Information
-
Patent Grant
-
6290341
-
Patent Number
6,290,341
-
Date Filed
Monday, October 20, 199728 years ago
-
Date Issued
Tuesday, September 18, 200124 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Fuller; Benjamin R.
- Dickens; C
Agents
- Sughrue, Mion, Zinn, Macpeak & Seas, PLLC
-
CPC
-
US Classifications
Field of Search
US
- 347 70
- 347 71
- 347 72
- 347 94
-
International Classifications
-
Abstract
In an ink jet print head, a fluid passage forming substrate includes pressure generating chambers being trapezoidal in shape, each pressure generating chamber having walls substantially parallel to the flowing direction of ink, and no stagnation of ink is present in the pressure generating chambers. The pressure generating chambers' walls include first walls vertical to the surface of the silicon monocrystalline substrate and oriented in the orientation of the pressure generating chambers, and second walls slanted at an angle of 35° with respect to the surface of the substrate, the second walls being formed at both ends of each pressure generating chamber. An elastic plate is fastened onto first opening-formed sides of the pressure generating chambers and piezoelectric layers for expanding and contracting the pressure generating chambers are mounted on the surface of the elastic plate. A covering member has nozzle openings each located at the end of each pressure generating chamber which are firmly fastened to second opening-formed sides of the pressure generating chambers. The covering member is firmly fastened on the fluid passage forming substrate by an adhesive layer.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an ink jet print head which includes a fluid passage forming substrate having pressure generating chambers formed by anisotropically etching a silicon monocrystalline substrate.
2. Prior Art Discussion
A conventional ink jet print head is shown in FIG.
9
. As shown, the print head has a layered structure which is made up of a fluid passage forming substrate
51
, a covering member
55
, and an elastic plate
57
. The fluid passage forming substrate
51
includes a pressure generating chamber
50
that receives an external pressure. The covering member
55
has a discharge orifice
54
communicating with the pressure generating chamber
50
and an ink supplying port
53
communicatively connecting a reservoir
52
to the pressure generating chamber
50
. The elastic plate
57
has a pressure generating means
56
and covers one of the major sides of the fluid passage forming substrate
51
. The pressure generating chamber
50
is expanded and contracted by the pressure generating means
56
of the elastic plate
57
. When expanded, the pressure generating chamber sucks ink from the reservoir
52
through the ink supplying port
53
. When contracted, the pressure generating chamber causes the sucked ink to eject outside in the form of ink droplets through the discharge orifice
54
.
In forming the fluid passage forming substrate
51
having the pressure generating chambers
50
formed therein, an etching pattern corresponding to an array of pressure generating chambers is formed on a silicon monocrystalline substrate having a face (
110
). Then, the structure is etched in an alkaline water solution containing potassium hydroxide by an anisotropical etching process. In the process of anisotropically etching the silicon monocrystalline substrate, recesses and openings having (
111
) faces that are vertical to the (
110
) face are linearly formed. The recesses and the openings are considerably high in their aspect ratio. The result is the formation of pressure generating chambers arrayed at extremely high density.
In the silicon monocrystalline substrate having a (
110
) face, (
111
) faces appear, which are each slanted at about 35° with respect to the surface of the silicon monocrystalline substrate, and extended from the intersection of linear patterns along the (
111
) faces vertical to the (
110
) faces. These faces (
111
) form the walls
58
and
58
′ of each pressure generating chamber
50
.
With the formation of the slanted walls, acutely angled spaces
59
and
59
′ are formed in the vicinity of discharge orifices
54
and ink supplying ports
53
. In the spaces, ink stagnates and air bubbles stay there. The air bubbles staying there are hard to remove.
