1. Field of the Invention
The invention relates to an ink-jet print head and a method for fabricating the same, and more particularly to an ink-jet print head with a chamber sidewall heating mechanism for forming bubbles within a chamber to eject an ink drop.
2. Description of the Related Art
Recently, ink-jet printers have been gradually popularized, the cost of the ink-jet printer is gradually decreased, and the printing effect is gradually enhanced. On the other hand, since the cost of the color laser printer is still high, the ink-jet printer plays a more important role in the color printing market.
The core technology of the ink-jet printer mainly resides in that the property of the ink-jet print head, which strongly relates to the printing quality. The ink-jet print heads may be mainly divided into a thermal bubble type and a piezoelectric type according to the principle of ejection. The invention aims at the thermal bubble type ink-jet print head. The main principle of the thermal bubble type ink-jet print head is to utilize at least a heater to evaporate the ink to generate bubbles. Sequentially, the pressure of the bubble ejects the ink drop onto the paper so as to form the desired image.
In the prior art, all the heater structures in the thermal bubble type ink-jet print heads reside on either bottom or top, in parallel to the silicon substrate surface, of the chamber.
In this prior art, there are several problems needed to be overcome. First, the generally adopted heater material (TaAl) is incompatible with the commercial IC processes, that means the heater fabrication process can not be finished in the commercial IC foundry and extra-cost is increased to define the heater process in a special foundry for this purpose. Furthermore, the micro-channel is manufactured using the thick photoresist technology, which is also incompatible with the commercial IC fabricating processes, and the resolution of the thick photoresist is poor. The geometric shape of the micro-channel relates to the refill of ink and the operation property. Typically, the micro-channel has a very narrow opening connected to the chamber and has a V-shape-like fan-out connected to the main channel (not shown), in which the fabrication tolerance must be strictly controlled. Otherwise, the poor ink-jet printing property may be caused. Besides, the heater residing on the bottom surface of the chamber has the problem that the generated heat may be conducted into the silicon substrate due to the large contact surface area between the heater and the substrate. To solve that problem, a thick thermal isolation layer is generally placed there between the heater and the silicon substrate. This would cause another problem of cross talk between two heaters when the heaters density is increased (the printer resolution increases).
It is an object of the invention to provide an ink-jet print head with a chamber sidewall heating mechanism and a method for fabricating the same.
Another object of the invention is to provide an ink-jet print head compatible with the IC fabricating processes and a method for fabricating the same.
Still another object of the invention is to provide an ink-jet print head, which has a chamber sidewall heating mechanism, a simple design of V-shaped micro-channels withstanding high tolerance of fabrication, and a simple method for fabricating the same.
To achieve the above-mentioned objects, the invention provides an ink-jet print head with a chamber sidewall heating mechanism. The ink-jet print head includes a substrate, an insulation layer on the substrate, a main channel penetrating through the substrate, a plurality of V-shaped micro-channels each having a diverging end linking with the main channel and a converging end linking with an ink chamber on the insulation layer, and a nozzle plate with a plurality of orifices formed on the ink chamber. The V-shaped micro-channels are perpendicular to the main channel and parallel to and arranged on the insulation layer. Each chamber sidewall includes at least a heater structure to evaporate ink in the chamber to form a bubble, which ejects the ink from the chamber via the orifice.
The invention also provides a method for fabricating an ink-jet print head with a chamber sidewall heating mechanism. The method includes majorly the steps of: providing a SOI (Silicon on insulator) wafer with a sandwich structure, the SOI wafer including, from bottom to top, a first silicon layer, an insulation layer and a second silicon layer; patterning the second silicon layer so as to partially expose the insulation layer and thus forming a plurality of heating units on the insulation layer, wherein each heating unit includes an ink chamber and a V-shaped micro-channel corresponding thereto, and a heater structure formed on the chamber sidewall, each of the V-shaped micro-channels has a converging end and a diverging end, and the converging ends link with the ink chambers; partially etching the exposed insulation layer and the first silicon layer to form a main channel penetrating through the double sides of the SOI wafer, wherein the main channel links with the diverging ends of the V-shaped micro channels; and forming a nozzle plate, which has a plurality of orifices, on the ink chambers such that each of the orifices is above each of the ink chambers and the ink may be ejected from the orifices.
