This application is a National Stage of International Application No. PCT/JP2012/060870 filed Apr. 23, 2012, claiming priority based on Japanese Patent Application No. 2011-101936 filed Apr. 28, 2011, the contents of all which are incorporated herein by reference in their entirety.
This invention relates to an ink-jet printing apparatus and to a method of printing seamless cans by using the same printing apparatus. More specifically, the invention relates to an ink-jet printing apparatus for printing seamless cans featuring excellent reproduceability of printing, high printing speed and excellent productivity, and to a printing method by using the same printing apparatus.
Seamless cans made from a metal such as aluminum or steel have large shock resistance and do not permit gases such as oxygen to pass through, offer such advantages as far superior preservability of the contents to the plastic containers as well as small weight as compared to glass bottles, and have been widely used as containers for containing carbonated beverages, alcohol beverages and many other beverages and foods.
Trade names and a variety of designs have been printed on the outer surfaces of the cans by the plate-type printing using a printing plate, such as offset printing (patent document 1), by the ink-jet printing without using the printing plate, or by the printing systems based on a combination thereof (patent documents 2 to 4).
The plate-type printing executes a multi-color printing by preparing plates for each of the ink colors, and is efficient when the seamless cans having the same image are to be mass-produced. When the design being printed is to be changed, however, the plates must be newly prepared. Namely, the plate-type printing requires an extended period of time for changing the design, has no freedom for changing the design that is to be printed specifically in the production within short due terms or in the production of small lots, and can print only limited kinds of designs.
The ink-jet printing, on the other hand, requires no plate offering such advantages that the design to be printed can be freely changed in short periods of time (variability), that the ink can be thickly printed enabling images with deepness to be formed and that highly fine images such as photographs can be excellently reproduced.
However, the ink-jet printing, usually, needs a plurality of ink-jet heads that correspond to four process colors of cyan, magenta, yellow and black and, therefore, requires an increased number of printing stations as in the apparatus described in the above patent document 3 causing the printing apparatus to become bulky. Besides, in the case of printing fine images, a difficulty is involved in positioning the printing stations, and the image often deviates.
Further, the printing system is based on a principle of impinging ink droplets from ink heads and imposes limitation on the area of printing or on the speed of printing due to the limitation on the width of the heads and on the frequency of ejecting liquid droplets. Further, to increase the density of dots, the cans had to be rotated at a low speed or the cans had to be rotated a few turns leaving a problem from the standpoint of productivity. Further, some seamless cans are tall (high) and others are short though they may have the same can body diameter. Therefore, when the cans of different kinds are to be printed, the head positions must be adjusted and, besides, the heads must be regularly cleaned hindering the productivity even from the standpoint of these points.
The above patent document 4 describes a printing apparatus for ink-jet printing cylindrical bodies such as tubes by using a plurality of ink-jet heads. With this ink-jet printing apparatus, however, it is difficult to efficiently produce the printed seamless cans.
It is, therefore, an object of the present invention to provide an ink-jet printing apparatus featuring excellent reproduceability of printing, high printing speed and excellent productivity, and a method of printing the seamless cans by using the same printing apparatus.
Another object of the present invention is to provide an ink-jet printing apparatus capable of constituting a variety of systems for printing the seamless cans at a plurality of positions and for easily printing the seamless cans of dissimilar heights, and to provide a method of printing the seamless cans by using the same printing apparatus.
According to the present invention, there is provided a printing apparatus for printing seamless cans comprising a mandrel wheel, a plurality of mandrels that can rotate and are provided on the mandrel wheel, and ink-jet printing stations for ink-jet printing images on at least the can walls on the outer surfaces of seamless cans fitted onto the mandrels, wherein the ink-jet printing is executed in at least one ink-jet printing station, and a plurality of ink-jet heads are arranged in the ink-jet printing station.
In the printing apparatus for printing seamless cans of the invention, it is desired that:
According to the present invention, there is provided a method of printing images by ink-jet printing on at least the can walls on the outer surfaces of seamless cans, wherein the ink-jet printing is executed by using a plurality of ink-jet heads in at least one time of printing step.
In the method of printing seamless cans of the present invention, it is desired that:
In the ink-jet printing apparatus of the present invention, an important feature resides in that a plurality of ink-jet heads are arranged in at least one printing station making it possible to increase the rotating speed of the cans despite the printing stations are used in the same number as that of the prior art and, therefore, to increase the printing speed (difference between Examples 1-4 and Comparative Example 1 in Table 1).
