1. Field of the Invention
The present invention relates to an ink-jet printing apparatus and an ink-jet printing method.
2. Description of the Related Art
An ink-jet printing apparatus has been known conventionally in which a print head having a plurality of printing elements which generate power for discharging ink is driven so that ink can be discharged onto a printing medium for printing an image. It has been known that various temperature controls are executed based on temperatures detected by a temperature sensor provided in the print head in the ink-jet printing apparatus. Generally, a diode sensor having excellent heat responsiveness is used as the temperature sensor in the print head.
Such a diode sensor varies in characteristics due to manufacturing errors, and there is a possibility that a temperature deviation from an actual temperature may be detected due to error from a reference characteristic. In order to address this problem, Japanese Patent Laid-Open No. 7-209031 discloses an ink-jet printing apparatus internally having a temperature sensor separately from a diode sensor so that a detected value from the diode sensor can be corrected based on the detected value from the temperature sensor to calculate a correct temperature. Use of a thermistor of as the temperature sensor has also been known because manufacturing errors for thermistors do not occur easily though thermistors have lower heat responsiveness than that of diode sensors. More specifically, it is disclosed that, in a case where, for example, a detected temperature from a thermistor before printing is Tthr [° C.] and a detected temperature from a diode sensor is Tdef [° C.], a correction value Tadj (=Tthr−Tdef) is added to the detected temperature Tdi from the diode sensor under the temperature control to calculate a correct temperature.
Japanese Patent Laid-Open No. 7-209031 further discloses that a detected value from the diode sensor is corrected based on a detected value from the thermistor every predetermined period of time. It is disclosed that even when the correction is not performed on the diode sensor at a proper time point, the correction may be performed at the next time point so that the accuracy of the correction of the detected value from the diode sensor can be increased with a lapse of time.
It has been found that, when the print head is mounted to the ink-jet printing apparatus, the temperature within the print head may be largely different from the temperature within the ink-jet printing apparatus, and, there is a possibility in this case that the correction may not be executed properly on the diode sensor.
For example, when the temperature within the print head is significantly higher than the temperature within the ink-jet printing apparatus, the temperature within the print head decreases gradually after the print head is mounted within the ink-jet printing apparatus. In this case, the temperature detected by the diode sensor immediately after the print head is mounted, for example, is higher than the ambient temperature within the printing apparatus detected by the thermistor. Even though the correction of the detected value from the diode sensor is performed at this time point, the difference between the detected temperature from the diode sensor and the detected temperature from the thermistor includes a deviation due to manufacturing error of the diode sensor as well as an effect of an alienation between the temperature of the print head and the ambient temperature within the printing apparatus. As a result, the correction may not be executed properly.
In order to overcome this problem, the proper correction may be executed by executing the correction after the temperature of the print head decreases to a value closer to the temperature within the ink-jet printing apparatus. In this case, various temperature controls may not be executed until the correction is executed on the diode sensor, and a standby state may occur, taking time until the printing is started.
However, in accordance with the present invention, correction of a detected temperature from a temperature sensor provided in a print head can be executed properly without causing a waiting time.
For example, according to an aspect of the present invention, there is provided an ink-jet printing apparatus to which a print head is mountable for printing an image by driving the print head, the print head having at least a plurality of printing elements configured to generate power for discharging ink and a first detecting element configured to detect a temperature, the ink-jet printing apparatus including a second detecting element provided within the ink-jet printing apparatus and configured to detect a temperature, a first acquiring unit configured to acquire first information regarding a temperature detected by the first detecting element at a first time point after the print head is mounted to the ink-jet printing apparatus and acquire second information regarding a temperature detected by the first detecting element at a second time point after the first time point and before image printing is started, a second acquiring unit configured to acquire third information regarding a temperature detected by the second detecting element before the image printing is started, a third acquiring unit configured to acquire fourth information regarding a correction value for correcting the temperature detected by the first detecting element after the second time point, a correcting unit configured to correct the temperature detected by the first detecting element based on the correction value described in the fourth information acquired by the third acquiring unit after the second time point, and a control unit configured to control driving of the print head based on the temperature corrected by the correcting unit, wherein the third acquiring unit (i) acquires the fourth information regarding the correction value based on the temperature described in the second information acquired by the first acquiring unit and the temperature described in the third information acquired by the second acquiring unit in a case where a temperature difference between the temperature described in the first information and the temperature described in the second information acquired by the first acquiring unit is lower than a predetermined threshold, and (ii) acquires the fourth information regarding the correction value without using the third information acquired by the second acquiring unit in a case where the temperature difference between the temperature described in the first information acquired by the first acquiring unit and the temperature described in the second information is higher than the predetermined threshold.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention will be described in detail below with reference to drawings.
