1. Field of the Invention
The present invention relates to an ink jet printing method and an ink jet printing apparatus printing apparatus which print an image on a print medium by using an ink jet print head having a nozzle array in which nozzles for ejecting ink are arranged with a high density.
2. Description of the Related Art
With the diffusion of information processing devices and communication devices (e.g., computer, word processor), output devices for outputting digital image according to digital image information processed by the information processing devices have been increasingly required. One of these output devices is an ink jet printing apparatus printing apparatus that ejects ink droplets to form dots on a print medium to form an image. This ink jet printing apparatus printing apparatus has been widely used. This ink jet printing apparatus printing apparatus uses a print head that is designed, in order to improve the printing speed and the resolution of a printed image, to include a great number of integrated and arranged ejecting sections (hereinafter also referred as nozzles). The ejecting section consists of an ink ejecting port for ejecting ink droplets, a fluid path, and a printing element or the like.
Furthermore, there has been recently another demand for the output of a color printed image. Thus, an ink jet printing apparatus printing apparatus for printing a color image performs a printing operation using not only a print head for ejecting black ink but also print heads for ejecting a plurality of color inks. In the printing operation, the print heads have no contact with a print medium, thus providing a printing operation with low noise. The ink jet printing apparatus printing apparatus also can print an image having a high resolution with a high speed by arranging the nozzles with a higher density. Furthermore, this type of ink jet printing apparatus printing apparatus does not require a special processing (e.g., development, fixing) to a to-be-printed material (e.g., plain paper). Thus, this type of ink jet printing apparatus printing apparatus has various advantages such as the one providing a high quality image with a low cost. An on-demand-type ink jet printing apparatus printing apparatus in particular can provide a color image easily and can be downsized and simplified and thus is expected to create a growing demand in the future. With the increasing demand for a color-printed image, ink jet printing apparatus printing apparatuses are required to provide an image having a higher quality with a higher speed.
On the other hand, with the background of the recent technical progress for the integrated arrangement of nozzles, a print head having a further higher density and a longer length is becoming possible. Generally, a print head having a high density and a long length is called a long print head. This long print head can increase the width of a region that can be printed on a print medium by one printing scan to the print medium when compared to a case where a conventional short print head is used. Thus, this technique has been further developed as a useful technique for realizing a high-speed printing that has been conventionally impossible while maintaining a high image quality equal to that of a conventional design.
However, in the case of the ink jet printing apparatus printing apparatus as described above that uses a long print head having a high density, a problem as described below may be caused.
Specifically, when a long print head in which nozzles are arranged with a high density simultaneously ejects a great number of ink droplets while performing a printing scan by the print head or a scan of a print medium with a high speed, the print head and the print medium have therebetween irregular air current (eddy flow). This causes a problem that positions to which ink droplets land on the print medium are fluctuated. Furthermore, it has been known that the eddy flow between the print head and the print medium has a significant influence on how the ink droplets are ejected, which is also one of the causes of the deterioration of an ink landing accuracy. Another problem is that the fluctuation of the ink landing positions as described above causes the image to have a stripe-like or spiral-like uneven density, remarkably deteriorating the image quality. This has been hindrance to the realization of the printing of a high-quality image with a high speed.
As a technique for solving the stripe-like uneven density as described above, techniques disclosed in Japanese Patent Laid-Open No. 2001-18376 or Japanese Patent Laid-Open No. 2002-96455 are known.
Japanese Patent Laid-Open No. 2001-18376 discloses a technique in which nozzle arrays provided in a print head are divided to the printing ones and no-printing ones with a fixed pitch and the fixed pitch is further minutely divided. This technique can cause the stripe uneven density (stripe-uneven printing) to be the one that is difficult to be visually recognized.
Japanese Patent Laid-Open No. 2002-96455 also discloses a mask pattern for allocating, when a printing method is used by which a plurality of main scans complete an image within the same printing region, the operation for providing the image within the same printing region to a plurality of main scans. This mask pattern is set so that the end part side of the nozzle arrays have a higher thinning-out ratio than that of the center side. The use of this mask pattern can reduce the frequency at which the end part nozzle is used, thereby eliminating the uneven density caused by twisted eject from the end part nozzle.
However, the techniques according to the above Patent References still have room for improvement in that deterioration of an image due to eddy flow caused between a print head and a print medium is not sufficiently avoided. Specifically, the eddy flow caused between a print head and a print medium may be caused not only at the end part of the nozzle array but also at the entire region of the nozzle array. Influence by eddy flow between nozzle arrays also cannot be ignored. Thus, it is difficult for only the conventional techniques to avoid the deterioration of an image due to the generation of the eddy flow.
