1. Field of the Invention
This invention generally relates to an ink jet printhead module, and more particularly to an ink jet printhead module of an ink jet printer having multiple chip control circuits.
2. Description of Related Art
Computers are widely used in the present era. In addition to displaying the data or images processed by the computer on the display, there are several ways to output the data or images. A printer is one of the most common output devices which can output the text, data, graphics, etc. on the papers.
Currently, the printers can be generally classified into dot-matrix printers, ink jet printers, and laser printers. Each of these three printers has its own advantages. Hence, users can choose different printers based on their need.
A cartridge installed in an ink jet printer can contain ink with one or more different colors. The cartridge jets out the drops of ink via the nozzles onto the paper to form the texts, lines, or graphics. Some photo ink jet printers even have the cartridges with pink or pink blue ink for printing images with more colors.
The decoder 109 will send out the printhead array address signals AD1-AD16 and the heater address signals A1-A13. The printhead array address signals AD1-AD16 will determine which printhead array 105 will be driven. The heater address signals A1-A13 will determine which heater H in the specific printhead array 105 will heat the ink. The first terminal of the heater H receives the voltage signal V and the second terminal of the heater H will be controlled by two switches to determine whether current passes through that heater. These two switches comprise MOSFETs 101 and 103. The gate of the MOSFET 103 receives the printhead array address signal; the source (when the MOSFET is a CMOS) receives the heater address signal. When the source and the gate of the MOSFET 103 are enabled at the same time, the drain (when the MOSFET is a CMOS) will generate current signal and send it to the gate of the MOSFET 101. At the time the source-drain of the MOSFET 101 will be turned on when the voltage signal V is supplied, and the heater H will heat the ink and the ink is ready to be jetted out.
The printhead ink output unit 211 includes the enable circuit 215, the nozzle jetting circuits 225-231 and the nozzle 233. The enable circuit 215 includes a plurality of MOSFETs 217, 219, 221 and 223. The drain (current input) of each MOSFET will receive the corresponding control signal in the bus control signal set 203. The gate (command input) of each MOSFET will receive the corresponding selection signal in the bus selection signal set 209. When the drain and the gate of the same MOSFET are enabled at the same time, the source (output terminal, current output) will generate a current signal to drive the coupled nozzle jetting circuit. For example, the MOSFET 217 is coupled to the nozzle jetting circuit 225 and the MOSFET 219 is coupled to the nozzle jetting circuit 227. Then the nozzle jetting circuit will jet out the ink out of the nozzle 233. The printhead ink output unit 213 works the same as the printhead ink output unit 211.
The embodiments of the present invention are directed to an ink jet printhead module having a plurality of chip control circuits selectively enabled by a plurality of address signals provided by an ink jet printing system and a chip selection signal provided directly or indirectly by the ink jet printing system to determine whether or not to jet out ink.
The embodiments of the present invention are directed to an ink jet printer with at least one ink jet printhead module having a plurality of chip control circuits selectively enabled by a plurality of address signals provided by an ink jet printing system and a chip selection signal provided directly or indirectly by the ink jet printing system to determine whether or not to jet out ink.
One or part or all of these and other features and advantages of the present invention will become readily apparent to those skilled in this art from the following description wherein there is shown and described embodiments of this invention, simply by way of illustration of one of the modes best suited to carry out the invention. As it will be realized, the invention is capable of different embodiments, and its several details are capable of modifications in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
One of the embodiments of the present invention provides an ink jet printhead module adapted for use in a printing apparatus. The ink jet printhead module is capable of receiving address signals, a selection signal, and at least one decoding control signal from a printhead drive unit of the printing apparatus. The ink jet printhead module includes a decoding circuit and a plurality of chip control circuits. The decoding circuit is capable of receiving the selection signal and the decoding control signal and outputting a plurality of chip selection signals. Each of the chip control circuits is capable of receiving the address signals and a corresponding one of the chip selection signals. Each of the chip control circuits includes a plurality of switching circuits and an ink jetting circuit set. Each of the switching circuits is capable of receiving a corresponding one of the address signals and the corresponding one of chip selection signals and outputting a switching signal. The ink jetting circuit set includes a plurality of ink jetting circuits. Each of the ink jetting circuits is capable of receiving the switching signal from the corresponding switching circuit electrically coupled to the ink jetting circuit and determining whether or not to jet out ink based on the received switching signal. The corresponding one of the address signals and the corresponding one of the chip selection signals have a voltage level of a logic high voltage level and a logic low voltage level. The switching signal is a logic high voltage level and selectively enables the ink jetting circuit when the corresponding one of the address signals and the corresponding one of the chip selection signals are at the logic high voltage level.