With reference to
This type of printer may print an image on a unit region on a printing medium by performing one scan (so-called “one-path print”) or may print an image by performing a plurality of scans (so-called “multi-path print”). In order to perform the one-path print, a printing medium may be conveyed by an amount equivalent to the bandwidth between scans. In order to perform the multi-path print, a plurality of scans may be performed on a unit region on a printing medium, and the unit region may be conveyed by an amount equivalent to about one band, without performing the conveyance for each scan. According to another method for the multi-path print, a printing medium may be fed by an amount equivalent to about 1/n band after data thinned by a predetermined mask pattern is printed thereon for each scan, and scanning is performed thereon again so that an image is completed by performing a plurality of (n) scans with different nozzles associated with printing and conveyances on a unit region of the printing medium.
A carriage belt may be used for transmission of a driving force from the carriage motor to the carriage unit 2. However, instead of such a carriage belt, other driving systems may be used including one having a lead screw which is driven to rotate by a carriage motor and extends in the X direction and an engaging portion which is provided in the carriage unit 2 and engages with a groove of the lead screw, for example.
The fed printing medium P is conveyed by being held between a feed roller and a pinch roller and is guided to a printing position (main scanning region of the print head) on a platen 4. In a normal stop state, a cap provided on a face of the print head is opened before a printing operation so that the print head or carriage unit 2 gets ready for scanning. After that, when data for one scan is accumulated in a buffer, the carriage unit 2 is caused to scan by the carriage motor for performing the printing processing as described above.
In this case, a flexible wiring substrate 19 is attached to the print head for supplying signal pulses for driving a discharge operation and a signal for head temperature adjustment. The flexible substrate has the other end connected to a control unit 100 (which will be described below) including a control circuit such as a CPU which executes control over this printer. A thermistor 121 (second detecting element) is provided in vicinity of the control unit. The thermistor 121 is a temperature sensor configured to detect an ambient temperature within the ink-jet printing apparatus.
The print head is connected to a plurality of independent main tanks corresponding to ink colors through a plurality of ink supply tubes 45. Thus, inks of colors stored in the main tanks can be supplied into the print head. Details of this ink supply system will be described below. The ink-jet printing apparatus further includes a capping mechanism (not illustrated) and a recovery mechanism (not illustrated). The capping mechanism is used for recovering and maintaining an ink discharge state of the print head 3 and can cover a discharge port of the print head. The recovery mechanism has a pump mechanism capable of suction of ink from the discharge port through the cap.
The print head 9 has a joint portion 25, and the ink supply tube is connected to the joint portion 25.
Two printing element substrates 10a and 10b made of a semiconductor, for example, are attached to a discharge port surface facing a printing medium P of the print head 9. The printing element substrates 10a and 10b have discharge port arrays along the Y direction orthogonal to the X direction. In detail, the printing element substrate 10a has in the X direction a discharge port array 11 configured to discharge a black (Bk) ink, a discharge port array 12 configured to discharge a gray ink, a discharge port array 13 configured to discharge a light gray (Lgy) ink, and a discharge port array 14 configured to discharge a light cyan (Lc) ink. The printing element substrate 10b has in the X direction a discharge port array 15 configured to discharge a cyan (C) ink, a discharge port array 16 configured to discharge a light magenta (Lm) ink, a discharge port array 17 configured to discharge a magenta (M) ink, and a discharge port array 18 configured to discharge an yellow (Y) ink.
Printing element arrays, which will be described below, are provided at positions facing the discharge port arrays 11 to 18 behind the printing element substrates 10a and 10b. For simplicity, the printing element arrays at positions facing the discharge port arrays 11 to 18 will be called printing element arrays 11′ to 18′ below.
Each of the discharge port arrays 11 to 18 according to this embodiment is arranged in two lines. These two lines have 768 discharge ports 30 each, a total of 1536 discharge ports 30, in the Y direction (the direction of the lines) and printing elements (hereinafter, also called main heaters) 34 in the Y direction (predetermined direction). The discharge ports 30 in the two lines are displaced by 1 dot from the opposite ones at 1200 dpi (dots/inch). The printing elements 34 are electrothermal transducers facing the discharge ports 30. According to this embodiment, 1200 dpi is equivalent to about 0.02 mm. By applying pulses to the printing elements, thermal energy for discharging ink from the discharge ports can be generated. Having described above that electrothermal transducers are used as the printing elements, piezoelectric transducers can be used instead.
