Claims
- 1. An ink jet printing apparatus for forming a printed image on a print medium based on image data, comprising:a printer controller for receiving the image data and for generating print signals based on the image data; and an ink jet print head having a plurality of ink ejection nozzles in a nozzle array and a corresponding number of ink heating elements, the print head for receiving the print signals and selectively activating the heating elements based on the print signals to cause ink to be ejected from the corresponding nozzles and onto the print medium as the print head scans across the print medium in a scan direction, thereby forming the image on the print medium, the nozzle array comprising: a first substantially columnar array of nozzles being aligned with a print medium advance direction which is perpendicular to the scan direction, the first array comprising: a first upper subarray pair comprising: a first upper left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings; and a first upper right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the first upper right subarray being equivalent to the nozzle-to-nozzle spacing in the first upper left subarray, the first upper right subarray being offset from the first upper left subarray in the scan direction by a first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing; and a second substantially columnar array of nozzles being aligned with the print medium advance direction, the second array being offset from the first array in the scan direction by a second horizontal spacing and in the print medium advance direction by one-fourth of the nozzle-to-nozzle spacing in the first upper subarrays, the second array comprising: a second upper subarray pair comprising: a second upper left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacings in the second upper left subarray being equivalent to the nozzle-to-nozzle spacing in the first upper left subarray; and a second upper right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the second upper right subarray being equivalent to the nozzle-to-nozzle spacing in the first upper right subarray, the second upper right subarray being offset from the second upper left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing.
- 2. The apparatus of claim 1 further comprising:the first substantially columnar array of nozzles further comprising: a first lower subarray pair comprising: a first lower left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the first lower left subarray being substantially aligned with the first upper left subarray in the scan direction and offset from the first upper left subarray in the print medium advance direction by n times the nozzle-to-nozzle spacing; and a first lower right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the first lower right subarray being equivalent to the nozzle-to-nozzle spacing in the first lower left subarray, the first lower right subarray being offset from the first lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing; and the second substantially columnar array of nozzles further comprising: a second lower subarray pair comprising: a second lower left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacings in the second lower left subarray being equivalent to the nozzle-to-nozzle spacing in the first lower left subarray, the second lower left subarray being substantially aligned with the second upper left subarray in the scan direction and offset from the second upper left subarray in the print medium advance direction by n times the nozzle-to-nozzle spacing; and a second lower right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the second lower right subarray being equivalent to the nozzle-to-nozzle spacing in the first lower right subarray, the second lower right subarray being offset from the second lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing.
- 3. The apparatus of claim 2 further comprising:the printer controller operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the first lower left subarray to form fifth dots in the first column on the print medium, the spacing between the fifth dots being equivalent to the nozzle-to-nozzle spacing in the first lower left subarray; the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the first lower right subarray to form sixth dots in the first column that are collinear and interdigitated with the fifth dots, the spacing between the sixth dots being equivalent to the nozzle-to-nozzle spacing in the first lower right subarray; the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the second lower left subarray to form seventh dots in the second column on the print medium, the spacing between the seventh dots being equivalent to the nozzle-to-nozzle spacing in the second lower left subarray; and the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the second lower right subarray to form eighth dots in the second column that are collinear and interdigitated with the seventh dots, the spacing between the eighth dots being equivalent to the nozzle-to-nozzle spacing in the second lower right subarray, the seventh and eighth dots being offset in the print medium advance direction from the fifth and sixth dots by one-quarter of the nozzle-to-nozzle spacing in the subarrays, and being offset in the scan direction from the fifth and sixth dots by at least one-quarter of the nozzle-to-nozzle spacing in the subarrays.
- 4. The apparatus of claim 2 wherein the nozzle-to-nozzle spacing in the first lower left, first lower right, second lower left, and second lower right subarrays is {fraction (1/150)} inch, the second lower left subarray is offset from the first lower left subarray in the print medium advance direction by {fraction (1/600)} inch, and the second lower right subarray is offset from the first lower right subarray in the print medium advance direction by {fraction (1/600)} inch.