Another one of the embodiments of the present invention provides an ink jet printhead module adapted for use in a printing apparatus. The ink jet printhead module is capable of receiving a plurality of address signals and a plurality of chip selection signals from a printhead drive unit of the printing apparatus. The ink jet printhead module includes a plurality of chip control circuits. Each of the chip control circuits is capable of receiving the address signals and a corresponding one of the chip selection signals. Each of the chip control circuits includes a plurality of switching circuits and an ink jetting circuit set. Each of the switching circuits is capable of receiving a corresponding one of the address signals and the corresponding one of the chip selection signals and outputting a switching signal. The ink jetting circuit set includes a plurality of ink jetting circuits. Each of the ink jetting circuits is capable of receiving the switching signal from the corresponding switching circuit electrically coupled to the ink jetting circuit and determining whether or not to jet out ink based on the received switching signal. The corresponding one of the address signals and the corresponding one of the chip selection signals have a voltage level of a logic high voltage level and a logic low voltage level. The switching signal is a logic high voltage level and selectively enables the ink jetting circuit when the corresponding one of the address signals and the corresponding one of the chip selection signals are at the logic high voltage level.
Another one of the embodiments of the present invention provides an ink jet printer. The ink jet printer includes a printhead drive unit and at least one ink jet printhead module. The printhead drive unit includes a printhead drive circuit and a printhead selection circuit. The printhead drive circuit is capable of outputting a plurality of address signals. The printhead selection circuit is capable of outputting at least one selection signal and at least one decoding control signal. The ink jet printhead module is capable of receiving the address signals, the corresponding selection signal, and the corresponding decoding control signal. The ink jet printhead module comprises a decoding circuit and a plurality of chip control circuits. The decoding circuit is capable of receiving the corresponding selection signal and the corresponding decoding control signal and outputting a plurality of chip selection signals. Each of the chip control circuits is capable of receiving the address signals and receiving a corresponding one of the chip selection signals. Each of the chip control circuits includes a plurality of switching circuits and an ink jetting circuit set. Each of the switching circuits is capable of receiving a corresponding one of the address signals and the corresponding one of the chip selection signals and outputting a switching signal. The ink jetting circuit set includes a plurality of ink jetting circuits. Each of the ink jetting circuits is capable of receiving the switching signal from the corresponding switching circuit electrically coupled to the ink jetting circuit and determining whether or not to jet out ink based on the received switching signal. The corresponding one of the address signals and the corresponding one of the chip selection signals have a voltage level of a logic high voltage level and a logic low voltage level. The switching signal is a logic high voltage level and selectively enables the ink jetting circuit when the corresponding one of the address signals and the corresponding one of the chip selection signals are at the logic high voltage level.
Still another one of the embodiments of the present invention provides an ink jet printer. The ink jet printer includes a printhead drive unit and at least one ink jet printhead module. The printhead drive unit includes a printhead drive circuit and a printhead selection circuit. The printhead drive circuit is capable of outputting a plurality of address signals, and the printhead selection circuit is capable of outputting a plurality of chip selection signals. The ink jet printhead module is capable of receiving the address signals and the chip selection signals. The ink jet printhead module comprises a plurality of chip control circuits. Each of the chip control circuits is capable of receiving the address signals and a corresponding one of the chip selection signals. Each of the chip control circuits comprises a plurality of switching circuits and an ink jetting circuit set. Each of the switching circuits is capable of receiving a corresponding one of the address signals and the corresponding one of the chip selection signals and outputting a switching signal. The ink jetting circuit set includes a plurality of ink jetting circuits. Each of the ink jetting circuits is capable of receiving the switching signal from the corresponding switching circuit electrically coupled to the ink jetting circuit and determining whether or not to jet out ink based on the received switching signal. The corresponding one of the address signals and the corresponding one of the chip selection signals have a voltage level of a logic high voltage level and a logic low voltage level. The switching signal is a logic high voltage level and selectively enables the ink jetting circuit when the corresponding one of the address signals and the corresponding one of the chip selection signals are at the logic high voltage level.