SUMMARY OF THE INVENTION
According to the present invention, there is provided an ink jet print head comprising: a fluid passage forming substrate including pressure generating chambers being trapezoidal in shape, which are formed by etching a silicon monocrystalline substrate by anisotropical etching process, each pressure generating chamber having first walls, which are vertical to the surface of the silicon monocrystalline substrate and oriented in the orientation of the pressure generating chambers, and second walls which are slanted at an angle of 35° with respect to the surface of the silicon monocrystalline substrate, the second walls being formed at both ends of each pressure generating chamber; an elastic plate firmly fastened onto first opening-formed sides of the pressure generating chambers, pressure generating means for expanding and contracting the pressure generating chambers being mounted on the surface of the elastic plate, and a covering member having nozzle openings each located at the end of each pressure generating chamber and firmly fastened to second opening-formed sides of the pressure generating chambers, the opening of the first opening-formed side being smaller than the opening of the second opening-formed side; wherein the covering member is firmly fastened on the fluid passage forming substrate by adhesive, and meniscuses of the adhesive are formed and hardened in spaces defined by walls slanted at an angle of 35° with respect to the surface of the fluid passage forming substrate in which the nozzle openings are formed. The acutely angled spaces are filled with the adhesive walls
15
. Each pressure generating chamber has walls substantially parallel to the flowing direction of ink. No stagnation of ink is present in the pressure generating chambers. Accordingly, an object of the present invention is to provide an ink jet print head in which stagnation of ink is removed in the vicinity of nozzle openings and ink supply ports, to thereby eliminate air bubbles staying there, and hence the removability of bubbles is improved.
Another object of the present invention is to provide a method of manufacturing an ink jet print head improved as mentioned above.
Yet another object of the present invention is to provide a method of manufacturing a fluid passage forming substrate for an ink jet print head in which the width of the ink supply ports is not expanded even if the etching patterns are shifted from their correct positions, and the ink supply ports have accurate flow resistance values.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS.
1
(
a
) and
1
(
b
) are top and sectional views showing an embodiment of an ink jet print head according to the present invention, these views showing typically a single pressure generating chamber and its near structure.
FIGS.
2
(I) to
2
(III) are sectional views showing a bonding process of a covering member on a fluid passage forming substrate in a method of manufacturing the ink jet print head of FIG.
1
.
FIG. 3
is a sectional view showing another embodiment of an ink jet print head according to the present invention, the view showing typically a single pressure generating chamber and its near structure.
FIGS.
4
(I) to
4
(III) are sectional views showing a method of manufacturing the ink jet print head of FIG.
3
.
FIG. 5
is a sectional view showing yet another embodiment of an ink jet print head according to the present invention, the print head having a fluid passage forming substrate formed by anisotropically etching a silicon monocrystalline substrate, and the view showing typically a single pressure generating chamber and its near structure.
FIGS.
6
(I) to
6
(VIII) are sectional views showing a method of manufacturing a fluid passage forming substrate for the ink jet print head of FIG.
5
.
FIG. 7
is a view showing an example of an etching pattern, which is used for forming a fluid passage forming substrate by use of a silicon monocrystalline substrate.
FIG. 8
is a view showing the result of anisotropically etching the silicon monocrystalline substrate by use of the etching pattern shown in FIG.
7
.
FIG. 9
is a sectional view showing a conventional ink jet print head which uses a fluid passage forming substrate constructed with a silicon monocrystalline substrate, the view showing typically a single pressure generating chamber and its near structure.
FIGS.
10
(
a
) and
10
(
b
) are views showing conventional etching patterns used for forming the fluid passage forming substrate shown in
FIG. 5
, and an ink supply port formed by use of that etching pattern.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference is made to FIGS.
1
(
a
) and
1
(
b
) showing an embodiment of the present invention. A fluid passage forming substrate
1
having pressure generating chambers formed therein is formed with a silicon monocrystalline substrate processed by anisotropical etching process. The surfaces of the lengthwise sides of each pressure generating chamber
2
is defined by opposite walls
3
and
3
′ vertical to the silicon monocrystalline substrate. Both ends of the pressure generating chamber
2
are defined by walls
4
and
4
′, which appear while being slanted at approximately 35° with respect to the surface of the silicon monocrystalline substrate of the silicon monocrystalline substrate.
