[Not Applicable]
[Not Applicable]
[Not Applicable]
The present invention relates to ink jet printing, and in particular to an improved deflection electrode assembly for a continuous ink jet printer.
Continuous ink jet printers are well known in the field of industrial coding and marking, and are widely used for printing information, such as expiry dates, on various types of substrate passing the printer on production lines. As shown in
Better control over drop placement, and hence print quality, can be achieved by maintaining the highest possible deflection field strength at all times. In this respect, it is known to bend or angle the positive (high voltage) deflection electrode to generally conform the deflection electrode to the path of the charged drops. The strength of the deflection field can also be increased by moving the deflection electrodes closer together. However, moving the electrodes closer together increases the tendency for arcing between the deflection electrodes.
Control over drop placement can also be improved by minimizing the aerodynamic effects and the drop-to-drop charge interaction effects. Both are reduced by shortening the flight distance between the charging electrode and the substrate. However, moving deflection electrodes too close to the charging electrode increases the likelihood of arcing between the high voltage deflection electrode and the charging electrode.
In order to reduce arcing, it is known to provide insulating material on the high voltage deflection electrode, and in some instances additionally on the low voltage deflection electrode. Certain inks, including pigmented inks, have a tendency to create micro-satellite drops. It has been found that the micro-satellite drops tend to accumulate on the insulating material. The accumulation of the charged micro-satellite drops on the insulating material decreases the strength of the deflection field, thereby decreasing drop deflection and print quality. When this occurs, the printer must be shut down so the ink build up can be removed from the insulating material. As will be appreciated, the need to shut down the printer is highly undesirable in many applications.
According to certain aspects of an embodiment of the present invention, a deflection electrode assembly is provided for use in a continuous ink jet printer of the type which projects a stream of ink drops toward a substrate and controls placement of the ink drops on the substrate by selectively charging the individual ink drops and passing the charged ink drops through an electric field created by the deflection electrode assembly. The deflection electrode assembly includes a pair of deflection electrodes positioned on opposite sides of the ink jet stream. A dielectric insulating material is disposed on at least one of the deflection electrodes to reduce arcing between the electrodes. For example, when the drops are negatively charged, the electrodes can include a high voltage electrode having a high, positive potential and low voltage electrode which is grounded. In this configuration, the insulating material is disposed on at least the high voltage electrode. The insulating material includes a longitudinal opening which exposes the deflection electrode along the path of the ink drop stream. As a result, the micro-satellite drops accumulate on the deflection electrode, as opposed to on the insulating material. The micro-satellite drops discharge, i.e., lose their electrical charge, when they impact the deflection electrode. Because the accumulated micro-satellite drops discharge on the deflection electrode, their deleterious effect on the strength of the deflection field is significantly reduced. The insulating member extends inwardly and underlies the inner face of the deflection electrode along at least its front and side edges.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the preferred embodiments of the present invention, the drawings depict embodiments that are presently preferred. It should be understood, however, that the present invention is not limited to the arrangements and instrumentality shown in the attached drawings.
Uncharged or slightly charged drops 30 pass substantially undeflected to a catcher 32, and are recycled to ink source 16. Charged drops 34 are projected toward a substrate 36 and are deflected so as to have a trajectory striking the substrate as the substrate moves past the print head in the horizontal direction. The level of charge applied to the drop controls its vertical displacement/position on the substrate 36.
The charge to be applied to a drop is determined by a controller 38, which may be implemented by a device such as a general purpose processor, microcontroller, or embedded controller having appropriate input and output circuitry, as is well known in the art. The controller 38 operates under general program control of the instructions stored in an associated memory. The controller 38 is programmed to deliver control signals to the charge tunnel 22 to control the charges applied to the individual drops as they pass through the charge tunnel 22. The operation of such ink jet printers is well known in the art and, hence, will not be explained in greater detail herein.
Referring to
The low voltage deflection electrode 44 includes a generally planar deflection plate 48 positioned below the drop stream 17, at a location between the charging tunnel 22 and the substrate 36. The low voltage deflection electrode 44 may also include a mounting portion, not shown, for securing the low voltage deflection electrode 44 to the frame (not shown) of the printer 10 or another mounting structure.
The high voltage deflection electrode 42 includes a deflection plate 50 and a mounting bracket 52. The mounting bracket 52 presents mounting apertures 54 so that the electrode 42 can be secured to the frame 53 of the printer 10 or another mounting structure by fasteners (not shown). (See FIG. 3). Insulating material 55 is interposed between the bracket 52 and the frame 53 to prevent grounding of the high voltage deflection electrode 42.