A total of nine diode sensors (first detecting elements) S1 to S9 are provided on the printing element substrate 10b as temperature sensors configured to detect temperatures of ink in vicinity of the printing elements.
Two diode sensors S1 and S6 thereof are arranged in vicinity of one end portion in the Y direction of the discharge port arrays 15 to 18. More specifically, the diode sensors S1 and S6 are arranged at positions 0.2 mm away from the discharge ports at one end in the Y direction. The diode sensor S1 is arranged in the middle between the discharge port array 15 and the discharge port array 16 in the X direction, and the diode sensor S6 is arranged in the middle between the discharge port array 17 and the discharge port array 18 in the X direction.
Two diode sensors S2 and S7 are arranged in vicinity of the other end portion in the Y direction of the discharge port arrays 15 to 18. The diode sensor S2 is arranged in the middle between the discharge port array 15 and the discharge port array 16 in the X direction, and the diode sensor S7 is arranged in the middle between the discharge port array 17 and the discharge port array 18 in the X direction. More specifically, the diode sensors S2 and S7 are arranged at positions 0.2 mm away from the discharge ports at the other end in the Y direction.
Five diode sensors S3, S4, S5, S8, and S9 are arranged at the centers in the Y direction of the discharge port arrays 15 to 18. The diode sensor S4 is arranged in the middle between the discharge port array 15 and the discharge port array 16 in the X direction, and the diode sensor S5 is arranged in the middle between the discharge port array 16 and the discharge port array 17 in the X direction. The diode sensor S8 is arranged in the middle between the discharge port array 17 and the discharge port array 18 in the X direction. The diode sensor S3 is arranged outside the discharge port array 15 in the X direction, and the diode sensor S9 is arranged outside the discharge port array 18 in the X direction.
According to this embodiment, because the temperatures of ink within the discharge ports near the diode sensors are substantially equal to the temperature of the printing element substrate 10b at the position where the diode sensors are placed, the temperature of the printing element substrate 10b is handled as the temperature of the ink.
Heaters (hereinafter, also called sub-heaters) 19a and 19b configured to increase the temperature of ink within the discharge ports are provided on the printing element substrate 10b. The heater 19a continuously surrounds a side having the diode sensor S3 in the X direction of the discharge port array 15. Similarly, the heater 19b continuously surrounds a side having the diode sensor S9 in the X direction of the discharge port array 18. It should be noted that the heaters 19a and 19b position 1.2 mm outside the discharge port array 13 in the X direction and 0.2 mm outside the diode sensors S1, S2, S6, and S7 in the Y direction.
The printing element substrate 10b has thereon a substrate 31 having various circuits and a discharge port member 35 made of a resin, in addition to the diode sensors S1 to S9 and the sub-heaters 19a and 19b. A common ink chamber 33 is provided between the substrate 31 and the discharge port member 35, and an ink inlet 32 is communicated to the common ink chamber 33. An ink flow channel 36 extends from the common ink chamber 33, and the ink flow channel 36 is communicated to the discharge ports 30 in the discharge port member 35. A bubbling chamber 38 is provided at an end closer to the discharge ports 30 of the ink flow channel 36, and the bubbling chamber 38 has the printing elements (main heaters) 34 at positions facing the discharge ports 30. A nozzle filter 37 is provided between the ink flow channel 36 and the common ink chamber.
Having described the printing element substrate 10b in detail above, the printing element substrate 10a has substantially the same configuration.
According to this embodiment, a representative temperature is calculated based on temperatures detected by the diode sensors S1 to S9, and various temperature controls are executed based on the representative temperature. For simplicity, the temperature detected by the diode sensor S5 is used as the representative temperature for the various temperature controls below. However, this embodiment is not limited to a configuration in which a detected temperature from a single diode sensor is always used commonly for all temperature controls. For example, a combination of temperature sensors used for calculating the representative temperature for each type of temperature control can be changed. As an example, an average value of temperatures detected by the four diode sensors S1, S2, S3, and S4 surrounding the printing element array 15x may be used as the representative temperature when a driving pulse control which controls a driving pulse to be applied to the printing elements in accordance with the temperature is executed in the printing element array 15x. In order to perform the driving pulse control on the printing element array 17x, the surrounding four diode sensors S6, S7, S8, and S9 may be used. In order to keep warm the ink being used for printing, sub-heater heat control may be performed on the sub-heater 19a in which the sub-heater may be driven if the temperature of the ink is equal to or lower the predetermined threshold and the driving of the sub-heater is stopped if the temperature is higher than the predetermined threshold. In this case, a minimum value of temperatures detected by the three diode sensors S1, S2, and S3 in vicinity of the sub-heater 19a may be handled as the representative temperature. Furthermore, according to this embodiment, a plurality of diode sensors as illustrated in
The cap 305 is positioned off a printing region and is usable for protection and moisturizing of the ink discharge surface of the print head 9 when printing is not performed and is also usable for receiving auxiliary-discharged ink before printing is started or during printing and for suction recovery of the discharge surface of the print head 9. The waste ink settled within the cap 305 due to an auxiliary discharge is collected by the suction pump 312 and is stored in the waste ink accommodating unit 304 through the waste ink collection pipe 323. When a suction recovery is performed, the ink discharge surface of the print head 9 and the cap 305 are tightly attached. The suction pump 312 is operated to suck ink from the print head 9, and the ink is stored in the waste ink accommodating unit 304 through the waste ink collection pipe 323.