Upon arranging a plurality of ink-jet heads in each ink-jet printing station, it is allowed to decrease the number of the printing stations when the heads are used in the same number as that of the prior art. This makes it possible to decrease the deviation of the image that stems from the fact that it is difficult to attain fine positioning among the printing stations due to error in the mechanical precision and due to error in the size of the mandrels. Accordingly, it is allowed to finely reproduce the printed images (difference between Examples 1-3 and Comparative Example 2 in Table 1).
Further, upon arranging a plurality of ink-jet heads in each ink-jet printing station, the dots can be precisely impinged among the dots impinged earlier by slightly deviating the neighboring ink-jet heads; i.e., the dot density can be increased and the resolution can be improved (difference between Examples 1-4 and Comparative Examples 1-2 in Table 1).
Upon using a plurality of ink-jet heads, further, the dots can be applied in an overlapped manner maintaining precision, increasing the thickness of the ink so that the image can be printed offering increased appeal of density (difference between Examples 1-4 and Comparative Examples 1-2 in Table 1).
Further, by arranging a plurality of ink-jet heads, it is made possible to decrease the number of the printing stations and, therefore, to decrease the size of the printing apparatus (difference between the Examples 1-4 and Comparative Example 2 in Table 1).
In the printing apparatus of the present invention, further, the ink-jet heads are allowed to move in the direction of height of the seamless cans fitted onto the mandrels making it possible to easily execute the printing onto a plurality of positions of the seamless cans in the direction of height and onto the seamless cans of different heights. By arranging the ink-jet heads in an overlapped manner but being slightly deviated in the direction of height of the can, further, it is allowed to print an image close to a straight line, to vividly express the contour of the image, and to form straight lines like those of bar codes.
Further, with the head-cleaning device being coupled to a plurality of ink-jet heads in an ink-jet printing station, the printing can be executed by one ink-jet head while the other ink-jet head is being cleaned; i.e., the printing can be continued while conducting the cleaning at the same time (difference between Examples 1-4 and Comparative Example 1 in Table 1). Besides, since the head-cleaning device is shared by a plurality of ink-jet heads, the size of the printing apparatus can be further decreased in addition to decreasing the number of the printing stations.
By combining the ink-jet printing apparatus of the invention with the plate-type printing apparatus, further, the image which can be varied by the ink-jet printing can be combined with the image that is solidly printed by the plate-type printing and that features excellent reproduceability of density. It is, therefore, made possible to deal with a variety of designs in small lots that could not be dealt with by the plate-type printing alone and to excellently reproduce image density that could not be attained by the ink-jet printing alone. Moreover, it is made possible to provide printed seamless cans having vividly printed images wherein the images by the ink-jet printing are formed on the images by the plate-type printing.
Moreover, the ink-jet printing apparatus of the present invention can be realized in a small size as described above and is suited for suppressing the size in realizing a hybrid printing apparatus which tends to become bulky upon being combined with the plate-type printing apparatus.
[
[
[
[
[
[
[
[
[
[
[
[
[
(Ink-jet printing apparatus)
When the seamless cans are to be printed on at least the outer surfaces of their can walls, there is used a printing apparatus in which the seamless cans are rotatably fixed onto the mandrels formed on the mandrel wheel, and the ink-jet printing is executed by the printing stations installed along the mandrel wheel featuring excellent productivity. Therefore, the ink-jet printing apparatus of the present invention, too, employs a conveyer mechanism. In this apparatus, the seamless cans are introduced, printed and discharged continuously.
In a conventional ink-jet printing apparatus schematically shown in
The seamless cans introduced and fitted onto the mandrels are subjected to the spray of ink droplets from the printing stations of each of the colors successively, and images are printed on the seamless cans fitted onto the mandrels 2. The seamless cans on which the images are printed are taken out from the mandrels; i.e., the printed seamless cans are completed.
The ink-jet printing apparatus of the present invention schematically shown in
That is, in the ink-jet printing apparatus of the present invention, the ink-jet heads 3a to 3e are provided each in a number of two in the respective printing stations corresponding to the inks of white (W), yellow (Y), magenta (M), cyan (C) and black (K), featuring faster printing speed than the printing stations each having one ink-jet head, higher dot density and improved resolution, increased thickness of ink due to overlapped application of ink maintaining precise dots, and offering printed images of high density appeal. As described above, each station has a plurality of ink-jet heads containing the ink of the same color to produce large effect. However, it is also allowable to provide the plurality of ink-jet heads containing the inks of different colors. In this case, the printing can be executed with a decreased number of the stations offering advantage from the standpoint of maintenance of the injection heads.