An elastic film
5
is an elastically deformable thin film made of, for example, zirconia oxide, which is fastened on a narrow opening surface
6
of the silicon monocrystalline substrate
1
. A lower electrode
7
as a common electrode is formed on the surface of the elastic film
5
. A piezoelectric layer
8
is formed on the lower electrode
7
. Upper electrodes
9
are discretely formed on the piezoelectric layer
8
while being arrayed corresponding to and in opposition to the pressure generating chambers
2
. In the structure where the upper electrodes
9
are arrayed in opposition to the pressure generating chambers
2
, if a drive signal is applied to between the lower electrode
7
and a specific or selected upper electrode
9
, the pressure generating chamber
2
corresponding to the selected upper electrode
9
is expanded and contracted to eject an ink droplet therefrom.
A covering member
10
is fastened on the surface of the other side of the silicon monocrystalline substrate
1
. A nozzle orifice
11
is formed in the covering member
10
at a location closer to one end of the pressure generating chamber
2
, and an ink supply port
12
is also formed in the covering member
10
at another location closer to the other end of the pressure generating chamber
2
. The wider opening side or surface of the fluid passage forming substrate
1
is coated with adhesive to form a adhesive layer
13
thereon. The covering member
10
is applied, and bonded onto the silicon monocrystalline substrate
1
with the aid of the adhesive layer
13
intervening therebetween.
In a bonding process of the covering member on the fluid passage forming substrate, as shown in FIGS.
2
(I)-
2
(III), the fluid passage forming substrate
1
is coated with adhesive
14
(see FIGS.
2
(I) and
2
(II)). The nozzle orifices
11
and the ink supply ports
12
of the covering member
10
are aligned with the related pressure generating chambers
2
(FIG.
2
(II)). The covering member
10
and the fluid passage forming substrate
1
are compressed together and the adhesive
14
present therebetween is hardened. In the bonding process, when the covering member and the fluid passage forming substrate are compressed together, part of the adhesive
14
flows out into the pressure generating chamber
2
. At this time, the adhesive flows, by its surface tension, into the narrow spaces formed by the walls
4
and
4
′ defining the ends of the pressure generating chamber
2
and the surface of the covering member
10
, whereby meniscuses M are formed therein as shown in FIG.
2
(III).
In this state, the adhesive is hardened to form walls
15
and
15
′ (FIG.
1
(
b
)) inclined at a large angle. This angle is much larger than the angle between the covering member
10
and each of the walls
4
and
4
′. Therefore, flowing ink does not stagnate in the vicinity of the nozzle orifice
11
and the ink supply port
12
. As a result, no bubbles stay at the ends of the pressure generating chamber
2
(when longitudinally viewed), and if staying there, the bubbles may easily be removed.
FIG. 3
shows a second embodiment of the present invention. As shown, to form a fluid passage forming substrate
20
, through-holes to be used as pressure generating chambers
21
are formed in a silicon monocrystalline substrate by a crystalline anisotropic etching process. At this time, in each of the formed pressure generating chambers, an enlarged portion
22
is formed which has faces
23
and
23
′ vertical to the silicon monocrystalline substrate and is opened to the larger opening-formed side of the silicon monocrystalline substrate.
To be more specific, as shown in FIGS.
4
(I)-
4
(III), pressure generating chambers are formed in a silicon monocrystalline substrate by an anisotropic etching process (FIG.
4
(I)). The silicon monocrystalline substrate is etched by a surface anisotropical etching process, e.g., dry etching process, from the surface of the substrate on which the covering member
10
is to be formed, toward the inner part of the substrate for a preset time (FIG.
4
(II)). In the etching process, the exposed surfaces of the silicon monocrystalline substrate are etched at a fixed rate in its depth direction, or the direction vertical to the surface of the fluid passage forming substrate
20
. With the progress of the etching, the faces
23
and
23
′ are formed extending inward from the larger opening-formed side of each pressure generating chamber, onto which the covering member
10
is to be fastened. The nozzle orifices
11
and the ink supply ports
12
of the covering member
10
are aligned with the pressure generating chambers
21
of the silicon monocrystalline substrate, and the covering member
10
is applied to the substrate surface having the enlarged portions
22
(
FIG. 3
) that are formed therein by surface anisotropical etching process, and bonded to the latter (FIG.
4
(III)). Here, an ink jet print head is completed.
