The present invention relates to an ink jet printing apparatus.
There is an ink jet printing apparatus that performs a printing operation while circulating ink by supplying ink from a tank to a print head and recovering ink from the print head to the tank.
Japanese Patent Laid-Open No. 2011-240628 has disclosed an ink jet printing apparatus provided with a supply path for supplying ink from a storage tank to a print head and a recovery path for recovering ink from the print head to the storage tank.
Downsizing of an ink jet printing apparatus is demanded. In order to downsize an ink jet printing apparatus, it is necessary to improve compactness of an ink supply unit by appropriately configuring a flow path relating to ink, which connects a tank and a print head, and appropriately arranging the flow path and function parts acting on the flow path.
However, Japanese Patent Laid-Open No. 2011-240628 has not disclosed the configuration or arrangement relating to the flow path and the function parts for improving the compactness such as this.
Consequently, in view of the above-described problem, an object of the present invention is to provide an ink jet printing apparatus whose compactness is improved by appropriately configuring a flow path relating to ink, which connects a tank and a print head, and appropriately arranging the flow path and function parts acting on the flow path.
The present invention is an ink jet printing apparatus including: a print head that ejects ink; an ink tank for each ink color that stores the ink; an ink flow path plate for each ink color provided under the ink tank in the direction of gravity and having a supply flow path that guides the ink supplied from the ink tank to the print head and a recovery flow path that guides the ink recovered from the print head to the ink tank; a flow path concentration plate in which the supply flow path and the recovery flow path for each ink color are concentrated and which guides the ink between the ink flow path plate and the print head; and one or a plurality of function parts provided within a range of a space demarcated by the ink flow path plate and the flow path concentration plate having an inclination with respect to the ink flow path plate, and which acts on at least one of the supply flow path and the recovery flow path inside the ink flow path plate.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In the following, embodiments of the present invention are explained with reference to the drawings. However, the following embodiments are not intended to limit the present invention and all combinations of features explained in the present embodiments are not necessarily indispensable to the solution of the present invention. Explanation is given by attaching the same symbol to the same configuration. The relative arrangement, shapes, and so on of components described in the embodiments are merely exemplary and not intended to limit the scope of the invention only to those.
The printing apparatus 1 is a multi function printer including a print unit 2 and a scanner unit 3 and capable of performing a variety of kinds of processing relating to the printing operation and the reading operation by the print unit 2 and the scanner unit 3 individually, or in an interlocking manner of the print unit 2 and the scanner unit 3. The scanner unit 3 includes an ADF (Auto Document Feeder) and an FBS (Flat Bed Scanner) and is capable of reading of a document automatically fed by the ADF and reading (scanning) of a document placed on a document table of the FBS by a user. The present embodiment is the multi function printer having both the print unit 2 and the scanner unit 3, but the multi function printer may be an aspect in which the scanner unit 3 is not included.
In the print unit 2, at the bottom in the vertically downward direction of a casing 4, a first cassette 5A and a second cassette 5B for storing a printing medium (cut sheet) S are installed in an attachable and detachable manner. In the first cassette 5A, comparatively small printing media up to the A4 size, and in the second cassette 5B, comparatively large printing media up to the A3 size are stored in a piled-up manner. In the vicinity of the first cassette 5A, a first feed unit 6A for feeding stored printing media by separating one by one is provided. Similarly, in the vicinity of the second cassette 5B, a second feed unit 6B is provided. In a case where the printing operation is performed, the printing medium S is selectively fed from one of the cassettes.
A conveyance roller 7, a discharge roller 12, a pinch roller 7a, a spur 7b, a guide 18, an inner guide 19, and a flapper 11 are conveyance mechanisms for guiding the printing medium S in a predetermined direction. The conveyance roller 7 is arranged on the upstream side and on the downstream side of the print head 8 and is a drive roller that is driven by a conveyance motor, not shown schematically. The pinch roller 7a is a follower roller that nips and rotates the printing medium S together with the conveyance roller 7. The discharge roller 12 is arranged on the downstream side of the conveyance roller 7 and is a drive roller that is driven by a conveyance motor, not shown schematically. The spur 7b sandwiches and conveys the printing medium S together with the conveyance roller 7 arranged on the downstream side of the print head 8 and the discharge roller 12.