The deflection plate 50 of the high voltage deflection electrode 42 extends along the ink drop stream 17 at a location opposite the deflection plate 48 of the low voltage deflection electrode 44. The deflection plate 50 includes a front portion 56 and a rear portion 58. The front portion 56 extends generally parallel to the deflection plate 48 of the low voltage deflection electrode 44, whereas the rear portion 58 angles upwardly, as shown in
In the illustrated embodiment, the ink drops are negatively charged, the high voltage deflection electrode 42 is maintained at a relatively high positive voltage potential, and the low voltage deflection electrode 44 is grounded. As a result, the negatively charged drops are deflected towards the high voltage deflection electrode 42 as they pass between the electrodes 42, 44.
Insulating material is disposed on at least one of the deflection electrodes 42, 44. In the above arrangement, the insulating material is disposed on at least the high voltage electrode 42. It will be appreciated, however, that the insulating material can be positioned on either or both of the deflection electrodes 42, 44, depending on the polarity of the electrodes 42, 44 and the polarity of the charged drops. For example, negatively charged drops can be passed between a grounded deflection electrode and a deflection electrode with a high negative voltage potential. In such a configuration, the drops are pushed (repelled) away from the negative electrode and towards the ground electrode. In such a configuration, the insulating material is disposed on at least the high voltage (negative) electrode. Alternatively, positively charged drops can be passed between a deflection electrode with a high positive voltage potential and a grounded electrode. In this configuration, the positively charged drops are repelled from the high voltage (positive) electrode. In this configuration, the insulating material is disposed on at least the high voltage (positive) electrode. As still another alternative, positively charged drops can be passed between a grounded deflection electrode and an electrode maintained at a high negative voltage potential. In this configuration the insulating material is disposed on at least the high voltage (negative) deflection electrode.
In the illustrated embodiment, the insulating material is in the form of an insulating member 46 that is mounted on the high voltage electrode 42. Alternatively, the insulating material could be molded or sprayed onto the deflection electrode 42. The insulating member 46 is mounted on the front portion 56 of the high voltage deflection plate 50. As can be seen in
The insulating member 46 includes a longitudinal opening or void 66, which exposes the deflection plate 50 along the ink drop stream 17. In the illustrated embodiment, the longitudinal opening 66 is in the form of a generally rectangular slot, but, as will be appreciated, the opening can assume other configurations without departing from the scope of the present invention. Removing the insulating material along the path of the ink drop stream 17 virtually eliminates the deleterious effect that the accumulated micro-satellite drops have on the deflection field. This is because the micro-satellite drops discharge, i.e., lose their electrical charge, as they accumulate on the electrode 42. Additionally, testing indicates that ink accumulation is reduced when the longitudinal slot 66 is employed. The longitudinal slot 66 may be on the order of 0.12 inches wide and it extends along substantially the entire length of the front portion 56 of the deflection plate 50. In this respect, the amount of overlap between the insulating member 46 and the front edge 60 of the deflection plate 50 is minimal, so that the deflection plate 50 is exposed along substantially its entire length. For example, the overlap along the front edge 60 of the deflection plate 50 may be on the order of 0.010 inches.
Referring to
The insulating member 46 is formed from a suitable dielectric material such as plastic. One suitable plastic is Delrin® acetal resin, as is commercially available from E.I. du Pont de Nemours and Company. In production, the insulating member 46 may be formed by any suitable manufacturing process, including machining, molding or extruding. The insulating member 46 functions to reduce arcing between the electrodes when the electrodes are placed in close proximity to one another. However, because there is no insulating material along the path of the ink drop stream 17, the tendency for the accumulated micro-satellites to adversely effect the strength of the deflection field is virtually eliminated. This is because the micro-satellite drops accumulate on the high voltage deflection plate 50, where they discharge. As a result, there is less of a decrease in the field strength of the deflection field than occurs when the charged micro-satellite drops accumulate directly on the deflection electrode's insulator, as occurs in the prior art design.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3895386 | Keur et al. | Jul 1975 | A |
4075636 | Galetto et al. | Feb 1978 | A |
4122458 | Paranjpe | Oct 1978 | A |
4138688 | Heard et al. | Feb 1979 | A |
4167741 | Heard et al. | Sep 1979 | A |
4246589 | Denny et al. | Jan 1981 | A |
4617574 | Millet et al. | Oct 1986 | A |
4638325 | Schneider et al. | Jan 1987 | A |
4743922 | Regnault et al. | May 1988 | A |
4845512 | Arway | Jul 1989 | A |
4928113 | Howell et al. | May 1990 | A |
5434609 | Rhodes | Jul 1995 | A |
Number | Date | Country |
---|---|---|
55-091683 | Jul 1980 | JP |
55-166258 | Dec 1980 | JP |
56-105973 | Aug 1981 | JP |
56-123872 | Sep 1981 | JP |
56-146783 | Nov 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20030184620 A1 | Oct 2003 | US |