1. Field of the Invention
The present invention relates to an ink jet printing apparatus and an image processing apparatus.
2. Description of the Related Art
In a serial type ink jet printing apparatus, a printing scan in which a printing head is moved while causing the printing head to eject ink in accordance with image data and a conveyance operation to convey a printing medium in a direction intersecting the direction of the printing scan are repeated alternately. At this time, there is a case where a joint streak occurs at the boundary part between the regions in which printing is performed by printing scans performed twice successively in the printing medium.
For example, Japanese Patent Laid-Open No. H08-25693 (1996) has disclosed the method in which two printing regions of printing scans performed successively are overlapped each other to a certain extent in the conveyance direction and adjusting the number of dots that are printed in the overlapped region by using a mask pattern. At this time, by using a gradation mask pattern wherein the printing ratio at end parts of the printing head is reduced gradually, it is possible to suppress density unevenness in each overlapped region.
Further, Japanese Patent Laid-Open No. 2002-36524 has disclosed the method for counting the number of dots that are printed in the vicinity of the boundary part and adjusting the thinning ratio at the boundary part in accordance with the number of counted dots without providing an overlapped region. Conspicuousness of a joint streak depends on the gradations, i.e., the number of dots that are printed, but by adopting Japanese Patent Laid-Open No. 2002-36524, it is possible to appropriately adjust the number of dots at the boundary part in accordance with the gradations, and therefore, it is made possible to make less conspicuous the joint streak regardless of the density. On the other hand, Japanese Patent Laid-Open No. 2008-922 has disclosed a method for adding dots at the joint part region by focusing on, in particular, a white streak.
However, in the case where Japanese Patent Laid-Open No. H08-25693 (1966) is adopted, the number of times of printing scan required to print an image is different between the overlapped region and the other region. Specifically, in the case of the one-pass printing, in the overlapped region, ink is given by two printing scans, but in the other region, ink is given by one printing scan. As a result, for example, in the case where printing is performed on glossy paper by using, for example, a pigment ink, there is produced a difference in the degree of irregularities of the image surface, i.e., smoothness between the overlapped region and the other region, and the difference may be erroneously recognized as glossiness unevenness. Further, in the case where mixed-color printing is performed by using inks in two or more colors, there is produced a difference in the color tone and saturation between the overlapped region and the other region and the difference may be erroneously recognized as color unevenness.
According to the intensive examination by the inventors of the present invention, even in the case where Japanese Patent Laid-Open No. 2002-36524 was adopted and the thinning ratio at the boundary region was adjusted in accordance with the gradation without providing the overlapped region, it was recognized that the joint streak was not reduced sufficiently or the joint streak was made more conspicuous on the contrary. Specific explanation will be given below.
Even in the case where a printing scan is performed without providing an overlap region, the joint streak appears with a certain thickness and the range thereof (the thickness of the joint streak) varies depending on a variety of conditions, such as the kind of ink and the kind of printing medium. Then, in the range in which the joint streak appears, the intensity of the joint streak, i.e., the density is not uniform. In the case where dots are added or reduced in a uniform ratio with the range in which the joint streak appears in such circumstances, there may be a portion where the addition or reduction of dots is too much or insufficient, and the joint streak is left in such a portion as a result.
The present invention has been made in order to solve the above-described problems. Consequently, an object thereof is to provide an ink jet printing apparatus and an image processing apparatus capable of stably outputting an image with no joint streak by making the density uniform in the entire range in which the joint streak appears.
In a first aspect of the present invention, there is provided an ink jet printing apparatus that prints an image on a printing medium by repeating a printing scan wherein an eject port column, in which eject ports for ejecting ink to print dots on the printing medium in accordance with image data are arrayed, is moved with respect to the printing medium and a conveyance operation to convey the printing medium in a direction intersecting the direction of the printing scan, the ink jet printing apparatus comprising: a conveyance control unit configured to control the printing scan and the conveyance operation so that a position where dots are printed by the eject port located at one end part of the eject port column and a position where dots are printed by the eject port located at the other end part are adjacent to each other via a boundary part by the printing scan performed twice on the printing medium; and a correction unit configured to perform correction processing on image data corresponding to the vicinity of the boundary part in order to adjust the number of dots that are printed, wherein the correction unit performs the correction processing so that a ratio in which the number of dots that are printed is increased or decreased from a default value based on the image data is changed at least in two steps toward a direction in which the distance from the boundary part increases.