According to the above-mentioned structure and method, the designs of the heaters and the V-shaped micro-channels can be effectively simplified so that the fabricating processes can be simplified and the fabricating cost may be reduced. In addition, the thermal loss may be reduced during the ink ejecting process so that the consumed power of the ink-jet print head may be reduced.
Each heating unit 30 formed by etching the second silicon layer 73 is composite of single crystal silicon, which includes a first silicon structure 34, a second silicon structure 35, a third silicon structure 36, a first metal wire 39, a second metal wire 42 and a third metal wire 45. The geometric shapes of the first silicon structure 34 and the second silicon structure 35 are constructed of the V-shaped micro-channel 31. The geometric shape of the third silicon structure 36 is constructed of the shape of the ink chamber 32 and the position of the heater structure 33. In this embodiment, the position of the heater structure 33 is located at the connection portion between the ink chamber 32 and the V-shaped micro-channel, and the heater structure 33 has a first heating resistor 37 connected to the first silicon structure 34, and a second heating resistor 38 connected to the second silicon structure 35. The first metal wire 39 is formed above the first silicon structure 34 and has a first end 40 electrically connected to a first voltage V1, and a second end 41 adjacent to the first heating resistor 37. The second metal wire 42 is formed above the second silicon structure 35 and has a first end 43 electrically connected to a second voltage V2, and a second end 44 adjacent to the second heating resistor 38. The third metal wire 45 is formed above the third silicon structure 36 and has a first end 46 adjacent to the first heating resistor 37 and a second end 47 adjacent to the second heating resistor 38. The first and second heating resistors may be made of the low-resistance material of the second silicon layer 73, or the low-resistance silicon material formed by high-temperature diffusing, ion implanting or impurity doping in the second silicon layer 73, or other conductive materials.
As shown in the drawing, the widths of the third silicon structure 36 at the first heating resistor 37 and the second heating resistor 38 are smaller than other in order to reduce the solid thermal conductivity and enhance the heating efficiency. When a voltage difference exists between the first voltage V1 and the second voltage V2, the current may flow from the first metal wire 39 to the third metal wire 45 through the first heating resistor 37, and then to the second metal wire 42 through the second heating resistor 38. Because the resistances of the first to third metal wires are far smaller than those of the first and second heating resistors, the electrical energy is mainly converted into the thermal energy at the first and second heating resistors, and the thermal energy heats the ink through the heating sidewall 51 of the first heating resistor 37 and the heating sidewall 52 of the second heating resistor 38.
Thus, the heater structure 33 of this embodiment includes two heating sidewalls 51 and 52 respectively located at the first heating resistor 37 and the second heating resistor 38. The third silicon structure 36 is substantially a circular ring. Although the ejecting direction of the ink in this embodiment is toward the vertical direction, the ejecting direction of the ink also may be toward the horizontal direction. At this time, only an orifice in parallel to the insulation layer has to be formed on the third silicon structure 36 followed by sealing the ink chamber 32. Meanwhile, the number and position of the heaters are not restricted in the invention. Also, the same heater structure also may be disposed in correspondence with the diameter direction of the ink chamber 32, and the ink ejecting operation may be completed by simultaneously pressing the ink at two directions of the diameter.
The operation condition of the ink-jet print head of
First, as shown in
Consequently, the first heating resistor 37 and the second heating resistor 38 are designed to form a virtual valve by the bubble 90 for isolating the ink in the V-shaped micro-channel 31 from entering the ink chamber 32. Hence, the design of the V-shaped micro-channel 31 becomes very simple without worrying about the fabricating error because the virtual valve function for isolating the channel input when the bubble 90 is formed can compensate for the above-mentioned problems. However, one of ordinary skill in the art may easily understand that the function of the invention may be achieved as long as the heater structure 33 is designed such that a bubble 90 may be formed to isolate the ink of the V-shaped micro-channel 31 from the ink of the ink chamber 32.
