1. Field of the Invention
The present invention relates to a maintenance technique for ink jet printers having an ink circulation mechanism.
2. Description of the Background Art
In the case of an ink jet printer which prints images by ejecting ink from nozzles, when the print process has not been performed over a long time, the solvent of ink is evaporated or volatilized in the vicinity of ink jet heads so that the viscosity of ink is increased to degrade the print performance of the ink jet printer. Because of this, as the need arises, a maintenance operation is performed, for example, by suctioning the ink, cleaning nozzles and so forth.
Japanese Patent Published Application No. 2003-089226 describes a technique to perform maintenance by measuring the time elapsed after the previous maintenance and selecting an appropriate maintenance operation in accordance with the elapsed time. Also, Japanese Patent Published Application No. 2006-205744 describes a technique to perform maintenance by driving a head actuator, detecting entry of air bubbles, increase of the viscosity of ink and attaching of paper dust on the basis of the residual vibration, and selecting an appropriate maintenance operation in accordance with the results of the detection.
On the other hand, in recent years, it is proposed to provide an ink circulation route in the body of an ink jet printer to enable ink circulation for the purpose of improving the reliability of the print process as described in Japanese Patent Published Application No. Hei 11-342634. In the case of the ink jet printer having such an ink circulation mechanism, even if a nozzle clogs up with bubbles or debris, quick recovery is possible, and the ink circulation through the ink chamber of an ink jet head serves to sweep away high viscosity ink to the ink circulation route.
However, even if ink is circulated, when the ink jet printer is unused for a long time, the viscosity of ink is further increased so that maintenance such as suctioning ink becomes required in the same manner as in the conventional ink jet printers. It is preferred to perform the conventional maintenance only at a minimum frequency from the view point of saving ink because ink is consumed in vain by the process of suctioning ink and so forth during maintenance. Particularly, in the case of the ink jet printer having such an ink circulation mechanism, the thickened ink can be recovered by ink circulation as long as the viscosity of ink is not excessively increased, and thereby it is important to find out when it becomes necessary for ink to perform maintenance which consumes a certain amount of ink.
Because of this, an appropriate maintenance operation may be selected in accordance with the elapsed time after the previous maintenance as described in Japanese Patent Published Application No. 2003-089226. However, the elapsed time is not necessarily reflected in the viscosity of ink in a proportional manner, and thereby ink may unnecessarily be consumed, or necessary maintenance may not have been performed so that the viscosity of ink is increased to be too high to recover the thickened ink. Alternatively, it can be considered to perform maintenance by selecting an appropriate maintenance operation on the basis of the residual vibration as described in Japanese Patent Published Application No. 2006-205744. However, in this case, there is a problem that the production cost rises because of the circuit provided for detecting the residual vibration to increase the scale of the printer structure and the production cost.
Taking into consideration the above circumstances, it is an object of the present invention to make it possible for an ink jet printer with an ink circulation route to perform maintenance in accordance with the ink viscosity by a simple structure.
In order to accomplish the object as described above, the ink jet printer of the present invention is provided with an ink circulation route in which are arranged an ink jet head for ejecting ink, a first tank for supplying ink to the ink jet head, a second tank for collecting ink which is not consumed by the ink jet heads, and comprises: a maintenance unit operable to perform a maintenance operation which consumes some amount of ink; a measuring unit operable to obtain a value indicative of the flow resistance measured when ink flows the first tank to the second tank through the ink jet head; and a control unit operable to select one of maintenance operations on the basis of the value indicative of the flow resistance as obtained, wherein when the value indicative of the flow resistance as obtained is lower than a predetermined value, the control unit selects the operation of circulating ink around the ink circulation route as the one of maintenance operations, and the maintenance unit does not perform the maintenance operation which consumes some amount of ink.
The value indicative of the flow resistance measured when ink flows the first tank to the second tank through the ink jet head may be, for example, the time required for a predetermined amount of ink to flow from the first tank to the second tank, or the flow rate calculated by dividing the predetermined amount by the time. The value of these examples can be considered to indicate the ink viscosity in the ink jet head. Because of this, when the value indicative of the flow resistance is low, since the ink is evaluated as not so thickened that the maintenance operation which consumes some amount of ink is not needed, it is possible to avoid unnecessary consumption of ink. Generally speaking, since the value indicative of the flow resistance can be easily measured, it is possible to perform maintenance in accordance with the ink viscosity by a simple structure.