- 5. The apparatus of claim 2 wherein the first upper subarray pair and the second upper subarray pair together comprise a power group.
- 6. The apparatus of claim 2 wherein the first lower subarray pair and the second lower subarray pair together comprise a power group.
- 7. The apparatus of claim 2 further comprising:the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the first upper left and the first lower left subarrays to form the first and fifth dots during a first period of time; and the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the first upper right and the first lower right subarrays to form the second and sixth dots during a second period of time which is sequential with the first period of time.
- 8. The apparatus of claim 7 wherein the first and second periods of time each endure for approximately 41.65 μs.
- 9. The apparatus of claim 2 further comprising:the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the second upper left and the second lower left subarrays to form the third and seventh dots during a third period of time; and the printer controller further operable to generate the print signals to activate the heating elements to cause ink to be ejected from the nozzles in the second upper right and the second lower right subarrays to form the fourth and eighth dots during a fourth period of time which is sequential with the first period of time.
- 10. The apparatus of claim 9 wherein the third and fourth periods of time each endure for approximately 41.65 μs.
- 11. A method for printing dots on a print medium by ejecting ink droplets from nozzles on a print head as the print head scans across the print medium in a scan direction, thereby forming the image on the print medium, where the print head hasa first upper left subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in a print medium advance direction which is orthogonal to the scan direction, a first upper right subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the first upper right subarray being offset from the first upper left subarray in the scan direction by a first horizontal spacing and in the print medium advance direction by one-half the nozzle-to-nozzle spacing, a second upper left subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the second upper left subarray being offset from the first upper left subarray in the scan direction by a second horizontal spacing and in the print medium advance direction by one-quarter of the nozzle-to-nozzle spacing, a second upper right subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the second upper right subarray being offset from the second upper left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing, a first lower left subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the first lower left subarray being substantially aligned with the first upper left subarray in the scan direction and being offset from the first upper left subarray in the print medium advance direction by n times the nozzle-to-nozzle spacing, a first lower right subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the first lower right subarray being offset from the first lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half the nozzle-to-nozzle spacing, a second lower left subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the second lower left subarray being offset from the first lower left subarray in the scan direction by the second horizontal spacing and in the print medium advance direction by one-quarter of the nozzle-to-nozzle spacing, and a second lower right subarray of nozzles comprising n number of nozzles having equal nozzle-to-nozzle spacings that are substantially aligned in the print medium advance direction, the second lower right subarray being offset from the second lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance-direction by one-half of the nozzle-to-nozzle spacing, the method comprising the steps of: (a) during a first period of time, ejecting ink from the first upper left subarray of nozzles to form first dots in a first column on the print medium, where spacing between the first dots is equivalent to spacings between nozzles in the first upper left subarray; (b) during the first period of time, ejecting ink from the first lower left subarray of nozzles to form fifth dots in the first column on the print medium, where spacing between the fifth dots is equivalent to spacings between nozzles in the first lower left subarray; (c) during a second period of time, ejecting ink from the first upper right subarray of nozzles to form second dots that are collinear and interdigitated with the first dots in the first column on the print medium, where spacing between the second dots is equivalent to spacings between nozzles in the first upper right subarray; (d) during the second period of time, ejecting ink from the first lower right subarray of nozzles to form sixth dots that are collinear and interdigitated with the fifth dots in the first column on the print medium, where spacing between the sixth dots is equivalent to spacings between nozzles in the first lower right subarray; (e) during a third period of time, ejecting ink from the second upper left subarray of nozzles to form third dots in a second column on the print medium, where spacing between the third dots is equivalent to spacings between nozzles in the second upper left subarray; (f) during the third period of time, ejecting ink from the second lower left subarray of nozzles to form seventh dots in the second column on the print medium, where spacing between the seventh dots is equivalent to spacings between nozzles in the second lower left subarray; (g) during a fourth period of time, ejecting ink from the second upper right subarray of nozzles to form fourth dots that are collinear and interdigitated with the third dots in the second column on the print medium, where spacing between the fourth dots is equivalent to spacings between nozzles in the second upper right subarray; and (h) during the fourth period of time, ejecting ink from the second lower right subarray of nozzles to form eighth dots that are collinear and interdigitated with the seventh dots in the second column on the print medium, where spacing between the eighth dots is equivalent to spacings between nozzles in the second lower right subarray.