In the ink-jet printing apparatus of the invention, further, a printing station of white (W) ink-jet is provided preceding each of the printing stations of yellow (Y), magenta (M), cyan (C) and black (K) so that the printing can be executed in white when necessary. Before conveyed to the printing stations, further, the step of positioning for printing is provided as required (designated by reference numeral 10 in
The ink-jet printing apparatus of the present invention may assume various embodiments without limitation so far as a plurality of ink-jet heads are arranged in each printing station.
a) to (c) show examples in which two, three and four ink-jet heads 3 are arranged on the outer side of the circumference of the mandrel wheel (in the drawings, dotted lines represent the track thereof), while
In
Referring to
Though
In the ink-jet printing as described above, further, the ink droplets are injected so as to impinge on the surface of the seamless can. From the standpoint of preventing the generation of ink mist, therefore, it is desired that the distance is small over which the ink flies through the space from the ejection portions at the end of the ink-jet heads to the can on where they adhere. Preferably, the distance D is in a range of 0.5 to 4.0 mm from the ejection portions at the end of the ink-jet heads to the surface of the seamless can. If the distance is smaller than 0.5 mm, then the ink-jet heads may often come in contact with the surface of the seamless can.
In the concrete example shown in
(Head-cleaning device)
In the ink-jet printing apparatus of the present invention, it is desired that a head-cleaning device coupled to the ink-jet heads is arranged in each printing station. Namely, one cleaning device can deal with the plurality of ink-jet heads, i.e., can efficiently clean the ink-jet heads contributing to improving the production efficiency.
As shown in
In the cleaning device 6 that is shown, there are arranged a blank-shot area 6a, a washing area 6b, a wiping area 6c and a capping area 6d in series in the direction in which the ink-jet heads move from the side of the mandrel for the two ink-jet heads 3A and 3B. The ink-jet heads are cleaned in a manner as described below.
Namely, the ink-jet heads move onto the cleaning device where the ink adhered onto the ink-jet heads is washed away with a cleaning liquid from the lower side in the washing area 6b. Next, the ink-jet heads move onto the wiping area 6c where the cleaning liquid adhered to the ends of the ink-jet heads is scratched off with a wiper. Next, the ink-jet heads move onto the capping area 6d, and are fitted with a cap and stand by.
Next, the ink-jet heads move onto the wiping area where the ink adhered to the ends of the ink-jet heads is scratched off with the wiper. The ink-jet heads, next, move toward the mandrel. In the blank-shot area 6a, the ink is blank-shot a few times, and the ink-jet heads move onto the image printed on the seamless can 4 fixed onto the mandrel 2 to resume the printing. When the printing is to be continued, the step of capping and standby may be omitted. When not used for extended periods of time, it is desired that the ink-jet heads are capped.
The cleaning device used in the ink-jet printing apparatus of the present invention may employ the constitution that has heretofore been used for cleaning the ink-jet heads. In the invention, however, each printing station has been provided with a plurality of ink-jet heads. It is, therefore, desired that the cleaning device is coupled to the plurality of ink-jet heads and is shared by the plurality of ink-jet heads to simplify the constitution of the apparatus and to realize the apparatus in a compact size.
(Printing inks)
As the printing inks used for the ink-jet printing of the invention, there can be used heat-drying inks, heat-curing inks, ultraviolet ray-curing inks or electron ray-curing inks that have heretofore been used for ink-jet-printing the seamless cans. Among them, however, the heat-drying inks or the heat-curing inks are preferred from such a standpoint that the facility for baking is inexpensive though it may become necessary to employ curing means or to execute false-baking depending on the inks that are used.
The heat-drying inks include those of the aqueous type, oil type and solvent type. Among them, the solvent types are preferred since the time needed for the curing is short.
As the system of the ink-jet heads used for the ink-jet printing, further, there have been known electrostatic system, piezo system, bubble-jet system and the like system which can be used in the present invention without limitation.
(Applying the finishing varnish)
In the ink-jet printing apparatus of the present invention as described above, the ink-jet printing is executed, the images formed by the ink-jet printing are false-cured (false-baked) and, thereafter, the finishing varnish is applied thereon. This assures excellent adhesion of the printed images as well as scratch resistance of the printed seamless cans when the printed seamless cans are subjected to such workings as retort-sterilization and double-seaming or when they are rubbed by each other during the transit.