In order to effectively reduce the heat loss of the heater structure 33, the heat transfer medium between the heat isolation holes 48 in this embodiment is air or even no medium (vacuum) in addition to the increase in thickness of the insulation layer. Thus, the heat loss of the heater structure 33 in the horizontal direction may be effectively reduced. As for the heat loss in the vertical direction, it may be effectively reduced by decreasing the contact areas between the heating resistors and the insulation layer 20 (
The fabricating processes of the ink-jet print head of the invention will be illustrated with reference to FIGS. 2 to 4.
The SOI wafer 70 of the invention has a sandwich structure composed of a first silicon layer 71, an insulation layer 72 and a second silicon layer 73 stacked together. The first silicon layer 71 corresponds to the substrate 10 of
Then, as shown in
The shapes of the first silicon structure 34, the second silicon structure 35 and the third silicon structure 36 of the heating unit 30 are formed and defined in the same fabricating process, such that the second silicon structure 35 together with the first silicon structure 34 define the V-shaped micro-channel 31, the third silicon structure 36 has the first heating resistor 37 connected to the first silicon structure 34 and the second heating resistor 38 connected to the second silicon structure 35, and the third silicon structure 36 defines the ink chamber 32.
Alternatively, in the same fabricating process of forming the silicon structure, a plurality of heat isolation holes 48 (
In addition, the first metal wire 39 is formed on the first silicon structure 34, the second metal wire 42 is formed on the second silicon structure 35, and the third metal wire 45 is formed on the third silicon structure 36 except for the first heating resistor 37 and the second heating resistor 38.
Then, the nozzle plate 60 formed with the orifice 61 is placed over the heating unit 30 such that the orifice corresponds to the ink chamber and the ink is ejected from the orifice.
The ink-jet print head of the invention utilizes the chamber sidewall of silicon material to define the heater structure thereon, and thus has a chamber sidewall heating mechanism, which is significantly different from the existing bottom or roof heating mechanism described in prior arts. According to this chamber sidewall heating mechanism, the heat loss may be effectively reduced. This is because that the heat loss in the vertical direction is reduced with the reduction of the cross-sectional area and the heat loss in the horizontal direction is effectively reduced by using the air or vacuum as the heat isolation medium. As for the sidewalls of the first heating resistor 37 and the second heating resistor 38 that are not in contact with the ink, the heat loss may be effectively reduced because they are not in contact with any solid medium in the horizontal direction.
In the case of effectively reducing the heat loss, the power consumed by the ink-jet print head may be effectively reduced and no surplus will affect the operations of other electrical components. In addition, because the ink-jet print head of the invention may be formed using the standard SOI wafer and the ink-heating structure may be formed using very simple and mature fabricating processes, the fabricating processes may be effectively simplified and the fabricating cost may be reduced.
Therefore, the feature of the invention is to use the SOI wafer as the basic material and the silicon deep etching technology such as the ICP (Inductively Coupled Plasma) etching technology. The heater and the V-shaped micro-channel structure which is composite of single crystal silicon are fabricated in the same fabrication step. The resolution of the ICP technology is higher than the thick photoresist technology, and the chamber sidewall heater makes it possible to form an isolation bubble as a virtual valve in the inlet of the V-shaped micro-channel. The bubble can isolate the ink in the ink chamber from the ink outside the ink chamber, prevent the ink in the chamber from flowing back to the V-shaped micro-channel, and thus prevent the heating efficiency from being reduced during the heating process. Hence, the design of the V-shaped micro-channel becomes very simple in this invention without worrying about the fabricating tolerance. Consequently, the ink refilling operation becomes simpler and faster. Meanwhile, an air gap exists between two adjacent heaters, so the cross talk problem is minimized. Meanwhile, it is easy to integrate the associated driving ICs and heaters and the definition of the V-shaped micro-channels and chambers directly on the SOI wafer in the commercial IC foundry, and the ICP process is completely compatible with the IC foundry and is free from the problem of material contamination. Thus, the ink-jet print head of the invention may be manufactured by the commercial IC foundry, which is advantageous to the cost reduction.
In order to implement this invention, the inventors have fabricated some ink-jet print heads and taken some pictures as shown in FIGS. 11 to 12.
While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications.
Number | Date | Country | Kind |
---|---|---|---|
092119508 | Jul 2003 | TW | national |