In a preferred embodiment, each of the first tank and the second tank is provided with an air release valve for releasing the inner pressure of each tank to air, the first tank is arranged in an upper position than the ink jet head, and the ink jet head is arranged in an upper position than the second tank.
By this configuration, the measuring unit obtains the value indicative of the flow resistance by opening the air release valves of the first and second tanks, and measuring the time required for a predetermined amount of ink to flow from the first tank to the second tank.
More specifically speaking, in this preferred embodiment, while the second tank is provided with upper and lower ink surface level sensors, the measuring unit obtains the value indicative of the flow resistance by opening the air release valves of the first and second tanks, and measuring the time elapses until the upper ink surface level sensor detects the ink surface level after the lower ink surface level sensor detects the ink surface level.
Preferably, the ink jet printer further comprises: a pressure adjusting unit operable to adjust the pressure of the first tank to a predetermined value in advance of measuring the required time, wherein the measuring unit measures the required time while the pressure of the first tank adjusted by the pressure adjusting unit is maintained to the predetermined value.
Also, in a preferred embodiment, the ink jet printer further comprises: a first pump operable to transport ink from the second tank to the first tank, wherein the first pump is driven when circulating ink around the ink circulation route as the maintenance operation. Preferably, the maintenance operation which consumes some amount of ink performed by the maintenance unit includes the operation of suctioning ink from an ink ejection surface of the ink jet head after circulating ink by driving the first pump. In this case, the maintenance unit may change, with reference to the value indicative of the flow resistance as obtained, the time for which ink is suctioned from the ink ejection surface of the ink jet head, or the force of suctioning ink. By this configuration, only a minimum amount of ink is consumed when suctioning ink.
Also, the measuring unit obtains the value indicative of the flow resistance again after performing the maintenance operation which consumes some amount of ink or the maintenance operation of circulating ink around the ink circulation route, and the control unit determines whether to perform the maintenance again on the basis of the value indicative of the flow resistance which is obtained again. Furthermore, preferably, the maintenance system is designed to cover the ink jet head and serves also as a cap for covering the ink ejection surface of the ink jet head.
In accordance with the present invention, it is possible to perform maintenance in accordance with the ink viscosity by a simple structure in an ink jet printer having an ink circulation route.
In the following description, an embodiment of the present invention will be explained in conjunction with the accompanying drawings.
The ink jet printer 100 is a line color ink jet printer. The line color ink jet printer is provided as a print mechanism with a plurality of ink jet heads each of which is provided with a number of nozzles formed to span the route in the direction perpendicular to the paper transportation direction. The respective ink jet heads eject black and color inks respectively in order to print images of the respective colors on a line-by-line basis. However, the present invention is not limited to a line ink jet printer, but also applicable to other types of printing apparatuses such as a serial color printer capable of forming images by scanning in the line direction.
The print sheets fed from either the paper feed side tray 120 or one of the paper feed trays 130 are transported one after another along a paper feed transportation route FR by a transportation mechanism such as roller units to a resist roller unit Rg. The resist roller unit Rg is composed of a pair of rollers and provided for defining a reference position at which the leading edge of each print sheet is aligned and oriented. The print sheet which is fed is stopped at the resist roller unit Rg for a short time, and then transferred in the direction toward the print mechanism with a predetermined timing.
A plurality of head units 110 including the ink jet heads are located on the transfer direction side of the resist roller unit Rg. The print sheet is printed to form an image with ink ejected from the ink jet heads provided in the respective head units 110 on a line-by-line basis, while being transported at a predetermined speed in accordance with printer option settings on a conveyor endless belt 160 which is located on the opposite side to the head units 110.
The print sheet which has been printed is further transported in the housing by the transportation mechanism such as roller units. In the case of one-side printing for printing only one side of the print sheet, the print sheet is transferred directly to the discharge port 140 and stacked on a catch tray 150 provided as a receiver at the discharge port 140 with the printed side down. The catch tray 150 is provided to protrude from the housing with a certain thickness. The catch tray 150 is slanted with a lower upright wall at which print sheets discharged from the discharge port 140 are automatically aligned under their own weight.