As the finishing varnish used for producing the printed seamless cans of the invention, there can be used a transparent coating material that has heretofore been used as a top coating of the printed seamless cans and, particularly preferably, coating material of the heat-curing type.
After the finishing varnish has been applied, when the heat-curing ink is used for the ink-jet printing simultaneously with the baking of the finishing varnish, the image formed by the ink-jet printing is baked to thereby produce the printed seamless cans of the present invention.
(Hybrid printing apparatus)
The ink-jet printing apparatus of the present invention can be used alone for printing the seamless cans. By using the plate-type printing in combination, however, it becomes possible to combine variable images by the ink-jet printing and solidly printed images by the plate-type printing having excellent reproducibility of density. This makes it possible to deal with a variety of designs in small lots that could not be handled by the plate-type printing alone and excellently reproduces image densities that could not be done by the ink-jet printing alone.
After the plate-type printing is executed by the plate-type printing apparatus (B) in
In either embodiment, either the ink-jet printing or the plate-type printing may be executed first. From the standpoint of easy positioning and the art of design such as overlapped printing by ink-jet printing, however, it is specifically desired to execute the plate-type printing first.
In this case, further, it is desired to false-cure the image formed first on the seamless can to suppress the inks from spreading. This prevents the inks from blurring on the portions where the images are overlapped, and vivid images can be obtained.
Further, either when the plate-type printing and the ink-jet printing are executed by using separate printing apparatuses or by using the same printing apparatus, it is important to effect the positioning prior to conducting the next printing to obtain the printed images as desired. Therefore, an alignment mark for positioning is formed by the first printing. The is detected prior to conducting the next printing, the seamless can is positioned by controlling the turn of the mandrel mounting the seamless can, and the desired images are printed maintaining good reproducibility.
(Seamless cans)
As the seamless cans that are to be ink-jet printed according to the present invention, though not limited thereto only, there can be used those seamless cans that are made from various surface-treated steel plates such as tin-free steel sheets (TFS), steel sheets plated with tin or the like, light metal plates such as of aluminum, or resin-coated metal plates comprising the above metal plates coated with a thermoplastic resin such as polyester resin, that are formed through conventional means such as draw working, draw-ironing working, draw/redraw working, bend-stretch working (stretching) based on the draw/redrawing, bend-stretch/ironing based on the draw/redrawing, draw/ironing, or impact-working of a light metal plate.
The ink-jet printing apparatus of the invention can be favorably used not only for printing the seamless cans but also for printing the containers of cylindrical shapes; i.e., for printing such three-piece cans as welded cans and adhered cans.
It is, further, desired to form a white coating on the outer surface of the seamless cans since it conceals the ground color of the metal plate and enables the image to be vividly printed. It is, further, allowable to form a white solidly printed layer by executing the ink-jet printing in white color instead of forming the white coating.
It is further desired to form an anchor coating on the white coating or on the outer surface of the seamless can when no white coating is formed thereon. Upon forming the anchor coating, the image formed by the ink-jet printing is firmly fixed and adheres more closely. The anchor coating, further, reduces the blurring of the inks that are jetted.
The anchor coating can be formed by a known method; i.e., applying a coating solution obtained by dispersing or dissolving a heat-curable, ultraviolet ray-curable or electron ray-curable transparent polyester resin, acrylic resin, epoxy resin or urethane resin in a predetermined solvent, drying the thus formed coating, and curing the coating by heating, by the irradiation with ultraviolet rays or by the irradiation with electron rays. Of them, a method of heat-curing a heat-curable resin is preferred from the standpoint of a wide range of selection.
The white coating can be similarly formed by adding a white pigment such as titanium dioxide to a coating solution comprising a resin exemplified above for forming the anchor coating. A preferred method comprises heat-curing a coating solution obtained by dispersing or dissolving the heat-curable resin in a solvent.
Instead of forming the white coating, it is also allowable to form white pigment-containing layer on the outer surface of the seamless can by working a resin-coated metal plate obtained by coating a metal plate with a white resin coating that contains the white pigment in the resin coating of the thermoplastic resin-coated metal plate.
Concrete Examples of the ink-jet printing apparatus of the invention will now be evaluated below in comparison with the Comparative Examples of the conventional ink-jet printing apparatus.
In the ink-jet printing apparatus of Example 1 as shown in
The printing stations are disposed on the outer side of the revolving track (dotted line in
In the ink-jet printing apparatus, the ink-jet heads are arranged in the circumferential direction of the seamless can to print an image at one place on the side wall of the seamless can as shown in
In the Example 1, the two ink-jet heads are arranged in parallel facing downward. Therefore, the two ink-jet heads can be cleaned by using one cleaning device. Further, since the two heads are arranged in each station, the resolution is doubled as compared to when only one ink-jet head is used provided the can rotates at the same speed.