In the present embodiment, the vertical faces
23
and
23
′ which are formed in the vicinity of the nozzle orifice
11
and the ink supply port
12
of each pressure generating chamber by surface anisotropic etching process, are substantially parallel to the flowing direction of ink in the nozzle orifice
11
and the ink supply port
12
. Therefore, no stagnation of ink flow is present in the vicinity of the nozzle, orifice
11
and the ink supply port
12
, and bubbles staying there are easily removed therefrom. Since the faces
23
and
23
′ for making ink flow smooth are already formed in the vicinity of the nozzle orifice
11
and the ink supply port
12
, there is no need for forming the adhesive meniscuses M (FIG.
1
(
b
)). Therefore, a bonding method not using adhesive, for example, an anodic bonding method, may be used for bonding the covering member
10
to the fluid passage forming substrate. As a result, no adhesive flows into the pressure generating chamber
2
, and there is no chance of clogging the nozzle orifice
11
and the ink supply port
12
with adhesive.
In the above-mentioned embodiment, the ink supply ports are formed in the covering member, and the reservoirs are formed in another member. If required, the reservoirs and the ink supply ports may be formed in the fluid passage forming substrate. In this case, the present invention is applied to the structure of the ink supply ports of the silicon monocrystalline substrate.
The present invention may also be embodied as shown in FIG.
5
. An ink jet print head of
FIG. 5
has a layered structure made up of a fluid passage forming substrate
35
, an elastic plate
36
and a nozzle plate
37
. A silicon monocrystalline substrate is anisotropically etched to form the fluid passage forming substrate
35
which includes reservoirs
30
for receiving ink from exterior, pressure generating chambers
33
for ejecting ink droplets through nozzle orifices
32
when those are pressed by pressure generating means
31
, and ink supply ports
34
for supplying ink from the reservoirs
30
to the pressure generating chambers
33
. The elastic plate
36
tightly covers one of the major sides or surfaces of the fluid passage forming substrate. The nozzle plate
37
tightly covers the other major side of the fluid passage forming substrate.
In the fluid passage forming substrate, which is thus formed by anisotropically etching the silicon monocrystalline substrate, each ink supply port
34
, which greatly affects the ink ejection performances, functions as an ink guide means for smoothly supplying ink from the reservoir
30
to the pressure generating chamber
33
, and provides flow resistance for ejecting the ink, when is pressed in the pressure generating chamber
33
, through the nozzle orifice
32
in the form of an ink droplet. From those functions, it will be confirmed that the ink supply port
34
is one of the factors that greatly affects the ink ejecting performances.
If the width of the ink supply port
34
is selected to be substantially equal to that of the pressure generating chamber
33
and the depth d of the ink supply port is selected to be shallow, the ink supply port
34
has a flow resistance value comparable with that of the nozzle orifice
32
.
To form the ink supply port
34
, as shown in FIG.
10
(
a
), one side of an area to be used as the ink supply port
34
is etched by use of an etching pattern P
3
of the pressure generating chamber
33
, while the other side of the area is etched by use of an etching pattern P
4
of the width W
1
that is equal to that of the pressure generating chamber
33
. Then, an area between those patterns P
3
and P
4
is half etched to form a recess of the width W
1
there. This recess is used for the ink supply port
34
.
If one of those two patterns, e.g., the pattern P
3
for forming a passing hole
38
, is shifted from the other pattern P
4
by ΔL, as indicated by a dotted line, the width for the ink supply port
34
expands to positions where lines prolonged from the etching pattern P
3
for the pressure generating chamber
33
and the etching pattern P
4
contact with each other. The width of the ink supply port
34
is expanded by a slight amount ΔW to have the width (W
1
+ΔW). As a result, a flow resistance of the ink supply port
34
varies. The variation of the flow resistance leads to a variation of the ink drop ejection performances, and degradation of the print quality.
FIG. 6
shows a set of sectional views showing a method of manufacturing the fluid passage forming substrate shown in
FIG. 5. A
silicon monocrystalline substrate
41
that is cut so as to have the surfaces each of a (
110
) face is thermally oxidized to form a base material
44
having SiO
2
layers
42
and
43
layered over the entire surfaces thereof (I in FIG.
6
). The SiO
2
layers
42
and
43
serve also as etching protecting films in an etching process of the silicon monocrystalline substrate
41
.