In a second aspect of the present invention, there is provided an image processing apparatus that performs processing on multivalued image data corresponding to a unit region for printing an image in the unit region including a plurality of pixel regions on a printing medium by a plurality of scans of a an eject port column in which a plurality of eject ports for ejecting ink are arrayed in a predetermined direction with respect to the printing medium, wherein the plurality of eject ports ejects ink to each of the plurality of pixel regions on the printing medium in accordance with dot printing data corresponding to each of the plurality of scans, and by conveying the printing medium between the plurality of scans, the image processing apparatus comprising: a first acquisition unit configured to acquire information on a density of an image that is printed in the pixel region; a second acquisition unit configured to acquire N (≧3)-valued quantized data corresponding to the pixel region based on the image data; a third acquisition unit configured to acquire a plurality of dot arrangement pattern groups including at least a first dot arrangement pattern group including a plurality of first dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data and a second dot arrangement pattern group including a plurality of second dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data; a setting unit configured to set one dot arrangement pattern group from the plurality of dot arrangement pattern groups acquired by the third acquisition unit in accordance with the positions of the plurality of pixel regions within the unit region; and a generation unit configured to generate the dot printing data based on the N-valued quantized data acquired by the second acquisition unit and the dot arrangement pattern group set by the setting unit, wherein the number of dots that are printed within the pixel region determined by the second dot arrangement pattern corresponding to the N-valued quantized data having a predetermined value is smaller than the number of dots that are printed within the pixel region determined by the first dot arrangement pattern corresponding to the N-valued quantized data having the predetermined value, and the setting unit sets the dot arrangement pattern group so that: (i) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a first position, that is included in an end part region of the unit region in the predetermined direction corresponding to an end part of the eject port column in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is a first value is smaller than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is a second value lower than the first value; (ii) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a second position, that is included in the end part region and is closer to an end of the unit region than the first position in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is the first value is smaller than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value; and (iii) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value is larger than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value, and the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value is smaller than the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value.
In a third aspect of the present invention, there is provided an image processing apparatus that performs processing on multivalued image data corresponding to a unit region for printing an image in the unit region including a plurality of pixel regions on a printing medium by a plurality of scans of a an eject port column in which a plurality of eject ports for ejecting ink are arrayed in a predetermined direction with respect to the printing medium, wherein the plurality of eject ports ejects ink to each of the plurality of pixel regions on the printing medium in accordance with dot printing data corresponding to each of the plurality of scans, and by conveying the printing medium between the plurality of scans, the image processing apparatus comprising: a first acquisition unit configured to acquire information on a density of an image that is be printed in the pixel region; a second acquisition unit configured to acquire N (≧3)-valued quantized data corresponding to the pixel region based on the image data; a third acquisition unit configured to acquire a plurality of dot arrangement pattern groups including at least a first dot arrangement pattern group including a plurality of first dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data and a second dot arrangement pattern group including a plurality of second dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data; a setting unit configured to set one dot arrangement pattern group from the plurality of dot arrangement pattern groups acquired by the third acquisition unit in accordance with the positions of the plurality of pixel regions within the unit region; and a generation unit configured to generate the dot printing data based on the N-valued quantized data acquired by the second acquisition unit and the dot arrangement pattern group set by the setting unit, wherein the number of dots that are printed within the pixel region determined by the second dot arrangement pattern corresponding to the N-valued quantized data having a predetermined value of the first and second dot arrangement pattern groups is larger than the number of dots that are printed within the pixel region determined by the first dot arrangement pattern corresponding to the N-valued quantized data having the predetermined value, and the setting unit sets the dot arrangement pattern group so that: (i) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a first position, that is included in an end part region of the unit region in the predetermined direction corresponding to an end part of the eject port column in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is a first value is smaller than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is a second value higher than the first value; (ii) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a second position, that is included in the end part region and is closer to an end of the unit region than the first position in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is the first value is smaller than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value; and (iii) the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value is larger than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value, and the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value is smaller than the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the second value.