- 12. An ink jet printing apparatus for forming a printed image on a print medium based on image data, comprising:a printer controller for receiving the image data and for generating print signals based on the image data; and an ink jet print head having a plurality of ink ejection nozzles in a nozzle array and a corresponding number of ink heating elements, the print head for receiving the print signals and selectively activating the heating elements based on the print signals to cause ink to be ejected from the corresponding nozzles and onto the print medium as the print head scans across the print medium in a scan direction, thereby forming the image on the print medium, the nozzle array comprising: a first substantially columnar array of nozzles being aligned with a print medium advance direction which is perpendicular to the scan direction, the first array comprising: a first upper subarray pair comprising: a first upper left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings; and a first upper right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the first upper right subarray being equivalent to the nozzle-to-nozzle spacing in the first upper left subarray, the first upper right subarray being offset from the first upper left subarray in the scan direction by a first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing; and a first lower subarray pair comprising: a first lower left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the first lower left subarray being substantially aligned with the first upper left subarray in the scan direction and offset from the first upper left subarray in the print medium advance direction by n times the nozzle-to-nozzle spacing; and a first lower right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the first lower right subarray being equivalent to the nozzle-to-nozzle spacing in the first lower left subarray, the first lower right subarray being offset from the first lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing; and a second substantially columnar array of nozzles being aligned with the print medium advance direction, the second array being offset from the first array in the scan direction by a second horizontal spacing and in the print medium advance direction by one-fourth of the nozzle-to-nozzle spacing in the first upper subarrays, the second array comprising: a second upper subarray pair comprising: a second upper left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacings in the second upper left subarray being equivalent to the nozzle-to-nozzle spacing in the first upper left subarray, and a second upper right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the second upper right subarray being equivalent to the nozzle-to-nozzle spacing in the first upper right subarray, the second upper right subarray being offset from the second upper left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing, and a second lower subarray pair comprising: a second lower left subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacings in the second lower left subarray being equivalent to the nozzle-to-nozzle spacing in the first lower left subarray, the second lower left subarray being substantially aligned with the second upper left subarray in the scan direction and offset from the second upper left subarray in the print medium advance direction by n times the nozzle-to-nozzle spacing; and a second lower right subarray of nozzles comprising a substantially linear arrangement of n number of nozzles having equal nozzle-to-nozzle spacings, the nozzle-to-nozzle spacing in the second lower right subarray being equivalent to the nozzle-to-nozzle spacing in the first lower right subarray, the second lower right subarray being offset from the second lower left subarray in the scan direction by the first horizontal spacing and in the print medium advance direction by one-half of the nozzle-to-nozzle spacing, wherein the first upper subarray pair and the second upper subarray pair together comprise a first power group, and wherein the first lower subarray pair and the second lower subarray pair together comprise a second power group.
Parent Case Info
This is a division of Ser. No. 09/499,008, filed Feb. 4, 2000.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
5349375 |
Bolash et al. |
Sep 1994 |
A |
5734394 |
Hackleman |
Mar 1998 |
A |
6024436 |
Katakura et al. |
Feb 2000 |
A |
6097409 |
Murakami |
Aug 2000 |
A |
Foreign Referenced Citations (1)
Number |
Date |
Country |
09-309201 |
Dec 1997 |
JP |