The guide 18 is provided in the conveyance path of the printing medium S and guides the printing medium S in a predetermined direction. The inner guide 19 is a member extending in the y-direction and has a curved side surface, and guides the printing medium S along the side surface. The flapper 11 is a member for switching directions in which the printing medium S is conveyed at the time of the both-side printing operation. A discharge tray 13 is a tray for loading and holding the printing medium S for which the printing operation has been completed and which is discharged by the discharge roller 12.
The print head 8 of the present embodiment is a color ink jet print head of full line type and in which a plurality of ejection ports from which ink is ejected in accordance with print data is arrayed along the y-direction in
An ink tank unit 14 stores four color inks to be supplied to the print head 8, respectively. An ink supply unit 15 is provided on the way in the flow path connecting the ink tank unit 14 and the print head 8 and adjusts the pressure and the amount of flow of the ink within the print head 8 to an appropriate range. In the present embodiment, a circulation-type ink supply system is adopted and the ink supply unit 15 adjusts the pressure of the ink supplied to the print head 8 and the amount of flow of the ink recovered from the print head 8 to an appropriate range.
A maintenance unit 16 includes the cap unit 10 and a wiping unit 17 and performs the maintenance operation for the print head 8 by causing these units to operate at predetermined timing.
In the controller unit 100, the main controller 101 including a CPU controls the entire printing apparatus 1 by using a RAM 106 as a work area in accordance with programs and various parameters stored in a ROM 107. For example, in a case where a print job is input from a host apparatus 400 via a host I/F 102 or a wireless I/F 103, predetermined image processing is performed for image data received by an image processing unit 108 in accordance with instructions of the main controller 101. Then, the main controller 101 transmits the image data for which image processing has been performed to the print engine unit 200 via a print engine I/F 105.
The printing apparatus 1 may acquire image data from the host apparatus 400 via wireless communication or wired communication or may acquire image data from an external storage device (USB memory and the like) connected to the printing apparatus 1. The communication method that is made use of for wireless communication or wired communication is not limited. For example, as the communication method that is made use of for wireless communication, it is possible to apply Wi-Fi (Wireless Fidelity) (registered trademark) and Bluetooth (registered trademark). Further, as the communication method that is made use of for wired communication, it is possible to apply USB (Universal Serial Bus) and the like. Furthermore, for example, in a case where a read command is input from the host apparatus 400, the main controller 101 transmits this command to the scanner unit 3 via a scanner engine I/F 109.
An operation panel 104 is a mechanism for a user to input and output for the printing apparatus 1. It is possible for a user to give instructions as to the operation, such as copy and scan, to set a printing mode, to recognize information on the printing apparatus 1, and so on via the operation panel 104.
In the print engine unit 200, the print controller 202 including a CPU controls various mechanisms included in the print unit 2 by using a RAM 204 as a work area in accordance with programs and various parameters stored in a ROM 203. In a case where various commands and image data are received via a controller I/F 201, the print controller 202 temporarily stores them in the RAM 204. The print controller 202 causes an image processing controller 205 to convert the saved image data into print data so that the print head 8 can make use of for the printing operation. In a case where print data is generated, the print controller 202 causes the print head 8 to perform the printing operation based on the print data via a head I/F 206. At this time, the print controller 202 conveys the printing medium S by driving the feed units 6A and 6B, the conveyance roller 7, the discharge roller 12, and the flapper 11 shown in
A head carriage control unit 208 changes the direction and position of the print head 8 in accordance with the operating state, such as the maintenance state and the printing state, of the printing apparatus 1. An ink supply control unit 209 controls the ink supply unit 15 so that the pressure of the ink to be supplied to the print head 8 is adjusted within an appropriate range. A maintenance control unit 210 controls the operation of the cap unit 10 and the wiping unit 17 in the maintenance unit 16 at the time of performing the maintenance operation for the print head 8.
In the scanner engine unit 300, the main controller 101 controls hardware resources of a scanner controller 302 by using the RAM 106 as a work area in accordance with programs and various parameters stored in the ROM 107. Due to this, various mechanisms included in the scanner unit 3 are controlled. For example, by the main controller 101 controlling the hardware resources within the scanner controller 302 via a controller I/F 301, a document mounted on the ADF by a user is conveyed via a conveyance control unit 304 and read by a sensor 305. Then, the scanner controller 302 saves the read image data in a RAM 303. It is possible for the print controller 202 to cause the print head 8 to perform the printing operation based on the image data read by the scanner controller 302 by converting the image data acquired as described above into print data.