What is required for ink jet printing apparatus printing apparatuses in the future is to realize a printing of an image with both of a further higher speed and a further high quality. To do so, the deterioration of the quality of an image due to the eddy flow as described above needs to be improved.
It is an objective of the present invention to provide an ink jet printing apparatus printing apparatus and an ink jet printing method by which, even when a print head in which ink ejecting sections are arranged with a high density is used to perform a printing with a high speed, eddy flow caused between the print head and a print medium can be reduced to mitigate the decrease of the landing accuracy of ink droplets.
The present invention for achieving the above objective has the structure as shown below.
Specifically, the first aspect of the present invention is an ink jet printing apparatus for causing a plurality of nozzles arranged in a print head to eject ink droplets while the print head scans relative to a print medium, to print an image on the print medium, the apparatus comprising: scanning means for causing the print head to scan a same printing region of the print medium a plurality of times; thinning-out means for dividing image data corresponding to the same print region to pieces of image data to be printed by the respective plurality of scans by thinning-out image data corresponding to the same print region; and printing control means for printing, in accordance with the image data thinned out by the thinning-out means in the respective plurality of scans, a thinned-out image on the same print region to complete an image to be printed on the same print region, wherein the thinning-out means thins out image data to be printed on a plurality of same print regions at which the print head passes in one scanning with high and low thinning-out ratios in turn in a direction in which the nozzles are arranged.
The second aspect of the present invention is an ink jet printing apparatus for causing a plurality of nozzles arranged in a print head to eject ink droplets while the print head scans relative to a print medium, to print an image on the print medium, the apparatus comprising: scanning means for scanning the print head to a same print region of the print medium a plurality of times; conversion means for converting multivalued image data that corresponds to the respective pixels constituting an image to be printed on the same print region to binary image data; thinning-out means for thinning-out the binary image data corresponding to the same print region by using different mask patterns corresponding to respective plurality of scans to the same print region; and printing control means for printing, based on the binary image data thinned out by the thinning-out means in the respective plurality of scans, a thinned-out image on the same print region to complete the image to be printed on the same print region; wherein the respective different mask patterns are defined so that a first region for thinning-out the binary image data with a relatively high thinning-out ratio and a second region for thinning-out the binary image data with a relatively low thinning-out ratio are repeatedly arranged in a direction, in which the nozzles are arranged, in the unit of an integral multiple of the width of the pixel.
The third aspect of the present invention is an ink jet printing method for causing a plurality of nozzles arranged in a print head to eject ink droplets while the print head scans relative to a print medium, to print an image on the print medium, the method comprising: a scanning step for scanning the print head to a same printing region of the print medium a plurality of times; a thinning-out step for dividing image data corresponding to the same print region to image data to be printed in the respective plurality of scans by thinning-out image data corresponding to the same print region; and a printing step for printing thinned-out image on the same print region in accordance with image data thinned out by the thinning-out step in the respective plurality of main scans to complete an image to be printed on the same print region, wherein, in the thinning-out step, image data to be printed on a plurality of the same print regions at which a nozzle array of the print head passes during one scan is thinned out at high and low thinning-out ratios alternately in a direction in which the nozzles are arranged.
The fourth aspect of the present invention is an ink jet printing method for causing a plurality of nozzles arranged in a print head to eject ink droplets while the print head scans relative to a print medium to form an image on the print medium, the method comprising: a step for causing the print head to scan to a same print region of the print medium a plurality of times; a step for converting multivalued image data that corresponds to the respective pixels constituting an image to be printed on the same print region to binary image data; a step for thinning-out binary image data corresponding to the same print region using different mask patterns respectively corresponding to a plurality of scans to the same print region; and a step for printing, in the respective plurality of scans, thinned-out images on the same print region based on the thinned-out binary image data to complete an image to be printed on the same print region, wherein the respective different mask patterns include an arrangement of an region in which a printing of the binary image data is permitted and an region in which a printing of the binary image data is not permitted and are defined so that a part relatively highly occupied by the printing-permitted region and a part relatively lowly occupied by the printing-permitted region are repeatedly arranged along a direction, in which the nozzles are arranged, in the unit of an integral multiple of the width of the pixel.