A photo resist
45
is formed on the SiO
2
layer
42
so that the orientation of the pressure generating chambers
33
is coincident with the crystal orientation (
112
). As a result, a first etching pattern P
1
of the width W
1
for the pressure generating chambers
33
and a second etching pattern P
2
to be used as a passing hole
38
(the area for the ink supply port
34
is located between the patterns P
1
and P
2
) are formed, as shown in FIG.
7
. The second etching pattern P
2
is narrower than the first etching pattern P
1
(W
2
<W
1
; W
2
=width of the pattern P
2
, and W
1
=width of the pattern P
1
), and is formed within the opposite lines S and S defining the first etching pattern P
1
(
11
in FIG.
6
).
The SiO
2
layer
42
is removed by use of the buffer hydrofluoric acid solution consisting of hydrofluoric acid and ammonium fluoride at a rate of 1:6, to thereby form window patterns P
1
′ and P
2
′ for anisotropic etching processes, which are coincident in shape with the etching patterns P
1
and P
2
(III). The photo resist
45
on the SiO
2
layer at positions where the ink supply ports
34
and the reservoirs
30
are to be formed is removed again, and SiO
2
layers
46
and
47
are etched in the previously described buffer hydrofluoric acid solution for about 5 (five) minutes till its thickness is reduced to be approximately 0.5 μm(IV). After the removal of the photoresist
45
, the base material
44
is anisotropically etched in a 10% potassium hydroxide solution heated to a temperature at 80° C. The etching progresses and reaches the other side SiO
2
layer
43
, so that recesses corresponding to the patterns P
1
′ and P
2
′ which are to be the pressure generating chambers
33
and the passing holes
38
are formed. The layers SiO
2
layers
42
,
46
and
47
, which serve as etching protecting films, are also etched away. The SiO
2
layers
46
and
47
on the areas for the ink supply ports
34
and the reservoirs
30
are left as layers being thinned to be about 0.2 μm, and the SiO
2
layers
42
are left as layers being thinned to be about 0.6 μm (V in FIG.
6
).
The base material
44
is immersed into the buffer hydrofluoric acid solution for such a time period as to allow the removal of the SiO
2
layers of 0.1 μm, for example, about one minute. The result is to remove the SiO
2
layers
46
and
47
on the areas in which the ink supply ports
34
and the reservoir
30
are to be formed, and to leave the SiO
2
layers
46
on the remaining areas in the form of layers
42
, of about 0.1 μm (VI in FIG.
6
). The base material
44
is immersed again into an about-40% potassium hydroxide solution for anisotropical etching process, whereby the areas of the ink supply ports
34
and the reservoirs
30
are selectively etched again (VII in FIG.
6
). As recalled, the second etching pattern P
2
′ is located within the boundary lines S and S of the first etching pattern P
1
′. Therefore, the etching process for the areas to be the ink supply ports
34
stops at the positions of the outermost lines, viz., the lines defining the width W
1
of the first etching pattern P
1
. If a shift of the first etching pattern P
1
relative to the second etching pattern P
2
, and the second etching pattern P
2
, as well, is within the area between the boundary lines S and S, the ink supply port
34
is formed having the width equal to the width W
1
of the pressure generating chamber
33
, as shown in FIG.
8
.
Therefore, if an etching quantity in the second etching process, or the half etching process, is controlled in terms of the etching time, the ink supply ports of desired flow resistance values are formed. If the width of each passing hole
38
located between the ink supply port
34
and the reservoir
30
is somewhat narrow, the narrowness of the passing hole does not give rise to such a variation of the flow resistance as to ink ejecting performances since the passing hole
38
is deeper than the ink supply port
34
. Finally, the residual SiO
2
layers
42
′ and
43
are removed by use of the buffer hydrofluoric acid solution, to complete the fluid passage forming substrate (VIII in FIG.
6
). Subsequently, the surface of the fluid passage forming substrate is coated with the adhesive
39
, and the nozzle plate
37
is applied to the adhesive coated surface of the fluid passage forming substrate, and fastened thereonto, and meniscuses M are automatically formed at the acutely angled portions of the fluid passage forming substrate. The result is that no bubbles remain there and improvement in removability of the bubbles.