The auxiliary discharging unit 311 may be placed on the opposite side of the cap 305 off a printing region or may be placed at a proper position in the printing region. The waste ink settled in the auxiliary discharging unit 311 is stored in the waste ink accommodating unit 304 through the waste ink collection pipe 323 by gravity. The print head 9 has a wall partially including a flexible film 331. The flexible film 331 may stretch and shrink in accordance with the internal pressure change of the print head 9 due to ink consumption. A stretching or shrinking operation of the flexible film 331 is transmitted to an arm 332 connected to the flexible film 331 and is further transmitted to a valve 333 connected to a tip of the arm 332 on the opposite side of the flexible film 331. The valve 333 covers a connecting portion between the ink supply pipe 313 and the print head 9 and opens or closes in accordance with ink consume based on the mechanism as described above.
When one print head is mounted in an ink-jet printing apparatus for the first time, such as the time when the ink-jet printing apparatus is used first or the time when the print head is replaced, the ink supply system as described above is used to execute an initial ink filling operation. The initial ink filling operation will be described below in detail.
First, the booster pump 330 is used to depressurize inside of the pressurizing chamber 321 so that ink is led from the ink tank 310 to the ink supply pipe 313. Next, the ink supply valve 316 is opened, and the booster pump 330 is operated in the direction of depressurization so that ink led from the ink tank 310 is stored in the pressurizing chamber 321. When a predetermined amount of ink is stored, the depressurization is terminated, and the ink supply valve 316 is closed.
Next, the booster pump 330 is operated in the direction of pressurization to pressurize the ink stored in the pressurizing chamber 321 to a predetermined pressure level. Then, the cap 305 is tightly attached to the print head 9, and the suction pump 312 is operated to depressurize inside of the print head 9. Thus, the valve 333 is opened, and the ink can be supplied to the print head 9.
When a predetermined amount of ink is supplied into the print head 9, the operation of the suction pump 312 is stopped, and the cap 305 is separated from the print head 9. As a result, after ink is supplied until the valve 333 is closed by balance of negative pressure within the print head 9, the ink supply is terminated. Through the steps as described above, the initial ink filling operation on the print head 9 completes.
A recovery processing counter 116 counts the amount of ink when the recovery processing device 120 forces the print head 9 to output ink. An auxiliary discharge counter 117 counts auxiliary discharges performed before a printing operation is started, when a printing operation ends, and during a printing operation. A borderless ink counter 118 counts ink printed outside a printing medium region when borderless printing is performed, and a discharge dot counter 119 counts ink discharged during a printing operation.
Displacements of a gradient (a) due to manufacturing error of diode sensors are not found greatly where the relationship of voltage to temperatures in diode sensors used according to this embodiment is represented by a linear function (y=ax+b). On the other hand, the offset value represented by intercept (b) is significantly displaced when manufacturing error occurs. According to this embodiment, a thermistor having less effect of manufacturing error is provided within the ink-jet printing apparatus as described above, and the offset values for the diode sensors within the print head are corrected by using a detected temperature from the thermistor at every predetermined time interval. A diode correction value Tadj for correcting the offset value can be calculated by Expression (1). For simplicity, it is defined below that a temperature detected by a diode sensor for calculating the correction value Tadj is Tdi and that a temperature detected by the thermistor for calculating the correction value Tadj is Tthr.
Tadj=Tthr−Tdi (1)
The calculated correction value Tadj is stored in the RAM 103. The correction value is used when a temperature control such as a driving pulse control and a sub-heater heat control is performed. Correcting a temperature detected by a diode sensor can correct the offset value of the diode sensor.
First, a temperature Tdic detected by a diode sensor immediately before a temperature control is executed is acquired in step S91. Next, in step S92, a correction value Tadj stored in the RAM 103 is read out. In step S93, a correction temperature Th is calculated in accordance with an expression (Expression (2)) for correction of a temperature detected by a diode sensor.