In an embodiment of the present invention, each of the switching circuits comprises a first inverter and a second inverter electrically coupled in series, the first inverter receives the corresponding one of the chip selection signals, each of the inverters receives the same corresponding one of the address signals, and the second inverter outputs the switching signal.
In light of the above, one of the chip control circuits in an ink jet printhead module of the embodiments of the present invention can be selectively enabled to jet out ink by using multiple switching circuits for receiving address signals and a chip selection signal having a logic high voltage level and a logic low voltage level.
The ink jetting circuit 303 includes a plurality of MOSFETs. In
In the inverter 305B, the drain and the gate of MOSFET F3 are coupled to each other to form the drain feedback. The drain of MOSFET F3 receives the address signal A1; the source of MOSFET F3 is coupled to the drain of MOSFET F4 and outputs the inverted signal. The gate of MOSFET F4 receives the selection signal SEL1; the source of MOSFET F4 is coupled to the drain of MOSFET F5. The gate of MOSFET F5 receives the selection signal SEL2; the source of MOSFET F5 is grounded. When one of the selection signals SEL1 and SEL2 is at the low voltage level, one of the MOSFETs cannot be turned on. Hence, the inverted signal is at the high voltage level if the address signal A1 is at the high voltage level. On the other hand, when both of the selection signals SEL1 and SEL2 are at the high voltage level, the inverted signal is at the low voltage level. The MOSFET F3 in the inverter 305B can be replaced by the resistor R1 in
In the inverter 307B, like the MOSFET F3, the drain and the gate of MOSFET F6 are coupled to each other to form the drain feedback. The source of MOSFET F6 is coupled to MOSFET F7 and outputs the buffer signal according to the inverted signal. The gate of MOSFET F7 receives the inverted signal and the source of MOSFET F7 is grounded. In one embodiment, the selection signal SEL2 can be used with the selection signal SEL1 for a purpose of further protection, so as to ensure the buffer signal to be properly output according to the address signal A1 and the selection signal SEL1.
When the buffer circuit is required to receive more selection signals for determination, one skilled in the art can connect the other MOSFETs to MOSFET F5 in the inverter 305B in series and input the new added selection signals (or address signals) to the gates of the new added MOSFETs to satisfy the requirement of inputting more selection signals in an specific embodiment.
The forgoing buffer circuit 301 can be used as an embodiment of a switching circuit in an ink jet printhead module, as to be described. The printhead module is corresponding to a printing cartridge.
The ink jet printhead module 815 includes a decoding circuit 817 and multiple chip control circuits 807, such as n number of control circuits. The decoding circuit 817 can be, for example, a demultiplexer circuit or a shift register circuit. The decoding circuit 817 receives the corresponding selection signal 823 and the corresponding decoding control signal 825 from the printhead selection circuit 805 and outputs multiple chip selection signals 827 to the corresponding chip control circuits 807, respectively. Each of the chip control circuits 807 receives the address signals 821 and the corresponding chip selection signal 827. Each of the chip control circuits 807 may be regarded as an ink jet printhead chip and includes multiple switching circuits 809, an ink jetting circuit set 811, and a nozzle set 813. The index number “_n” is added to indicate different switching circuits 809 (and ink jetting circuit set 811 and nozzle set 813) in different chip control circuits 807. Each of the switching circuits 809, for example, is the buffer circuit 301 in
In one embodiment of the present invention, the printhead module 815 includes n≧2 number of chip control circuits 807. In other words, in such embodiment, there is a plurality of chip control circuits 807 (ink jet printhead chips) in the printhead module 815, in which each of the chip control circuits 807 has corresponding multiple nozzles of the nozzle set 813. Therefore, width of a printing line can become larger due to multiple chip control circuits 807 and multiple nozzle sets 813 in the printhead module 815, and therefore the print speed can be enhanced. In order to provide the chip selection signal 827 to each chip control circuit 807, in one embodiment the decoding circuit 817 is used for decoding the selection signal 823 into multiple chip selection signals 827 for providing to chip control circuits 807, respectively. The decoding circuit 817 can be implemented in various manners. The examples for the decoding circuit 817 will be described later in
In one embodiment of the present invention, multiple ink jet printhead modules (e.g. multiple cartridges) can be put into a printing apparatus.