In the case of double-side printing for printing both sides of the print sheet, the print sheet is not transferred to the discharge port 140 just after printing the main side (the first printed side is called “main side”, and the next printed side is called “back side” in this description), but is transported again in the housing. Because of this, the ink jet printer 100 is provided with a shunt mechanism 170 for switching the transfer route for printing on the back side. After printing on the main side, the shunt mechanism 170 transfers the print sheet which is not discharged to a switchback route SR such that the print sheet is reversed with respect to the transportation route by the switchback operation. The print sheet is transferred to the resist roller unit Rg again by the transportation mechanism such as roller units, and stopped at this resist roller unit Rg for a short time. Thereafter, the print sheet is transported to the print mechanism with a predetermined timing, and printed on the back side in the same manner as on the main side. After printing on the back side, the print sheet with images printed on the both sides is transferred to the discharge port 140, and stacked on the catch tray 150 serving as the receiver at the discharge port 140.
In the ink jet printer 100, the switchback operation is performed in the double-side printing mode by the use of the space formed in the lower portion of the catch tray 150. The space formed in the catch tray 150 is designed such that the print sheet cannot be accessed externally during the switchback operation. By this configuration, it is avoided that a user extracts the print sheet during the switchback operation by mistake. Incidentally, since the catch tray 150 is indispensable for the ink jet printer 100, there is no need for a separate space, which would be particularly provided in the ink jet printer 100 for the switchback operation, while making use of the space in the catch tray 150 for the switchback operation. Accordingly, it is possible to prevent the size of the housing from increasing for the purpose of implementing the switchback operation. Furthermore, since the discharge port and the switchback route are separated, the paper discharge operation can be performed in parallel with the switchback operation.
The ink jet head 113 is divided into a plurality of blocks. The head unit 110 is provided with a distributor 111 for supplying ink to each block of the ink jet head 113, and an ink collecting unit 112 for collecting ink which is not used for printing from each block of the ink jet head 113.
The ink which is supplied from the ink tank 210 is temporarily stored in a lower tank 230 which is provided in the downstream side of the ink jet head 113. Also, the ink stored in the lower tank 230 is transferred by a first pump 250 to an upper tank 220 which is provided in the upstream side of the ink jet head 113, and supplied to the ink jet head 113 from the upper tank 220. The ink which is not used in the ink jet head 113 for printing is returned to the lower tank 230 again. The amount of ink which is consumed by the print process is compensated by supplying ink from the ink tank 210 to the downstream tank 230 through an on-off valve 281.
The ink jet head 113 is located in an upper position than the downstream tank 230, and the upper tank 220 is located in an upper position than the ink jet head 113. The water head differences on the basis of this positional relationship are used to supply ink from the upstream tank 220 to the ink jet head 113, and return the ink remaining after the print process from the ink jet head 113 to the downstream tank 230.
The upstream tank 220 and the downstream tank 230 are provided with an air release valve 221 and an air release valve 231 respectively for switching the inside state of each tank between an air-tight state and an open-air state. Also, the downstream tank 230 is provided with a first fluid level sensor 232 and a second fluid level sensor 233 for detecting the ink surface level in the downstream tank 230. The first fluid level sensor 232 is located in a higher position than the second fluid level sensor 233.
There is an on-off valve 280 between the ink jet head 113 and the downstream tank 230. Incidentally, although not shown in the figure, it is preferred to provide a filter for removing bubbles and debris from the circulating ink, for example, between the first pump 250 and the upstream tank 220. Bubbles and debris can be eliminated from the ink transported from the upstream tank 220 to the ink jet head 113 by the filter, and thereby it is possible to prevent ink ejection failure due to nozzle blockage or the like.
Furthermore, the ink jet printer 100 is provided with a maintenance system 240 for performing maintenance of the ink jet head 113. The maintenance system 240 is designed to cover the whole of the nozzle plate 114 of the ink jet head 113. For example, when the print process is not performed, the maintenance system 240 is joined to the ink jet head 113 and serves as a cap for preventing ink from being degraded due to evaporation, volatilization and oxidation of the ink components as illustrated in
In addition, the ink jet printer 100 is provided with a controller 300. The controller 300 is a functional unit of the ink jet printer 100 serving to perform the print process, maintenance operation and so forth. The hardware of the controller 300 includes a CPU, a memory and the like. In the case of the present embodiment, the controller 300 is provided with a circulation control unit 310 for controlling the circulation of ink, a viscosity evaluation unit 320 for evaluating the viscosity of ink in the vicinity of the ink jet head 113, and a maintenance unit 330 for controlling the maintenance operation. These units perform the processes to be described below by controlling the opening and closing operations of the air release valves 221 and 231 of the upstream and downstream tanks, controlling the operations of the first and second pumps 250 and 260, and controlling the operation of the maintenance system 240.
Next is a description of the maintenance operation in accordance with the present embodiment.