The ink-jet printing apparatus according to Example 2 has, as shown in
In Example 2, too, the ink-jet heads are arranged in the circumferential direction of the seamless can to print an image at one place on the side wall of the seamless can as shown in
The ink-jet printing apparatus according to Example 3 has, as shown in
In Example 3, each printing station executes the printing in two colors requiring a decreased number of times of positioning the images, i.e., excelling from the standpoint of adjusting the deviation of images. The apparatus includes only two stations and can be realized in a small size.
In Example 3, too, the ink-jet heads are arranged in the circumferential direction of the seamless can to print an image at one place on the side wall of the seamless can as shown in
The ink-jet printing apparatus according to Example 4 has, as shown in
In Example 4, each printing station has three ink-jet heads that inject ink of the same color. Therefore, the printing speed is high and the resolution excels in the direction of height of the can.
In Example 4, too, the ink-jet heads are arranged in the circumferential direction of the seamless can to print an image at one place on the side wall of the seamless can as shown in
As shown in
Each printing station is disposed at a position to move in the transverse direction of the revolving track of the mandrel wheel. The heads are disposed over the mandrels (seamless cans) facing downward. The heads are arranged in order of Y-color, M-color, C-color and K-color in compliance with the revolution of the mandrel wheel.
There is only one ink-jet head that has the same color and, therefore, the printing speed is slow. Unlike the ink-jet apparatus of the present invention, therefore, it is not allowed to form a plurality of images in the direction of height of the seamless can, and the resolution of the seamless can is poor.
In Comparative Example 2, as shown in
In Comparative Example 2, there are so many printing stations that it is difficult to print the image in position accompanied by disadvantage in regard to deviation of images and size of the apparatus.
The above Examples 1 to 4 and Comparative Examples 1, 2 were measured and evaluated as described below to obtain the results as shown in Table 1 below.
Details of the printing specifications and the evaluated results are shown in Table 1. . Described below are the descriptions of items in Table 1.
<Printing specifications>
Table 1 shows the number of the heads in each station, number of the stations, and number of the cleaning devices. The length that could be printed by the ink-jet heads was 72 mm.
<Evaluation>
Seamless cans of a can body diameter of 65 mm and a can height of 120 mm were produced by subjecting an aluminum alloy plate of a thickness of 0.30 mm to the draw-ironing and to the redraw-ironing followed by washing and drying. By using heat-curable inks of the solvent type, dot images were ink-jet-printed on the thus produced seamless cans, false-cured, coated with a finishing varnish, and were baked to obtain the printed seamless cans which were evaluated as described below.
<Printing speed>
The printing speed is a time required in each station for printing the images. The cans were rotated at a speed of 60 rotations per minute according to the traditional condition (Comparative Example 1). When the images were not formed as desired through one time of rotation, the speed of rotation was lowered. When the images could be printed at a higher rotating speed, the rotating speed was increased. Symbol ⊚ represents a case of less than 0.5 sec, ◯ represents a case of 0.5 sec, and × represents a case of longer than 0.5 sec.
<Image deviation>
By using an optical microscope, images ink-jet-printed on the seamless cans were observed on an enlarged scale in regard to distribution of the ink-jet-printed dots. Symbol ◯ represents a case where the dots were equidistant and there was no image deviation, and × represents a case where the distance among the dots was greatly varying and the images were deviating.
<Resolution>
By using the optical microscope, dot density of the image ink-jet-printed on the seamless cans was observed on an enlarged scale to evaluate the resolution. When the ink-jet heads were neighboring to each other, the positions of the ink-jet heads were finely adjusted so that the gaps among the dots became dense. The rotating speed of the cans and the revolving speed of the mandrel wheel were maintained constant. Symbol ⊚ represents a case where the dot density was excellently dense, ◯ represents a case where the dot density was dense, and × represents a case where the dot density was sparse.
<Density appeal>
By using the optical microscope, dot density of the image ink-jet-printed on the seamless cans was observed on an enlarged scale to evaluate the density appeal. When the ink-jet heads of the same color were neighboring to each other, the positions of the ink-jet heads were finely adjusted so that the dots overlapped one upon the other. When the ink-jet heads of the same color were not neighboring to each other but were disposed in separate stations, the positions of the ink-jet heads were finely adjusted so that the dots overlapped one upon the other. The rotating speed of the cans and the revolving speed of the mandrel wheel were maintained constant. Symbol ◯ represents a case where the dot density was dense and × represents a case where the dot density was lean.