Th=Tdic+Tadj (2)
As understood from Expression (1) and Expression (2), if the detected temperature of the thermistor is higher than the detected temperature from a diode sensor upon calculation of a correction value, the correction temperature is higher than the temperature before the correction (Th>Tdic). Conversely, if the detected temperature from the thermistor is lower, the correction temperature is lower than the temperature before the correction (Th<Tdic).
Then, the correction temperature Th calculated in step S94 is used to execute a temperature control. It should be noted that various controls can be executed as the temperature control, and, for example, a driving pulse control, a sub-heater heating control, a short-pulse heating control may be executed.
With the configuration as described above, proper correction processing can be executed for correcting a detected temperature from a diode.
Method for Determining Improper Correction
In a case where the correction processing is performed on a detected temperature from a diode as described above when a print head is mounted to the ink-jet printing apparatus for the first time, there is a possibility that the deviation of the offset value may be larger in some states of the print head, compared with a case where the correction processing is not executed. Hereinafter, such a correction will also be called an improper correction. The improper correction significantly occurs particularly when the temperature of the print head is largely different from the ambient temperature within the ink-jet printing apparatus and the print head is not adapted to the ambient temperature within the printing apparatus. An improper correction causing mechanism will be described in detail below.
As illustrated in
From the first time point, the initial ink filling operation as described above is executed (period B). Here, the temperature of ink within the ink tank 310 is about 30° C. because it is sufficiently adapted to the ambient temperature. The ink having a significantly lower temperature than the temperature of the print head is filled within the print head so that the temperature of the print head more rapidly decreases than the period A due to heat transfer to ink. As a result, a temperature Tdi2 detected by the diode sensor decreases to 45° C. at a time point (second time point) immediately after the end of the initial ink filling operation. Also at the second time point, the actual temperature of the print head is different from the detected temperature from the diode sensor and is 50 (=45+5)° C., like the first time point. Because the ambient temperature is 30° C., the print head is not still adapted to the ambient temperature within the printing apparatus even at the second time point.
The ink filling operation is not performed from the second time point until an ink discharge operation is started (period C). On the other hand, heat exchange is continuously performed on the ink already filled in the print head so that the temperature of the print head decreases until the temperature of the print head is substantially equal to the ambient temperature within the printing apparatus.
There is a high possibility that performing a temperature correction for the diode sensor in accordance with Expressions (1) and (2) when there is an alienation between the temperature of the print head and the ambient temperature within the printing apparatus may result in an increase of the deviation of detected temperature due to manufacturing error of the diode sensor compared with a case without performing the temperature correction. This point will be described below as an example of the case there a temperature correction is executed at the second time point in
At the second time point, the detected temperature Tdi2 from the diode sensor is 45° C., and the detected temperature Tthr from the thermistor is 30° C. Thus, calculating the diode correction value Tadj in accordance with Expression (1), Tadj=−15° C. is acquired. As described above, the ideal correction value Tadj is equal to 5° C. for the diode sensor. On the other hand, when the temperature correction is not performed, the correction value Tadj corresponds to 0° C. In other words, though the deviation of correction value Tadj from the ideal correction value when a temperature correction is not performed is −5 (=0−5)° C., performing the temperature correction result in a deviation of −20(=−15−5)° C. of correction value Tadj from the correction value. Performing the temperature correction further increases the deviation of detected temperature (improper correction).
On the other hand, as illustrated in
As in
There may be considered that the difference between the results of the temperature correction processing performed in the cases in
In view of this point, according to this embodiment, the temperature correction is performed if the print head has been adapted to the ambient temperature within the printing apparatus, and the temperature correction is not performed if not. Then, the detected temperature from the diode sensor is directly used as the correction temperature without making any change thereto.
Whether the print head has been adapted to the ambient temperature within the printing apparatus or not may be determined by using a difference between the detected temperature Tdi1 from the diode sensor at the first time point and the detected temperature Tdi2 from the diode sensor at the second time point.
As illustrated in
On the other hand, as illustrated in
From this, it is understood that whether the print head has been adapted to the ambient temperature within the printing apparatus or not can be determined based on a difference in detected temperatures from the diode sensor during the initial ink filling operation.