In a fourth aspect of the present invention, there is provided an image processing apparatus that performs processing on multivalued image data corresponding to a unit region for printing an image in the unit region including a plurality of pixel regions on a printing medium by a plurality of scans of a an eject port column in which a plurality of eject ports for ejecting ink are arrayed in a predetermined direction with respect to the printing medium, wherein the plurality of eject ports ejects ink to each of the plurality of pixel regions on the printing medium in accordance with dot printing data corresponding to each of the plurality of scans, and by conveying the printing medium between the plurality of scans, the image processing apparatus comprising: a first acquisition unit configured to acquire information on a density of an image that is be printed in the pixel region; a second acquisition unit configured to acquire N (≧3)-valued quantized data corresponding to the pixel region based on the image data; a third acquisition unit configured to acquire a plurality of dot arrangement pattern groups including at least a first dot arrangement pattern group including a plurality of first dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data and a second dot arrangement pattern group including a plurality of second dot arrangement patterns in which an arrangement of dots is determined so that the number and position of dots that are printed within the pixel region are different in accordance with a value of the N-valued quantized data; a setting unit configured to set one dot arrangement pattern group from the plurality of dot arrangement pattern groups acquired by the third acquisition unit in accordance with the positions of the plurality of pixel regions within the unit region; and a generation unit configured to generate the dot printing data based on the N-valued quantized data acquired by the second acquisition unit and the dot arrangement pattern group set by the setting unit, wherein the dot arrangement pattern group is set so that the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a first position, that is included an end part region of the unit region in the predetermined direction corresponding to an end part of the eject port column in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is a predetermined value is smaller than the number of the second dot arrangement pattern groups determined for the plurality of pixel regions located at a second position, that is included in the end part region and is closer to an end of the unit region than the first position in the predetermined direction, in a case where the density of the image indicated by the information acquired by the first acquisition unit is the predetermined value, and the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the first position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the predetermined value is larger than the number of the first dot arrangement pattern groups determined for the plurality of pixel regions located at the second position in a case where the density of the image indicated by the information acquired by the first acquisition unit is the predetermined value.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Hereinafter, embodiments of the present invention are explained in detail with reference to the drawings.
The optical sensor 32 determines whether or not there exists a printing medium on the platen 4 by performing the detection operation while moving together with the carriage 1. At a position in the scan region of the carriage 1 and apart from the platen 4, a recovery unit 30 configured to perform maintenance processing of the printing head 5 is arranged.
The CPU 301 having received the three-valued image data converts the 600 dpi quantized data 603 into 1,200 dpi binary printing data 604 in accordance with the level value (number of gradations) by referring to a dot arrangement pattern stored in the ROM 302 in advance. Further, after performing processing characteristic to the present invention, as will be described later, the printing data is accumulated in a print buffer prepared within the RAM 303. The printing data is binary data that determines printing (1) or non-printing (0) for each of 2×2 pixels arrayed in 1,200 dpi.
After the printing data corresponding to one or more scans is accumulated in the RAM 303, the CPU 301 performs a printing operation based on the printing data 604 in accordance with the program stored in the ROM 302. Specifically, the CPU 301 causes the printing head 5 to perform the eject operation while reading the binary printing data 604 by an amount corresponding to one scan each time. At this time, the printing resolution in the main scan direction (X direction) may be set to 1,200 dpi, but it may also be set to 600 dpi. In the case of 600 dpi, the dots corresponding to printing data 1 and 2 put side by side in the main scan direction are printed repeatedly at a pixel position A as is known by referring to printing results 605. Dots corresponding to printing data 3 and 4 are printed repeatedly at a pixel position B. The CPU 301 prints an image corresponding to one page on a printing medium by causing the printing head 5 to perform the eject operation in accordance with the printing data 604 while controlling the drive of the various kinds of motors as required via the input/output port 304. Several embodiments that can be adopted in the present invention will be explained below by using the printing system explained above.