At the time of moving the print head 8 from the standby position shown in
On the other hand, in a case of moving the print head 8 from the printing position shown in
<Ink Supply Unit (Ink Circulation System)>
Ink circulates mainly between a sub tank 151 and the print head 8. In the print head 8, the ejection operation of ink is performed based on image data and the ink that is not ejected is recovered again to the sub tank 151.
The sub tank 151 that stores a predetermined amount of ink is connected to a supply flow path C2 for supplying ink to the print head 8 and a recovery flow path C4 for recovering ink from the print head 8. That is, the circulation path through which ink circulates is configured by the sub tank 151, the supply flow path C2, the print head 8, and the recovery flow path C4. Further, the sub tank 151 is connected to an air flow path C0 through which air flows.
In the sub tank 151, a liquid surface detection unit 151a including a plurality of pins is provided and it is possible for the ink supply control unit 209 to grasp the height of the ink liquid surface, that is, the ink remaining amount within the sub tank 151 by detecting whether or not there is a conduction current between the plurality of pins. A decompression pump P0 (within-tank decompression pump) is a negative pressure generation source for decompressing the inside of the sub tank 151. An atmosphere open valve V0 is a valve for switching whether or not to cause the inside of the sub tank 151 to communicate with the atmosphere.
A main tank 141 is a tank that stores ink to be supplied to the sub tank 151. The main tank 141 has a configuration attachable to and detachable from the printing apparatus main body. On the way of a tank connection flow path C1 that connects the sub tank 151 and the main tank 141, a tank supply valve V1 for switching connections of the sub tank 151 and the main tank 141 is arranged.
In a case of detecting that the ink within the sub tank 151 becomes smaller than a predetermined amount by the liquid surface detection unit 151a, the ink supply control unit 209 closes the atmosphere open valve V0, a supply valve V2, a recovery valve V4, and a head exchange valve V5, and opens the tank supply valve V1 and a sub tank decompression valve V6. In this state, the ink supply control unit 209 causes the decompression pump P0 to operate. Then, the pressure inside the sub tank 151 becomes negative and ink is supplied from the main tank 141 to the sub tank 151. In a case of detecting that the ink within the sub tank 151 exceeds a predetermined amount by the liquid surface detection unit 151a, the ink supply control unit 209 closes the tank supply valve V1 and the sub tank decompression valve V6 and suspends the decompression pump P0.
The supply flow path C2 is a flow path for supplying ink from the sub tank 151 to the print head 8 and on the way thereof, a supply pump P1 and the supply valve V2 are arranged. During the printing operation, by driving the supply pump P1 in the state where the supply valve V2 is open, it is possible to circulate ink in the circulation path while supplying ink to the print head 8. The amount of ink ejected per unit time by the print head 8 fluctuates in accordance with image data. The amount of flow of the supply pump P1 is determined so as to be compatible also with a case where the print head 8 performs the ejection operation that maximizes the amount of ink to be consumed per unit time. Further, in the supply flow path C2, a check valve V7 that prevents a backflow of ink to the sub tank 151 is arranged. The check valve V7 is a valve that permits a flow of ink in one direction.
A relief flow path C3 is a flow path that is located on the upstream side of the supply valve V2 and which connects the upstream side and the downstream side of the supply pump P1. On the way of the relief flow path C3, a relief valve V3, which is a differential pressure valve, is arranged. The relief valve is not opened and closed by a drive mechanism, but is biased by a spring and configured so as to open in a case where a predetermined pressure is reached. For example, in a case where the ink supply amount per unit time from the supply pump P1 is larger than the total value of the ejection amount per unit time of the print head 8 and the flow amount (amount of ink to be drawn) per unit time of the recovery pump P2, the relief valve V3 is opened in accordance with the pressure that is exerted on the relief valve V3 itself. Due to this, a circulation path configured by a part of the supply flow path C2 and the relief flow path C3 is formed. By providing the configuration of the relief flow path C3, the ink supply amount for the print head 8 is adjusted in accordance with the ink consumption in the print head 8, and therefore, it is possible to stabilize the pressure within the circulation path irrespective of image data.