Processing for Correcting Diode-Sensor-Detected Temperature
In view of the aforementioned point, according to this embodiment, a difference between temperatures detect from the diode sensor before and after the initial ink filling operation performed when the print head is mounted for the first time. If the temperature difference is lower than a predetermined threshold, it is determined that the effect of an improper correction is small. Then, the detected temperature from the thermistor is used to execute the processing for correcting a detected temperature from the diode sensor. On the other hand, if the temperature difference is higher than the predetermined threshold, it is determined that the effect of an improper correction is large. Then, the processing for correcting a detected temperature from the diode sensor by using a detected temperature from the thermistor is not executed.
After the print head is mounted to the printing apparatus for the first time, a detected temperature Tdi1 is acquired from the diode sensor S5 mounted in the print head 9 at the first time point immediately before an ink filling operation starts (step S01). Information describing the acquired detected temperature Tdi1 is further stored in the RAM 103.
Next, the initial ink filling operation as described above is executed (step S02). It should be noted that the operation to be performed in step 02 is conventionally executed if a print head is mounted to a printing apparatus for the first time. Therefore, the execution of step S02 does not increase the waiting time for a user compared with the conventional processing.
Next, a detected temperature Tdi2 is acquired from the diode sensor S5 at the second time point immediately after the initial ink filling operation ends (step S03). Information describing the acquired detected temperature Tdi2 is further stored in the RAM 103. It should be noted that whether the initial ink filling operation has ended or not may be determined based on whether the time period measured from the start of the initial ink filling operation exceeds a predetermined initial ink filling operation period. Alternatively, it may be determined based on whether the count of the remaining ink amount within the ink tank 310 decreases by a predetermined initial ink filling amount or not.
Next, a detected temperature Tthr is acquired from the thermistor 121 provided within the printing apparatus (step S04). As described above, the detected temperature Tthr indicates the ambient temperature within the printing apparatus. Information describing the acquired detected temperature Tthr is stored in the RAM 103.
Next, a diode-correction-value process is executed for acquiring the correction value Tadj for correction of an offset value of the diode sensor (step S05). The diode-correction-value calculation process will be described below.
The correction value Tadj acquired in step S05 is stored in the RAM 103 (step S06). In the subsequent temperature control, the detected temperature Tdic acquired from the diode sensor and the correction value Tadj stored in the RAM 103 are used to acquire a correction temperature Th in accordance with Expression (2). By executing the temperature control based on the correction temperature Th, proper temperature control can be performed.
First, a temperature difference ΔT in detected temperature from the diode sensor S5 before and after the initial ink filling operation is calculated (step S05-01). More specifically, an absolute value of the difference between the detected temperature Tdi1 at the first time point acquired in step S01 and the detected temperature Tdi2 at the second time point acquired in step S03 is calculated as the temperature difference ΔT. There is a possibility that the improper correction as described above may be performed in both cases where the temperature of the print head is significantly higher than the ambient temperature within the printing apparatus and where it is significantly lower conversely. The use of the absolute value of the difference can prevent the temperature difference ΔT having a negative value.
Next, whether the temperature difference ΔT calculated in step S05-01 is larger than a predetermined threshold temperature Tmax or not is determined (step S05-02). The threshold temperature Tmax is a temperature predetermined in view of the possibility of the improper correction and may be take any of various values based on the thermal capacity of the print head 9 and reading errors of the diode sensor. According to this embodiment, the threshold temperature Tmax is 7° C.
If it is determined in step S05-02 that the temperature difference ΔT is higher than the threshold temperature Tmax, it is determined that the possibility of occurrence of an improper correction is higher because there is a possibility that the print head has not been adapted to the ambient temperature within the printing apparatus as illustrated in
Having described the case where the diode correction value Tadj is equal to 0 in step S05-03, other configurations may also applicable. For example, a print head may be calibrated in advance in a factory, and a diode correction value Tfact in the factory may be written to an EEPROM, for example, provided in the print head as a predetermined value. Then, in step S05-03, the relationship of diode correction value Tadj=Tfact may be applied. Thus, the diode sensor reading error of print head temperature can be reduced properly.
On the other hand, if it is determined in step S05-02 that the temperature difference ΔT is equal to or lower than the threshold temperature Tmax, it is determined the possibility of occurrence of improper correction is low because there is a high possibility that the print head has already been adapted to the ambient temperature within the printing apparatus as illustrated in
As described above, according to this embodiment, when the difference in detected temperature from a diode sensor between the first and second time points is relatively high, the diode-sensor temperature correction processing using a thermistor is not performed. Thus, improper corrections which may possibly occur when the print head has not been adapted to the ambient temperature within the printing apparatus can be reduced. On the other hand, when the detected temperature difference is relatively low, the diode-sensor temperature correction processing using the thermistor is performed. Thus, when the print head has been adapted to the ambient temperature within the printing apparatus and there is a low possibility that an improper correction may occur, the difference due to manufacturing error of the diode sensor can be reduced. Furthermore, because the temperature difference before and after the initial ink filling operation is used for determining whether there is a high possibility that an improper correction may occur or not, proper temperature correction processing can be performed without waiting time for users.