As to level 0, the number of printing pixels (area represented in black) is zero in all the dot arrangement patterns I to IV. As to level 1, the number of printing pixels is one in the patterns I and II, that is zero in the pattern III, and that is two in the pattern IV. As to level 2, the number of printing pixels is two in the patterns I and II, that is one in the pattern III, and that is three in the pattern IV. By comparing the four kinds of patterns, it is known that in the patterns I and II, the number of printing pixels increases in regular order as the level number increases, but in the pattern III, the number of printing pixels is made less than that in the patterns I and II and in the pattern IV, the number of printing pixels is increased compared to that in the patterns I and II. It is known that the power of low frequency components in the frequency region included in the binary data generated by using the pattern III is larger than the power of low frequency components in the frequency region included in the binary data generated by using the patterns I and II. Further, it is also known that the power of high frequency components in the frequency region included in the binary data generated by using the pattern IV is larger than the power of high frequency components in the frequency region included in the binary data generated by using the patterns I and II. In the present specification, the pattern in which the number of printing pixels increases in regular order as the level number increases, as the patterns I and II, is referred to as a first dot arrangement pattern. The pattern in which the number of printing pixels is larger or smaller than that of the first dot arrangement pattern, such as the pattern III and the pattern IV, is referred to as a second dot arrangement pattern. In the present embodiment, these four kinds of dot arrangement patterns are prepared and at the boundary part where the black streak is comparatively apt to be conspicuous, the binarization processing is performed by using the pattern III in order to make the black streak no longer conspicuous by suppressing the number of dots. At the boundary part where the white streak is comparatively apt to be conspicuous, the binarization processing is performed by using the pattern IV in order to make the white streak no longer conspicuous by increasing the number of dots.
n the case where the pattern selection table A is used, in the three-pixel widths at the upper end and the lower end, printing is performed with more dots increased by addition than those at the center as a result. In other words, the pattern selection table A will be a table effective in the case where the white streak is conspicuous in the vicinity of the boundary between the region that is printed by the eject ports at the lower end in the first printing scan and the region that is printed by the eject ports at the upper end in the second printing scan.
On the other hand, in the pattern selection table B shown in
The conspicuity of the black streak or the white streak is varies in accordance with the image density. For example, even in the case where printing is performed on the same printing medium by using the same ink, the black streak that is conspicuous in the low density may be less conspicuous in the high density. In such circumstances, in the case where the pattern selection table B shown in
Further, as is already explained in the section of the background of the invention, the intensity of the streak (i.e., density) in range in which the joint streak appears (thickness of the joint streak) is not uniform. Specifically, the intensity of the joint streak is the highest at the boundary between the printing scan that is performed earlier on the printing medium and the printing scan that is performed following the previous printing scan and the intensity thereof becomes lower at a position more distant from the boundary in the conveyance direction. In other words, an appropriate ratio of adding or reducing dots in order to make the joint streak less conspicuous varies depending on the position even in the same range in which the joint streak appears. Consequently, preferably, whether the pattern selection table A or B is used is also determined in accordance with the position of each pixel. In view of the above, in the present embodiment, a table setting matrix and a density increase/decrease parameter P for selecting an appropriate dot arrangement pattern in accordance with the gradation value and the position of the pixel are prepared.
In the present embodiment, each parameter in the table setting matrix α is compared with the density increase/decrease parameter P. Then, based on the relationship in magnitude between both, whether the dot arrangement pattern is set in accordance with the pattern selection table A or the dot arrangement pattern is set in accordance with the pattern selection table B is determined. By doing so, it is possible to adjust the ratio in which the pattern selection table A and the pattern selection table B are set in the three-pixel widths at the upper end and the lower end that affect the joint streak by setting the density increase/decrease parameter P large or small.
At this time, it is sufficient for the value of the density increase/decrease parameter P to be set in accordance with the conspicuity of the joint streak and the setting method is not limited in particular. In the present embodiment, it is sufficient to adjust the value of the density increase/decrease parameter P so that the more conspicuous the white streak, the more the pattern selection tables A are set and the more conspicuous the black streak, the more the pattern selection tables B are set in an image that is printed. The conspicuity of the white streak or the black streak can be determined by, for example, the L*a*b* value of the original image data, but it is also possible to use the density data 602 of each ink color in each pixel as the evaluation value.