The recovery flow path C4 is a flow path for recovering ink from the print head 8 to the sub tank 151 and on the way thereof, a recovery pump P2, the recovery valve V4, a suction valve V8, and check valves V9 and V10 are arranged. In the recovery flow path C4, buffer chambers B1 and B2 are further arranged. At the time of circulating ink within the circulation path, the recovery pump P2 functions as a negative pressure generation source to suck ink from the print head 8. By the drive of the recovery pump P2, an appropriate pressure difference arises between an IN flow path 80b and an OUT flow path 80c within the print head 8, and therefore, it is possible to circulate ink between the IN flow path 80b and the OUT flow path 80c. The flow path configuration within the print head 8 will be described later in detail.
The check valve V9 and the check valve V10 are each a valve that prevents a backflow of ink to the print head 8. In the present embodiment, two check valves are provided preliminarily. The recovery valve V4 is also a valve for preventing a backflow in a case where the printing operation is not being performed, that is, ink is not being circulated within the circulation path. In the circulation path of the present embodiment, the sub tank 151 is arranged above the print head 8 in the vertical direction (see
The supply valve V2 also functions as a valve for preventing supply of ink to the print head 8 from the sub tank 151 in a case where the printing operation is not being performed, that is, ink is not being circulated within the circulation path.
The suction valve V8 is controlled by the ink supply control unit 209 so as to close at the time of the suction operation being performed by capping the print head 8 by the cap unit 10 (not shown schematically in
The buffer chambers B1 and B2 are parts for reducing the influence of expansion and contraction of air bubbles in the ink within the flow path. The buffer chambers B1 and B2 include a compression spring and a flexible member, such as a film, and the film expands and contracts as the compression spring expands and contracts. In a case where the air bubbles in the ink within the flow path expand and contract due to a change in temperature or the like in the state where ink is not circulating, the buffer chambers B1 and B2 expand and contract following a change in volume of the air bubbles in the flow path. Due to this, it is possible to prevent ink leakage at the ejection port and drawing of air from the ejection port, which result from a change in the pressure exerted on the ejection port by the air bubbles expanding and contracting. In the present embodiment, the two buffer chambers B1 and B2 are provided for expansion and contraction, respectively.
A head exchange flow path C5 is a flow path that connects the supply flow path C2 and an air chamber (space in which ink is not stored) of the sub tank 151 and on the way thereof, the head exchange valve V5 is arranged. One end of the head exchange flow path C5 is connected to the upstream of the print head 8 in the supply flow path C2 and connected to the downstream side of the supply valve V2. The other end of the head exchange flow path C5 connects to the upper portion of the sub tank 151 in the direction of gravity and communicates with the air chamber inside the sub tank 151. The head exchange flow path C5 is made use of in a case where ink is drawn from the print head 8 in use at the time of exchanging the print head 8 or transporting the printing apparatus 1. The head exchange valve V5 is controlled by the ink supply control unit 209 so as to close except for a case where the print head 8 is filled with ink and a case where ink is drawn from the print head 8.
Next, the flow path configuration within the print head 8 is explained. The ink supplied to the print head 8 by the supply flow path C2 is supplied to a first negative pressure control unit 81 and a second negative pressure control unit 82 after passing through a filter 83. The control pressure of the first negative pressure control unit 81 is set to a weak negative pressure (negative pressure whose difference in pressure from the atmospheric pressure is small). The control pressure of the second negative pressure control unit 82 is set to a strong negative pressure (negative pressure whose difference in pressure from the atmospheric pressure is large). The pressures in the first negative pressure control unit 81 and the second negative pressure control unit 82 are generated in an appropriate range by the drive of the recovery pump P2.