According to the first embodiment, a correction value Tadj for correcting a diode-sensor detected temperature immediately after a print head is mounted to a printing apparatus for the first time, and the correction value Tadj is used to correct the diode-sensor detected temperature in the subsequent temperature control.
On the other hand, according to a second embodiment, the correction value Tadj is calculated again at a predetermined time point after the correction value Tadj is calculated first, and the correction value Tadj is updated at every predetermined time point.
The description regarding the same parts as those in the first embodiment will be omitted.
According to the first embodiment, if it is determined that a print head has not been adapted to the ambient temperature within a printing apparatus immediately after the print head is mounted thereto, the diode correction value Tadj is set to 0. In this case, an improper correction can be avoided, but the setting of correction value Tadj=0 is continuously used in the subsequent temperature adjustment processing.
On the other hand, according to this embodiment, the diode-sensor detected temperature correction processing is executed again after a lapse of a predetermined threshold time period after one printing job ends and the print head is closed with the cap (cap close). The threshold time period may be a time period enough for the temperatures of the print head and the printing apparatus to decrease to a normal temperature after the cap close. According to the second embodiment, the threshold time period is 60 minutes.
If it is determined that 60 minutes has been passed since the execution of the cap close (step S11), a detected temperature Tdi from the diode sensor is acquired (step S12). Next, a detected temperature Tthr is acquired from the thermistor (step S13). Next, a new relationship of diode correction value Tadj_new=Tthr−Tdi is calculated in accordance with Expression (1) (step S14). The newly calculated relationship of correction value Tadj_new is stored in the RAM 103, and the correction value Tadj calculated last time is updated to correction value Tadj_new (step S15). In the subsequent temperature control, the correction value Tadj_new stored in step S15 to correct a detected temperature from the diode sensor.
In the configuration as described above, even in a case where it is determined that the print head has not been adapted to the ambient temperature within the printing apparatus when the print head is mounted to the printing apparatus and the temperature correction is not executed, the diode-sensor detected temperature correction can be performed again after the cap close. Therefore, proper temperature control can be executed after the cap close.
Having described that the temperature correction is executed again after a lapse of a threshold time period from the cap close, the temperature correction may be executed after a period for the temperatures of the printing apparatus and the print head mounted in the printing apparatus to decrease substantially to a normal temperature instead of the cap close period. For example, the diode-sensor detected temperature correction may be executed immediately after the printing apparatus is powered on after a lapse of a threshold time period or longer since the printing apparatus is powered off.
Having described that the temperature correction processing is executed every time the cap close is executed, other configurations are also possible. For example, the temperature correction processing illustrated in
According to the first and second embodiments, if the temperature difference ΔT between the first and second time points is lower than the threshold temperature Tmax, the correction value Tadj is commonly defined as Tadj=Tthr−Tdi2.
According to a third embodiment on the other hand, if the temperature difference ΔT between the first and second time points is lower than the threshold temperature Tmax, the value of the correction value Tadj is differentiated in accordance with the value of the temperature difference ΔT.
The descriptions regarding the same parts as those in the first and second embodiments will be omitted.
The description regarding steps S05-11 and S05-12 in
Next, in steps S05-13 and S05-14, a weight coefficient W is calculated. If it is determined in step S05-12 that the temperature difference ΔT is equal to or higher than a threshold temperature Tmax, the weight coefficient W is set to the threshold temperature Tmax (step S05-13). On the other hand, if it is determined in step S05-12 that the temperature difference ΔT is lower than the threshold temperature Tmax, the weighting coefficient W is set to the value matched with the temperature difference ΔT (step S05-14).
Next, the weight coefficient W calculated in step S05-13 or step S05-14 is used to calculate a weighted temperature Tw in accordance with Expression (3) below (step S05-15). Expression (3) will be described below.
The weighted temperature Tw calculated in step S05-16 is used to calculate a correction value Tadj in accordance with Expression (4) below (step S05-16).
Tadj=Tw−Tdi2 (4)
The correction value Tadj is stored in the RAM 103, and the diode-sensor detected temperature is corrected by using a correction temperature calculated by using the correction value Tadj in accordance with Expression (2) above in the subsequent temperature control processing.
The weighted temperature will be described in detail below. The following descriptions assume a case where the threshold temperature Tmax is equal to 10° C. and that the thermistor detected temperature Tthr is equal to 25° C., for example.