In the present embodiment, the dot arrangement pattern that is used in each pixel is determined by comparing the parameter set for each pixel by the table setting matrix α with the density increase/decrease parameter P. Specifically, in the case where the parameter of the table setting matrix α is larger than the density increase/decrease parameter P, to the pixel, the dot arrangement pattern set to the corresponding pixel of the pattern selection table A is allocated. On the other hand, in the case where the parameter of the table setting matrix α is equal to or smaller than the density increase/decrease parameter P, to the pixel, the dot arrangement pattern set to the corresponding pixel of the pattern selection table B is allocated.
For example, in the two pixel rows at the center of the table setting matrix α, the parameter is uniformly “16” and this is larger than the density increase/decrease parameter P=“8”. Consequently, in this region, the dot arrangement patterns set in the corresponding region of the pattern selection table A are set exactly in accordance with the array. On the other hand, the parameters in the three pixel row regions from the upper and lower ends of the table setting matrix α are “1” to “16” and half the parameters are larger than the density increase/decrease parameter P=“8” but the remaining half are equal to or less than the density increase/decrease parameter P=“8”. Because of this, in this region, in the pixels in which the parameter is larger than P=“8”, the dot arrangement patterns I and II set in the pattern selection table A are set. Further, in the pixels in which the parameter is equal to or less than P=“8”, the dot arrangement patterns I and II set in the pattern selection table B are set. As a result, in the case where the density increase/decrease parameter P=“8”, the dot arrangement pattern I or II is set in all the regions.
Here, referring to
On the other hand,
Here, referring to
Further,
Here, referring to
As above, according to the present embodiment, it is made possible to adjust the addition or reduction of dots in accordance with conspicuity of the black streak and the white streak while using one set of the table setting matrix α and the pattern selection tables A and B in order to that the black streak and the white streak are no longer conspicuous.
Here, by referring to the table setting matrix α shown in
Here, by referring to the enlarged view in
In the first embodiment, the configuration is explained in which by adjusting the density increase/decrease parameter P in the range of 1 to 16, the increase/decrease of dots is adjusted and thus both the black streak and the white streak can be dealt with. However, in the printing apparatus, only the white streak or only the black streak is problematic in many cases, and in such cases, it is sufficient to deal with one of them.
On the other hand,
On the other hand, in the pattern selection table E shown in
In the present embodiment also, it is possible to use the table setting matrix α shown in
In the table setting matrix α, as explained already, parameters in each pixel row are set such that the number of parameters smaller than the density increase/decrease parameter P decreases in the order from the first pixel rows at the upper and lower ends. Consequently, the number of pixels in which the pattern III or IV is set is the largest in the pixel row adjacent to the boundary part and the number of such pixels decreases as the pixel row becomes more distant from the boundary part. As a result, the ratio of the increase/decrease of dots is higher in the pixel row closer to the boundary part where the intensity of the joint streak is high and the ratio decreases as the pixel row becomes more distant from the boundary, and therefore, it is made possible to output a uniform image with no difference in density in all the regions including the boundary part.
In the present embodiment, both in the case where the black streak is reduced and in the case where the white streak is reduced, it is sufficient to set the value of the density increase/decrease parameter P to a smaller value in order to increase the ratio of the addition or reduction of dots. For example, in the case where the density data 602 of the black K is used as the evaluation value as in the first embodiment for the purpose of reducing the white streak, the larger the evaluation value, the less the white streak becomes apt to be conspicuous. Therefore, in this case, in contrast to
In the above-described embodiment, explanation is given by using the configuration in which the number of dots is adjusted on both sides of the region, i.e., in the three pixel rows at the upper end and in the three-pixel width at the lower end. However, in the printing scans performed twice successively, the joint streak does not necessarily appear in symmetry with respect to the boundary part as a center. There is a case where the joint streak appears at a position above the boundary part or a case where the joint streak appears at a position below the boundary part. In view of such circumstances, in the present embodiment, a configuration is explained, in which a correction width is set at only one of the upper end and the lower end of the eject port column (i.e., at only one of the upper end and the lower end of the pattern selection table).