In an ink ejection unit 80, a plurality of printing element substrates 80a on which a plurality of ejection ports is arrayed is arranged and a long ejection port row is formed. The common supply flow path 80b (IN flow path) for guiding ink supplied by the first negative pressure control unit 81 and the common recovery flow path 80c (OUT flow path) for guiding ink supplied by the second negative pressure control unit 82 are also extending in the array direction of the printing element substrate 80a. Further, on the individual printing element substrate 80a, an individual supply flow path connected with the common supply flow path 80b and an individual recovery flow path connected with the common recovery flow path 80c are formed. Because of this, on the individual printing element substrate 80a, a flow of ink is generated, which flows in from the common supply flow path 80b where the negative pressure is relatively weak and flows out to the common recovery flow path 80c where the negative pressure is relatively strong. In the path between the individual supply flow path and the individual recovery flow path, a pressure chamber that communicates with each ejection port and which is filled with ink is provided and also in the ejection port or the pressure chamber not performing printing, a flow of ink is generated. In a case where the ejection operation is performed on the printing element substrate 80a, a part of the ink that moves from the common supply flow path 80b to the common recovery flow path 80c is consumed by being ejected from the ejection port, but the ink that is not ejected moves to the recovery flow path C4 via the common recovery flow path 80c.
By the configuration described above, on the printing element substrate 80a, a flow of ink is generated, which flows in from the common supply flow path 80b where the negative pressure is relatively weak (absolute value of pressure is high) and flows out to the common recovery flow path 80c where the negative pressure is relatively strong (absolute value of pressure is low). In more detail, ink flows in the order of the common supply flow path 80b→the individual supply flow path 1008→the pressure chamber 1005→the individual recovery flow path 1009→the common recovery flow path 80c. In a case where ink is ejected by the printing element 1004, a part of the ink that moves from the common supply flow path 80b to the common recovery flow path 80c is discharged to the outside of the print head 8 by being ejected from the ejection port 1006. On the other hand, the ink that is not ejected from the ejection port 1006 is recovered to the recovery flow path C4 via the common recovery flow path 80c.
In a case where the printing operation is performed, the ink supply control unit 209 closes the tank supply valve V1, the head exchange valve V5, and the sub tank decompression valve V6, opens the atmosphere open valve V0, the supply valve V2, the recovery valve V4, and the suction valve V8, and drives the supply pump P1 and the recovery pump P2. Due to this, a circulation path of the sub tank 151→the supply flow path C2,→the print head 8→the recovery flow path C4→the sub tank 151 is established. In a case where the ink supply amount per unit time from the supply pump P1 is larger than the total value of the ejection amount per unit time of the print head 8 and the flow amount per unit time in the recovery pump P2, ink flows into the relief flow path C3 from the supply flow path C2. Due to this, the flow amount of ink that flows into the print head 8 from the supply flow path C2 is adjusted.
In a case where the printing operation is not being performed, the ink supply control unit 209 suspends the supply pump P1 and the recovery pump P2 and closes the atmosphere open valve V0, the supply valve V2, the recovery valve V4, and the suction valve V8. Due to this, the flow of ink within the print head 8 suspends and a backflow due to the water head difference between the sub tank 151 and the print head 8 is also suppressed. Further, by closing the atmosphere open valve V0, leakage of ink and evaporation of ink from the sub tank 151 are suppressed.
In a case where ink is drawn from the print head 8, the ink supply control unit 209 closes the atmosphere open valve V0, the tank supply valve V1, the supply valve V2, the recovery valve V4, and the suction valve V8, opens the head exchange valve V5, and drives the decompression pump P0. Due to this, the inside of the sub tank 151 enters a negative pressure state and the ink within the print head 8 is recovered to the sub tank 151 via the head exchange flow path C5. As described above, the head exchange valve V5 is a valve that is closed at the time of the normal printing operation and the standby and opened at the time of drawing ink from the print head 8. The head exchange valve V5 is also opened at the time of filling the head exchange flow path C5 with ink in a case where the print head 8 is filled with ink.
<Ink Supply Unit>
As shown in
Under the atmosphere communication plate 154, one or a plurality of function parts (referred to as a second function part group 155) is arranged. The second function part group 155 is a general term of function parts that act on the air flow path. The function parts included in the second function part group 155 are, for example, the drive valve for opening and closing the flow path by a drive mechanism. The drive valve is, for example, the atmosphere open valve V0 and the sub tank decompression valve V6. As described above, the second function part group 155 includes the function parts that act on the air flow path C0.