In the maintenance operation, first, the ink viscosity is evaluated in step S101. The evaluation of ink viscosity will be explained in accordance with the present embodiment. In the case of the present embodiment, the ink viscosity is monitored, and the maintenance is performed in accordance with the monitored ink viscosity. By this configuration, the amount of ink consumed by maintenance is reduced, and unnecessary maintenance is not performed to save a certain time. For this purpose, the ink viscosity is evaluated in advance of actually performing the maintenance operation.
The increase in the ink viscosity occurs mainly in the vicinity of the ink jet head 113. Because of this, when the ink viscosity is increased, ink flow is disrupted in the ink jet head 113. In the case of the present embodiment, the ink viscosity is evaluated by evaluating how smoothly ink can flow, i.e., the flow resistance in the ink flow in the vicinity of the ink jet head 113, rather than directly measuring the ink viscosity. The ink viscosity is therefore evaluated by flowing ink through the ink jet head 113 and measuring the time until a predetermined amount of ink has flowed. The ink viscosity can therefore be evaluated to be higher as the measured time is longer. By this configuration, the ink viscosity can be evaluated only by a simple structure without need for an expensive viscosity measurement circuit, an expensive flow sensor or the like.
As a preprocess for starting the process of evaluating the ink viscosity, it is determined whether or not the second fluid level sensor 233 is turned off, i.e., whether or not the ink surface level of the downstream tank 230 is no higher than the second fluid level sensor 233 (step S201 in
Conversely, if the second fluid level sensor 233 is turned off (step S201: Yes), as illustrated in
When the ink surface level rises in the downstream tank 230 to turn on the second fluid level sensor 233 (step S204: Yes), measurement of time is started in step S205. The measurement of time is continued until the first fluid level sensor 232 is turned on (step S206: Yes), and then stopped in step S207. Namely, as illustrated in
It is assumed here that the first fluid level sensor 232 is turned on z1 (seconds) after the second fluid level sensor 233 is turned on when the ink viscosity is normal, under the differential pressure x1 (pascals) between the upstream tank 220 and the differential ink amount y1 (milliliters) between the ink amounts when the second fluid level sensor 233 is turned on and when the first fluid level sensor 232 is turned on. However, when the ink viscosity becomes high in the ink jet head 113, in the same conditions, it takes z2 (seconds) which is longer than z1 (seconds) for the first fluid level sensor 232 to be turned on after the second fluid level sensor 233 is turned on. This is because the pressure loss is increased by the increased flow resistance so that the ink amount flowing per unit time is decreased even under the same differential pressure.
In this case, the flowing ink amount U, the differential pressure P and the flow resistance R satisfy the relation that U ∝ P/R. However, in the case of the present embodiment, the variation degree the flow resistance can be evaluated simply by measuring the elapsed time Td rather than measuring and calculating the actual flow resistance. In what degree the flow resistance varies in relation to the flow resistance in the normal ink condition is referred to herein as “the variation degree of the flow resistance”. Alternatively, the variation degree of the flow resistance can be evaluated on the basis of the flow volume per unit time which is calculated by dividing, by the time Td, the differential ink amount between the ink amounts when the second fluid level sensor 233 is turned on and when the first fluid level sensor 232 is turned on, rather than evaluated on the basis of the elapsed time Td itself.
In order to more accurately evaluate the variation degree of the flow resistance, it is preferred to measure the time Td after setting the ink surface level of the upstream tank 220 to a predetermined position and setting the differential pressure between the upstream tank 220 and the downstream tank 230 to a predetermined value for each measurement. Because of this, in this preferred implementation, a fluid level sensor is provided also for the upstream tank 220 in order to set up the ink surface level of the upstream tank 220 to the predetermined position in advance of each measurement.
In the case of the present embodiment, it is assumed that the condition of the ink viscosity is evaluated as one of “no viscosity increase”, “small viscosity increase”, “moderate viscosity increase” and “large viscosity increase” on the basis of the measured time Td. Namely, when the measured time Td is substantially equal to the reference time which is measured when the ink viscosity is normal, the condition of the ink viscosity is evaluated as “no viscosity increase”. When the measured time Td is longer than the reference time by a small excess, a moderate excess or a large excess, the condition of the ink viscosity is evaluated as “small viscosity increase, “moderate viscosity increase” or “large viscosity increase” respectively. Of course, this is only one of examples, and other classification may be employed instead.