The switching circuits 809_nm of the chip control circuit 807_nm receive the address signals 904 and the corresponding one of the chip selection signals 906 and output a plurality of switching signals. The ink jetting circuit set 811 receives the switching signals and jet inks from the nozzle set 813 based on the switching signals Specifically, each of the switching circuits 809 in each of the chip control circuits 807 receives the corresponding one of address signals 904 and the corresponding one of the chip selection signals 906 and outputs a corresponding switching signal. Each of the ink jetting circuits of the ink jetting circuit set 811 receives the corresponding switching signal from the switching circuit electrically coupled to the ink jetting circuit. The ink jetting circuit determines to jet ink from the corresponding nozzles of the nozzle set 813 based on the corresponding one of the address signals 904 received and the chip selection signal 906 when the power applied to the heater of the ink jetting circuit to jet ink is at the high voltage level.
In this embodiment, the decoding circuit 915 can be any circuit or device, such as a demultiplexer circuit or a shift register circuit, for decoding the selection signal 917 from the printhead selection circuit 911.
The decoding circuit 915 can also be implemented with a shift-register circuit, for example.
In this embodiment, for example, the serial selection signal 943 includes a leading binary data with “1”, which induces a logic high voltage level. After the leading binary data, the serial of n binary data corresponding to the chip control circuits 807 are sequentially input as a serial signal. For example, if four chip control circuits 807 are in one printhead module 939, the serial selection signal 943 can be 1xxxx, in which xxxx contains four bits of serial binary data to respectively and selectively enable the corresponding chip control circuit 807. When the leading information “1” is shifted to the SR#n+1, it produces the turning on signal to all of the switches 949 for outputting the chip selection signals 942. In order to turn on the switches 949, one more additional SR can be used to generate the turning-on voltage to the switches 949. Again, the shifting registering circuit 941 in
The embodiments of the present invention feature a printhead module having multiple chip control circuits. Each chip control circuit receives a plurality of address signals provided by the printhead drive circuit of the ink jet printing system and a chip selection signal provided directly or indirectly by the printhead selection circuit of the ink jet printing system. When the switching circuit in a chip control circuit of a printhead module receives an address signal and a chip selection signal at the logic high voltage level, the switching circuit outputs a switching signal to a corresponding ink jetting circuit having one or more heaters and jet out ink from the nozzle corresponding to the activated heater. It should be noted that the address signal used in the printhead is used to selectively enable the desired ink jetting circuit. The switching signal is determined from the logic voltage levels of the chip selection signal and the address signal. The switching signal then selectively enables the ink jetting circuit to turn on the switch device (e.g. transistor) that is electrically connected to the heater when the address signal and the selection signal are at the logic high voltage level.
The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
93109684 A | Apr 2004 | TW | national |
This application is a CIP of an application Ser. No. 10/709,767, filed on May 27, 2004, now allowed, which claims the priority benefit of Taiwan application serial no. 93109684, filed on Apr. 8, 2004. The full disclosure of each of the above-mentioned patent applications is hereby incorporated herein by reference and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
4723129 | Endo et al. | Feb 1988 | A |
5742305 | Hackleman | Apr 1998 | A |
5867183 | Cornell et al. | Feb 1999 | A |
6081280 | Bolash et al. | Jun 2000 | A |
6176569 | Anderson et al. | Jan 2001 | B1 |
6286924 | Ahne et al. | Sep 2001 | B1 |
6299292 | Edwards | Oct 2001 | B1 |
6382754 | Morikoshi et al. | May 2002 | B1 |
6437964 | Takamura et al. | Aug 2002 | B1 |
6471324 | Maru | Oct 2002 | B1 |
6481817 | Torgerson et al. | Nov 2002 | B1 |
6698857 | Torgerson et al. | Mar 2004 | B2 |
7547083 | Hu et al. | Jun 2009 | B2 |
20030189608 | Hung et al. | Oct 2003 | A1 |
20040104973 | Huang et al. | Jun 2004 | A1 |
20040109036 | Han | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
1031421 | Aug 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20080001981 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10709767 | May 2004 | US |
Child | 11854528 | US |