<Size of the apparatus>
The sizes of the whole apparatuses inclusive of mandrels, mandrel wheel with stations, and head-cleaning devices, were evaluated on the basis of the specifications of Comparative Example 1 (four stations, four cleaning devices). Comparative Example 1 was presumed to be ◯. Namely, symbol ◯ represents a case where the size was equal to that of Comparative Example 1 or was compact, and × represents a case where the size was larger.
<Printing at positions of different heights>
Possibility was evaluated for printing images at positions higher than the head length in the direction of height of the can body. Symbol ⊚ represents a case when three or more kinds of images could be printed at different heights of the can, ◯ represents a case where two kinds of images could be printed, and × represents a case where no image could be printed at a different height on the can.
<Continuation of printing>
In cleaning the ink-jet heads, ◯ represents a case when the printing could be continued by using other ink-jet heads and X represents a case when the printing could not be continued.
<Overall evaluation>
Overall evaluation was rendered based on the evaluations of “printing speed”, “image deviation”, “resolution”, “density appeal”, “size of the apparatus”, “printing at positions of different heights” and “continuation of printing”.
Due to errors in the mechanical precision and in the sizes of the mandrels, it was, so far, difficult to attain fine positioning between the printing stations, and images were deviated and dispersion occurred in the printing. The ink-jet printing apparatus of the present invention now makes it possible to reproduce images appealing a high degree of density at a high printing speed, without causing images to be deviated and maintaining high resolution, and can, therefore, be preferably applied to producing seamless cans on which fine images such as photographs are printed.
Upon arranging a plurality of ink-jet heads that can move in the direction of height of the seamless cans, it is allowed to execute the printing at a plurality of positions in the direction of height of the seamless cans and onto the seamless cans of different heights, offering variable nature (variability) enabling the designs to be printed to be freely changed in short periods of time. Therefore, the ink-jet printing can be favorably applied to producing printed seamless cans on which a variety of designs are to be printed in small lots.
By using the plate-type printing in combination, further, it becomes possible to combine variable images by the ink-jet printing and the solidly printed images by the plate-type printing having excellent reproducibility of density. Namely, the invention can be favorably applied to the production of printed seamless cans having vivid images formed by the plate-type printing and on which the images are, further, formed by the ink-jet printing.
Moreover, the number of the printing stations can be decreased, the printing apparatus can be realized in a small size, the apparatus does not become bulky even when it is combined with the plate-type printing apparatus, and the apparatus can be favorably utilized as the ink-jet printing apparatus combining the plate-type printing apparatus.
Since the ink-jet heads can be alternately cleaned, the printing can be continued without interruption.
Number | Date | Country | Kind |
---|---|---|---|
2011-101936 | Apr 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/060870 | 4/23/2012 | WO | 00 | 10/8/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/147695 | 11/1/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6254218 | Suzuki et al. | Jul 2001 | B1 |
6769357 | Finan | Aug 2004 | B1 |
7905174 | Vetter | Mar 2011 | B2 |
20040252174 | Baxter et al. | Dec 2004 | A1 |
20060018698 | Vogt | Jan 2006 | A1 |
20060137548 | Vetter | Jun 2006 | A1 |
20070157559 | Till | Jul 2007 | A1 |
20100192517 | Schach | Aug 2010 | A1 |
20110018931 | Ikeda | Jan 2011 | A1 |
20110074870 | Maida | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1277176 | Dec 1990 | CA |
0209896 | Jan 1987 | EP |
62-027170 | Feb 1987 | JP |
08-207265 | Aug 1996 | JP |
08-207265 | Aug 1996 | JP |
2004-042464 | Feb 2004 | JP |
2005-531428 | Oct 2005 | JP |
2008-062455 | Mar 2008 | JP |
2010-143200 | Jul 2010 | JP |
2010-535112 | Nov 2010 | JP |
4615999 | Jan 2011 | JP |
2011-073339 | Apr 2011 | JP |
2011032939 | Mar 2011 | WO |
Entry |
---|
Communication dated Sep. 12, 2014, issued by the European Patent Office in counterpart Application No. 12777811.6. |
Communication (Third Party Observation) dated Jul. 1, 2015, issued by the European Patent Office in corresponding European patent application No. 12777811.6. |
Number | Date | Country | |
---|---|---|---|
20140028771 A1 | Jan 2014 | US |