The sub tank 151, the ink flow path plate 152, the atmosphere communication plate 154, the first function part group 153, and the second function part group 155 shown in
The flow path concentration plate 156 is arranged above the ink flow path plate 152 of each sub unit 150 so as to traverse each second connection portion 1561. Within the flow path concentration plate 156, a flow path that guides ink to be sent to each second connection portion 1561 or ink to be sent from each second connection portion 1561 approximately in the y-direction (approximately parallel to the direction in which the ink flow path plates 152 are arranged side by side) is formed (see
As described above, the supply flow path C2 and the recovery flow path C4 are formed inside the ink flow path plate 152 for each ink color, the flow path concentration plate 156 used in common for all the ink colors, and the linking tube 159.
As described above, it is possible to make the ink supply unit 15 compact by providing the flow path concentration plate 156 perpendicular to the ink flow path plate 152 and forming the ink supply unit 15 so that the flow path of ink does not become large in the xy-direction.
<Ink Flow Path Plate>
<Flow Path Concentration Plate>
The flow path concentration plate 156 extending in the yz-direction is a plate for concentrating the flow paths relating to ink within the sub unit 150 for each ink color and connecting to the linking tubes 159a and 159b. The flow path concentration plate 156 has a third connection portion 1591a that connects with the linking tube 159a and a third connection portion 1591b that connects with the linking tube 159b. The flow paths formed within the ink flow path plate 152 in the sub unit 150 for each ink color are connected with the flow paths formed within the flow path concentration plate 156 via the second connection portion 1561.
As shown in
With the configuration such as this, ink flows in the order of the sub tank 151→the supply flow path within the ink flow path plate 152→the supply flow path 1563→the supply flow path 1564→the linking tube 159a→the print head 8 and the ink is supplied to the print head 8. Then, the ink not used for printing flows in the order of the print head 8→the linking tube 159b→the recovery flow path 1565→the recovery flow path 1566→the recovery flow path within the ink flow path plate 152 and recovered to the sub tank 151.
As explained above, the plurality of the ink flow path plates 152 having the same configuration is arranged side by side in the y-direction, facing in the same direction and the flow path concentration plate 156 is arranged across the plurality of the ink flow path plates 152 (see
As above, in the present embodiment, the flow paths within the ink supply unit 15 are implemented by using the two kinds of plates, that is, the plurality of the ink flow path plates 152 extending in the xy-direction and the flow path concentration plate 156 extending in the yz-direction. By designing the configuration such as this, it is made possible to make effective use of the space demarcated by the plurality of the ink flow path plates 152 and the flow path concentration plate 156 while suppressing the flow path from becoming large in the xy-direction of the flow path, compared to a case where only the plates extending in the xy-direction are used. Consequently, it is possible to make compact the ink supply unit and as a result of this, the printing apparatus 1 by preventing the ink supply unit 15 from becoming large in the xy-direction. Further, by arranging the first function part group 153 within the space (chamber) demarcated by the plurality of the ink flow path plates 152 and the flow path concentration plate 156, it is made possible to protect the first function part group 153.
In the explanation given previously, the example is explained in which the first function part group 153 that acts mainly on the flow path is arranged within the range of the space demarcated by the ink flow path plate 152 and the flow path concentration plate 156, but another part may be arranged. For example, a motor, not shown schematically, for driving a drive valve and a pump, or a drive mechanism, such as a gear, may be arranged within the space.
Further, in the explanation given previously, the case is explained where the printing apparatus 1 includes the sub unit for each ink color (that is, the sub units of cyan (C), magenta (M), yellow (Y), and black (Bk)). However, the number of sub units is not limited to four. It is possible to apply the present invention to a printing apparatus including any number (however, two or more) of sub units. For example, a case is considered where two kinds of ink, that is, a first ink and a second ink are made use of. In this case, the printing apparatus according to the present invention includes a first ink flow path plate for the first ink, a second ink flow path plate for the second ink, and a flow path concentration plate that concentrates a supply flow path and a recovery flow path for the first ink and a supply flow path and a recovery flow path for the second ink.
According to the present invention, it is possible to provide an ink jet printing apparatus whose compactness is improved.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2018-066376 filed Mar. 30, 2018, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2018-066376 | Mar 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9162507 | Tanaka et al. | Oct 2015 | B2 |
10357977 | Mukoyama | Jul 2019 | B2 |
20110050794 | Koike | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2011-240628 | Dec 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20190299631 A1 | Oct 2019 | US |