On the other hand, in the pattern selection table G shown in
As described above, by using both the pattern selection tables F and G shown in
On the other hand,
On the other hand, in the pattern selection table I shown in
As described above, by using both the pattern selection tables H and I shown in
At this time, by referring to
In the embodiment explained above, the table setting matrix is such that the ratio in which the two pattern selection tables are set linearly changes for each pixel row in the three pixel rows, which is the target region of correction. Specifically, as is known by referring to
In the above, explanation is given by using the configuration in which the number of dots is adjusted in the region of the three pixel rows from the boundary part. However, the range in which the joint streak appears (width of the joint streak) varies depending on the kind of ink or the kind of printing medium. Consequently, it is preferable to adjust the range in which the number of dots also in accordance with the range in which the joint streak appears.
In the printing apparatus, it is possible to store a variety of combinations, such as the combination of the pattern selection table A and B and the table setting matrix α explained in the first embodiment and the combination of the pattern selection tables J and K and the table setting matrix ε. By doing so, it is possible to eliminate the joint streak by an appropriate combination in accordance with each situation even in the case where the state of the joint streak has changed resulting from a variety of conditions, such as the kind of printing medium, the kind of ink, and the printing mode.
Further, the parameter array of the correction row in the table setting matrix is not limited in particular as long as the parameter array has the characteristics that the number of pixels in which a parameter smaller than the density increase/decrease parameter P is set changes at least in two steps from the uppermost or lowermost end. In the region in which correction is performed, in the dot arrangement patterns (patterns I, II) whose number of dots is the default value, the dot arrangement patterns (patterns III, IV) whose number of dots is not the default value are arranged as a result. At this time, even in the case where the density can be made uniform in the entire region in which correction is performed, there is a possibility that the texture or the feeling of granularity will occur in the vicinity of the boundary part depending on the state where dot arrangement patterns whose number of dots is different from the default value are arranged. Consequently, it is preferable to arrange dot arrangement patterns whose number of dots is different from the default value in a relatively highly dispersed state. In this case, it is effective to arrange the individual parameters in the Bayer arrangement or so as to have the blue noise characteristics in the table setting matrix.
In the above-described embodiment, the number of pixels in the Y direction in the pattern selection table and in the table setting matrix is set to the number of pixels equal to the width of the eject port column used in printing, but the size of the pattern selection table and the table setting matrix is not limited to this. However, in the case where a plurality of pattern selection tables is arranged as in
Furthermore, in the above, explanation is given by premising that the one-pass printing is performed, but the configuration of the present invention can also be adopted even in the case where multi-pass printing is performed. Even in the case of multi-pass printing, the position where the joint streak appears is fixed, and therefore, by preparing pattern selection tables and a table setting matrix whose correction width is matched with such a position and by adjusting the correction width in accordance with the printing conditions, it is possible to obtain the same effect as that in the above-described embodiment.
Furthermore in the above, the parameter dispersed state in the table setting matrix is caused to have the characteristics so as to decrease the ratio of the addition or reduction of dots for correction as the pixel row becomes more distant from the boundary part, but the present invention is not limited to the aspect such as this. For example, it is also possible to perform correction by using a mask pattern by which the ratio of the addition or reduction of dots gradually changes from the boundary part toward the center part by counting the number of pieces of dot data after binarization in the vicinity of the boundary part and setting the counted value as the density increase/decrease parameter P. In either aspect, in the case where the degree of the increase/decrease of dots to and from the original image data decreases as the distance from the boundary part increases at the time of performing the addition or reduction of dots in the vicinity of the boundary part of the input image data, it is possible to obtain the same effect of the prevent invention.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment (s) and/or that includes one or more (ASIC)) for performing the functions of one or more of the above-described embodiment (s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment (s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment (s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-265378 filed Dec. 24, 2013, which is hereby incorporated by reference wherein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-265378 | Dec 2013 | JP | national |