 102, a liquid chamber (not shown) to store ink introduced from outside, ink supply ports 9 matched one-to-one to the nozzles 5 to supply ink from the liquid chamber to the nozzles, and a path communicating with the nozzles 5 and the supply ports 9.
Although
(Ink Jet Head Cartridge and Printing Apparatus)
This ink jet head can be mounted not only on such office equipment as printers, copying machines, facsimiles with a communication system and word processors with a printer unit but also on industrial recording apparatus used in combination with a variety of processing devices. The use of this ink jet head enables printing on a variety of print media, including paper, thread, fiber, cloth, leather, metal, plastic, glass, wood and ceramics. In this specification, a word “print” signifies committing to print media not only significant images such as characters and figures but also nonsignificant images such as patterns.
In the following, a cartridge comprising the above ink jet head combined with an ink tank and an ink jet printing apparatus using this unit will be explained.
In the ink jet printing apparatus shown, a carriage 500 is secured to an endless belt 501 and is movable along a guide shaft 502. The endless belt 501 is wound around pulleys 503, 503 one of which is coupled to a drive shaft of a carriage drive motor 504. Thus, as the motor 504 rotates, the carriage 500 is reciprocated along the guide shaft 502 in a main scan direction (indicated by arrow A).
The ink jet head unit of a cartridge type is mounted on the carriage 500 in such a manner that the ink ejection nozzles 5 of the head 410 oppose paper P as a print medium and that the direction of the nozzle column agrees with other than the main scan direction (e.g., a subscan direction in which the paper P is fed). A combination of the ink jet head 410 and an ink tank 404 can be provided in numbers that match the number of ink colors used. In the example shown, four combinations are provided to match four colors (e.g., black, yellow, magenta and cyan).
Further, in the apparatus shown there is provided a linear encoder 506 to detect an instantaneous position of the carriage in the main scan direction. One of two constitutional elements of the linear encoder 506 is a linear scale 507 which extends in the direction in which the carriage 500 moves. The linear scale 507 has slits formed at predetermined, equal intervals. The other constitutional element of the linear encoder 506 includes a slit detection system 508 having a light emitter and a light sensor, and a signal processing circuit, both provided on the carriage 500. Thus, as the carriage 500 moves, the linear encoder 506 outputs a signal for defining an ink ejection timing and carriage position information.
The paper P as a print medium is intermittently fed in a direction of arrow B perpendicular to the scan direction of the carriage 500. The paper is supported by a pair of roller units 509, 510 on an upstream side of the paper feed direction and a pair of roller units 511, 512 on a downstream side so as to apply a constant tension to the paper to form a planar surface for the ink jet head 410 as it is transported. The drive force for the roller units is provided by a paper transport motor not shown.
In the above construction, the entire paper is printed by repetitively alternating the printing operation of the ink jet head 410 as the carriage 500 scans and the paper feed operation, each printing operation covering a band of area whose width or height corresponds to a length of the nozzle column in the head.
The carriage 500 stops at a home position at the start of a printing operation and, if so required, during the printing operation. At this home position, a capping member 513 is provided which caps a face of each ink jet head 410 formed with the nozzles (nozzle face). The capping member 513 is connected with a suction-based recovery means (not shown) which forcibly sucks out ink from the nozzles to prevent nozzle clogging.
The present invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspect, and it is the intention, therefore, in the apparent claims to cover all such changes.
The present invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspect, and it is the intention, therefore, in the apparent claims to cover all such changes.
This application claims priority from Japanese Patent Application No. 2004-236607 filed Aug. 16, 2004, which is hereby incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
236607/2004 | Aug 2004 | JP | national |