In the case of the present embodiment, the maintenance operation is changed in accordance with the condition of the ink viscosity which is evaluated as described above. Referring to the flow chart of
When the ink viscosity is evaluated as “no viscosity increase” (step S102: Yes), the ink circulation is performed in a usual manner. The ink inside the ink jet head 113 can be replaced by this circulation without consuming the ink.
When the ink viscosity is evaluated as “small viscosity increase” (step S104: Yes), a more enhanced ink circulation than usual is performed in step S105 by increasing the differential pressure between the upstream tank 220 and the downstream tank 230.
In this regards, as illustrated in
When the ink viscosity is evaluated as “moderate viscosity increase” (step S106: Yes), the ink circulation is performed in a more enhanced manner in step S107 by increasing the differential pressure between the upstream tank 220 and the downstream tank 230. For this purpose, during the ink circulation is performed, a positive pressure is applied to the nozzle plate 114 by increasing the pressure in the upstream tank 220.
When this process is performed, the maintenance system 240 is operated to remove the ink pushed out from the nozzle plate 114 by the wiper operation (removing ink from the nozzle plate 114 by the use of a rubber blade or a roller) and/or the ink suctioning operation (removing ink from the nozzle plate 114 by suctioning ink) in step S108.
Also, the condition of ink corresponding to “moderate viscosity increase” may be classified into a plurality of viscosity levels, and the period of circulating ink, the driving power of the first pump 250, the period of suctioning ink, the driving power of the second pump 260 and/or the like factor may be adjusted in accordance with the viscosity level.
When the ink viscosity is evaluated as “large viscosity increase” (step S106: No), a purge operation is performed in step S109 to forcibly push out ink from the nozzle plate 114 by applying an increased pressure to the route. Also, the condition of ink corresponding to “large viscosity increase” may be classified into a plurality of viscosity levels, and the purge operation is adjusted in accordance with the viscosity level by changing the pressure applied to the route and/or changing the period of applying the pressure.
Generally speaking, the purge operation is performed for the purpose of applying a pressure to recover the ink viscosity and the purpose of discarding the thickened ink. Conventionally, the purge operation is always performed by a predetermined pressure applied for a predetermined period in a single uniform way, and the predetermined pressure and the predetermined period are determined in advance on the basis of experiments. However, even if the same pressure is applied for the same period, the amount of ink discharged from the nozzle plate 114 varies depending upon the ink viscosity, i.e., the viscosity level. As a result, when the ink is not so thickened, ink may be excessively discarded by the purge operation. Conversely, when the ink is highly thickened beyond estimation, the thickened ink may not sufficiently be discarded even after the purge operation so that the thickened ink is lingering in the ink jet head 113 resulting in insufficient recovery.
In contrast to this, in accordance with the present embodiment, the applied pressure is determined depending upon the variation degree of the flow resistance. While the applied pressure is determined in correspondence with the viscosity level of ink, in place of changing the applied pressure, the period of applying the pressure may be adjusted with reference to the variation degree of the flow resistance. By this configuration, even if the ink is thickened to a different viscosity level, a predetermined amount of the thickened ink can always be discharged, and thereby it is possible to avoid the above shortcomings that ink is excessively discarded in vain, or the thickened ink is not sufficiently discarded to recover the ink quality.
In addition to this, for accelerating the recovery, the ink may be agitated and/or pressurized in the ink jet heads 113, for example, by applying fine vibration to the nozzle plate 114 in order not to eject ink or performing ink ejection operation during the purge operation.
The recovery becomes easier by employing a stronger maintenance operation. However, the ink consumption increases as the applied pressure becomes higher and the period of applying the pressure becomes longer. On the other hand, when the ink is thickened to a high viscosity level, the recovery is difficult even after repeating a mild maintenance operation, and thereby a stronger maintenance operation has eventually to be used for secured recovery. In such a case, the maintenance time becomes longer, and a larger amount of ink is consumed. When maintenance operations are designed in correspondence with the respective viscosity levels, it is preferred to determine, by experiments or the like, what type of maintenance operation is most effective to achieve recovery for each viscosity level.
Also, in the case where the ink jet printer 100 is used in a broader temperature range, even when the ink viscosity changes under the influence of the varying environmental temperature, it is possible to accurately evaluate the viscosity level by providing a temperature sensor such a thermistor or a thermocouple located near the ink jet heads 113 or the distributor 111, and compensating the time measured for use in evaluating the ink viscosity with reference to the ink temperature detected by the temperature sensor. In a simplified method, the ink viscosity can be evaluated by the use of evaluation criteria which have been prepared in advance on the basis of the experiments or the like relating to the relationship between the ink temperature and the time required for a predetermined amount of ink to flow from the upstream tank 220 to the downstream tank 230 at the ink temperature.