If it happens that the first etching pattern P
1
is narrower than the second etching pattern P
2
and put within the second etching pattern P
2
, the width of each ink supply port
34
can be controlled to a desired width. In a case where this structure is employed, however, a shape of each pressure generating chamber
33
to be formed by the first etching pattern P
1
varies, and a factor varies which more greatly affects the ink ejecting performances, e.g., compliance, than the flow resistance of the ink supply port
34
. For this reason, use of this structure is not suggested.
While particular embodiments of the invention have been shown and described, it will be obvious to one skilled in the art that changes and modifications can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Claims
- 1. An ink jet print head comprising:a fluid passage forming substrate including pressure generating chambers being trapezoidal in shape, which are formed by etching a silicon monocrystalline substrate by an anisotropical etching process, each of said pressure generating chambers having first walls which are vertical to a surface of said fluid path forming substrate, and second walls which are slanted with respect to the surface of said fluid passage forming substrate, said second walls being formed at both ends of each of said pressure generating chambers, thereby forming a first and second opening to said pressure generating chambers; an elastic plate firmly fastened onto a side of said fluid passage forming substrate in which said first opening is formed, pressure generating means for expanding and contracting said pressure generating chambers, said pressure generating means being mounted on the surface of said elastic plate; and a covering member having nozzle openings firmly fastened to a side of said fluid passage forming substrate in which said second opening is formed such that said nozzle openings are located at an end of said pressure generating chambers, said first opening being smaller than said second opening; wherein said covering member is firmly fastened on said fluid passage forming substrate by an adhesive, and meniscuses of said adhesive are formed and hardened in spaces defined by said second walls slanted with respect to the surface of said fluid passage forming substrate.
- 2. An ink jet print head according to claim 1, wherein said second walls which are slanted at an angle of 35° with respect to the surface of said silicon monocrystalline substrate.
- 3. An ink jet print head according to claim 1, wherein said slanted walls are slanted at an angle of 35° with respect to the surface of said fluid passage forming substrate.
- 4. An ink jet print head comprising:a fluid passage forming substrate including pressure generating chambers being trapezoidal in shape, which are formed by etching a silicon monocrystalline substrate by an anisotropical etching process, each of said pressure generating chambers having first walls which are vertical to a surface of said fluid path forming substrate, and second walls which are slanted with respect to the surface of said fluid passage forming substrate, said second walls being formed at both ends of each of said pressure generating chambers, thereby forming a first and second opening to said pressure generating chambers; an elastic plate firmly fastened onto a side of said fluid passage forming substrate in which said first opening is formed, pressure generating means for expanding and contracting said pressure generating chambers, said pressure generating means being mounted on the surface of said elastic plate; and a covering member having nozzle openings firmly fastened to a side of said fluid passage forming substrate in which said second opening is formed such that said nozzle openings are located at an end of said pressure generating chambers said first opening being smaller than said second opening; wherein said pressure generating chambers have faces formed therein, said faces intersect said second walls and are vertical to said surface of said silicon monocrystalline substrate to thereby form an enlarged portion.
- 5. The ink jet print head according to claim 4, wherein said second walls which are slanted at an angle of 35° with respect to the surface of said fluid path forming substrate.
Priority Claims (2)
Number |
Date |
Country |
Kind |
8-297480 |
Oct 1996 |
JP |
|
8-297836 |
Oct 1996 |
JP |
|
US Referenced Citations (7)
Foreign Referenced Citations (12)
Number |
Date |
Country |
0 600 382 A2 |
Jun 1994 |
EP |
A2 0 600 382 |
Jun 1994 |
EP |
0 652 108 A |
May 1995 |
EP |
A2 0 652 108 |
May 1995 |
EP |
738599 |
Oct 1996 |
EP |
A2 0 799 700 |
Oct 1997 |
EP |
5 155030 |
Jun 1993 |
JP |
5-155030 |
Jun 1993 |
JP |
6 31914 |
Feb 1994 |
JP |
6-31914 |
Feb 1994 |
JP |
07 276626 |
Oct 1995 |
JP |
7-276626 |
Oct 1995 |
JP |