First, as described above, according to this embodiment, if the temperature difference ΔT is equal to or higher than the threshold temperature Tmax, weight coefficient W=Tmax is set in step S05-14. In this case, Expression (3) is expanded as in Expression (5).
Tw=Tdi2 (5)
Therefore, as illustrated in
On the other hand, if the temperature difference ΔT is lower than the threshold temperature Tmax, weight coefficient W=ΔT is set in step S05-14. In this case, Expression (3) is expanded as in Expression (6) below:
From this, it is understood, as illustrated in
From this, it is understood that, in the process in step S05-14 according to this embodiment, if the temperature difference ΔT is lower than the threshold temperature Tmax, the correction value Tadj is a value which may be acquired by multiplying the difference Tthr−Tdi2 between the thermistor detected temperature and the diode-sensor detected temperature at the second time point by a coefficient (Tmax−ΔT)/Tmax which varies in accordance with the temperature sensor ΔT. The coefficient (Tmax−ΔT)/Tmax increases as the temperature difference ΔT decreases. Thus, it is understood that a the absolute value of the correction value Tadj to be calculated increases as the temperature difference ΔT decreases. It is understood that, if temperature difference ΔT=0, the correction value Tadj is matched with the difference Tthr−Tdi2 between the thermistor detected temperature Tthr and the diode-sensor detected value Tdi2 at the second time point while if temperature difference ΔT=Tmax, the correction value Tadhj is equal to 0.
Hereinafter, cases where the temperature difference ΔT is 10° C., 15° C., 0° C., and 5° C. will be called Case 1, Case 2, Case 3, and Case 4, respectively. Diode correction processing according to this embodiment will be described below in detail.
Examples of temperature relationships corresponding to Cases 1 to 4 are given in Table 1.
Case 1
It is understood that temperature difference ΔT=10° C. in step S05-11 in
Case 2
It is understood that, in step S05-11 in
Case 3
It is understood that, in step S05-11 in
Case 4
In step S05-11 in
In Case, because the temperature difference ΔT during the initial ink filling operation is approximately in the middle between Case 1 and Case 3 as described above, the degree of adaptation of the print head to the ambient temperature within the printing apparatus is considered to be approximately in the middle between Case 1 and Case 3. Therefore, according to this embodiment, also in Case 4, the correction processing is executed, but the degree (strength) of the correction may be weaker than the first embodiment. In other words, it is learned that the factors for the deviation of diode-sensor detected temperature include both of “deviation due to manufacturing error of the diode sensor” and “deviation due to lack of adaptation to the ambient temperature” to some extent. Thus, the effects of both of them are taken into consideration for the temperature calibration.
With the configuration as described above, if the temperature difference ΔT between the first and second time points is lower than the threshold temperature Tmax, the value of the correction value Tadj can be differentiated in accordance with the value of the temperature difference ΔT.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
Having described that, according to the aforementioned embodiments, the temperature detection from the thermistor is performed only once in the temperature correction processing, other configurations may also be possible. For example, the ambient temperature may be read before and after an initial ink filling operation, that is, twice, and the difference may be subtracted as an ambient temperature change ΔTthr from the print head temperature change ΔT. Thus, the effect of the ambient temperature change during the initial ink filling operation can be reduced. In a concrete example, in a case where the difference ΔT in diode-sensor detected temperature is equal to 3° C. and the difference ΔTthr in thermistor detected temperature is equal to 1° C., the actual difference in diode-sensor detected temperature can be calculated as 2 (=3−1)° C.
Having described that according to the aforementioned embodiments, the temperature correction processing is executed by using a temperature difference before and after an initial ink filling operation, other configuration may also be possible. For example, the time immediately after the start of an initial ink filling operation may be the first time point, and the time immediately after the end of the operation may be the second time point. A temperature difference between during an operation may be used instead of the initial ink filling operation. The period may be included in a period in which a change in temperature of the print head can be detected if the temperature of the print head has not been adapted to the ambient temperature within the printing apparatus, in which an operation necessary for functioning the printing apparatus, and in which ink is discharged for the first time from a print head mounted to the printing apparatus.
According to the ink-jet printing apparatus and ink-jet printing method of the present invention, a detected temperature from a temperature sensor provided in a print head therein can be corrected without waiting time.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2015-044055, filed Mar. 5, 2015, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-044055 | Mar 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20050024419 | Furukawa | Feb 2005 | A1 |
20090027437 | Azami | Jan 2009 | A1 |
20110221820 | Shibata | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
7-209031 | Aug 1995 | JP |