When “small viscosity increase” or a larger viscosity increase is evaluated by ink evaluation which is conducted after performing the maintenance operation corresponding to the viscosity level as evaluated, it is likely that the viscosity level has not been recovered, so that the maintenance operation is preferably performed again. Also, in this case, an appropriate maintenance operation is selected on the basis of the viscosity level which is evaluated. However, if the same viscosity level is repeatedly evaluated, a larger amount of ink may eventually be consumed, or a longer maintenance time may be needed. In such a case, thereby, it is preferred to perform the maintenance operation that is next stronger than the previous maintenance operation.
Next, several modification examples of the present embodiment will be explained. In this modification, a pressure gauge is provided for measuring a value which is indicative of the flow resistance for use in evaluating the ink viscosity. First, a first modification example will be explained with reference is a block diagram of
When the value indicative of the flow resistance is measured by the use of fluid level sensors, the ink surface level of the upstream tank 220 and the ink surface level of the downstream tank 230 are preferably adjusted to predetermined levels respectively in order to set up the differential pressure between the upstream tank 220 and the downstream tank 230 to a constant value, in advance of measuring the value indicative of the flow resistance. However, in the case of the first modification example, while the first pump 250 is driven to lower the ink surface level of the downstream tank 230 to a predetermined level, the air release valve 221 of the upstream tank 220 is controlled in order to adjust the pressure inside the upstream tank 220, which is measured by the pressure gauge 410, to a predetermined pressure.
More specifically speaking, first, the first pump 250 is driven in step S302 after closing the air release valve 221 of the upstream tank 220 and opening the air release valve 231 of the downstream tank 230 in step S301. Thereafter, when the pressure of the upstream tank 220 becomes greater than or equal to a predetermined value Pt (step S303: Yes), the air release valve 221 of the upstream tank 220 is opened in order not to exceed the predetermined pressure in step S304.
The second fluid level sensor 233 of the downstream tank 230 is turned off (step S305: Yes), the operation of the first pump 250 is halted in step S307 with the air release valve 221 of the upstream tank 220 being closed in step S306. The differential pressure between the upstream tank 220 and the downstream tank 230 is the predetermined value Pt when halting the operation of the first pump 250, and then ink flows from the upstream tank 220 into the downstream tank 230 through the ink jet heads 113 such that the pressure inside the upstream tank 220 drops. The value indicative of the flow resistance can be obtained in step S308 as the pressure of the upstream tank 220 which is measured by the pressure gauge 410 after a predetermined time elapsed, or the time elapsed until the pressure inside the upstream tank 220 drops to a predetermined pressure. The ink viscosity is evaluated on the basis of the value indicative of the flow resistance as measured in step S309.
Next, a predetermined pressure is applied to the upstream tank 220 in step S406 by opening the on-off valve 430 of the pneumatic chamber 460 which is pressurized to a predetermined pressure by driving the fourth pump 470 in advance. In this state, the measurement of the elapsed time is started in step S407. When the first fluid level sensor 232 of the downstream tank 230 is turned on (step S408: Yes), the measurement of the elapsed time is stopped in step S409. Then, the ink viscosity is evaluated on the basis of the elapsed time as measured in step S410. In the case of the third exemplary modification, by providing the fourth pump 470 for applying a pressure separately from the first pump for ink circulation, it is possible to measure the value indicative of the flow resistance while controlling the pressure in the upstream tank 220 to a predetermined pressure. Incidentally, the fourth pump 470 can be used also as a pressure pump which serves to perform a purge operation for pushing out ink from the nozzle plate 114.
As has been discussed above, in accordance with the present invention, it is possible to reduce the maintenance time and unnecessary ink consumption by evaluating the ink viscosity on the basis of the value indicative of the flow resistance as measured, and performing an appropriate maintenance operation in accordance with the evaluation result.
Number | Date | Country | Kind |
---|---|---|---|
P2008-128616 | May 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20080136860 | Kyoso | Jun 2008 | A1 |
20080158307 | Nitta et al. | Jul 2008 | A1 |
20090174735 | Yamada | Jul 2009 | A1 |
20090195588 | Ogama | Aug 2009 | A1 |
20090322818 | Iwasaki | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
11-342634 | Dec 1999 | JP |
2003-89226 | Mar 2003 | JP |
2006-205744 | Aug 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090284563 A1 | Nov 2009 | US |