In the present invention, the term “scan” denotes an operation as described below. Specifically, the term “scan” denotes an operation in which ink is ejected while causing a relative movement between one nozzle array in which nozzles are arranged in a substantially row arrangement and with a high density and a print medium in a direction crossing the direction in which the nozzles are arranged (which may be inclined), thereby printing a part or the entirety of the image. Thus, when a plurality of nozzle arrays are arranged in parallel in the main scan direction, a plurality of “scans” corresponding to the number of the arranged nozzle arrays will be described even when one relative movement between the respective nozzle arrays and the print medium is performed. The plurality of “scans” corresponding to the number of the repetition of the relative movements also will be described even when repeated relative movements between the respective nozzle arrays and the print medium are performed as in the case of the so-called multipass printing. For example, when three passes of multi-pass printing is performed by a head unit having three print heads for the same color, the total of nine “scans” will be described.
According to the present invention, even when a print head in which ink eject sections are arranged with a high density is used to perform a printing with a high speed, eddy flow caused between the print head and a print medium can be reduced to maintain, with a high accuracy, positions to which ink droplets land, thus providing an image with a high quality.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In
In
This serial-type ink jet printing apparatus printing apparatus includes a transportation mechanism for transporting the print medium P such as a plain paper, a high-grade exclusive paper, an OHP sheet, a gloss paper, a gloss film, or a postcard. This transportation mechanism has a transportation roller (not shown), the paper ejection roller 25, and the transportation motor 26 or the like and is intermittently transported in the sub scan direction (direction Y) in accordance with the driving of the transportation motor 26.
The above print head 22 and transportation mechanism receive a eject signal and a control signal sent from a control section (which will be described later) via the flexible cable 23. In accordance with the eject signal and control signal, the respective print heads 22 and the transportation mechanism are operated.
Specifically, heat generation elements of a print head are driven based on the position signal of the carriage 32 outputted from the linear encoder 28 and a eject signal. Then, heat energy during the driving causes ink droplets to be ejected from the nozzles and the ink droplets land onto a print medium. Based on the control signal, the transportation mechanism moves the print medium for a fixed distance in the sub scan direction and within a period from one main scan of the print head to next main scan of the print head. By repeating this printing operation by the print head and the transportation operation by the transportation mechanism, an image is formed all over the print medium. The home position of the carriage 32 set to a position outside the printing region includes the recovery unit 34 including the cap section 35 that can seal and open a eject port provided at the print head.
Next, the structure of the eject section (nozzle) provided in the print head of the respective ink jet printing apparatus printing apparatus as described above will be described with reference to
In
This heater board nd and the top panel ne are positioned and joined so that each fluid path nc corresponds to each heater nb. Although
An ink jet printing method applicable to the present invention is not limited to the one using the method as shown in
In
The structure will be described in more detail. The external device 80 may be, for example, an image input device (e.g., scanner, digital camera) or a personal computer. Multivalued image data outputted from the scanner, digital camera or the like (e.g., RGB 8 bit data) or multivalued image data stored in a hard disk of a personal computer or the like is inputted to the image data input section 71. The operation section 72 includes various keys for setting various parameters or for inputting an instruction for starting the printing for example. In accordance with various programs in the storage medium, the CPU 73 controls the entirety of the ink jet printing apparatus printing apparatus. Programs stored in the storage medium 74 include a program by which the ink jet printing apparatus printing apparatus is operated in accordance with a control program or an error processing program. The operation of this embodiment is all performed in accordance with this program. The storage medium 74 for storing this program may be ROM, FD, CD-ROM, HD, a memory card, a magnetic optical disk or the like. The RAM 75 is used as a work area in which various programs stored in the storage medium 74 are executed, a temporary save area for an error processing, and a work area for an image processing. The RAM 75 also can copy various tables in the storage medium 74 to subsequently change the contents of the table to proceed the image processing while referring to the changed table.
The image processing section 76 performs a color separation processing for converting inputted multivalued image data for each pixel (e.g., 8 bit RGB data) to multivalued data for each color (e.g., 8 bit CMYBk data). Then, the multivalued data for each pixel of each color is quantized to K-value data (e.g., 17 value). Then, a dot arrangement pattern corresponding to the gradation value “K” shown by the respective quantized pixel (gradation values of 0 to 16) is determined. Although this K-value processing uses the multivalued error diffusion method, the processing is not limited to this. Any other half-toning processing methods also may be used, including the average density storage method and Dither Matrix method. After the above-described K-value processing, a processing for providing a dot arrangement pattern is performed in which the respective tones correspond to dot arrangement patterns which will be described later (this pattern also may be referred to as the dot concentrated shape unit INDEX). Then, in a plurality of printing scans by the print head, to-be-printed binary data generated by the dot arrangement pattern processing is subjected to a thinning-out processing in which to-be-printed data is allocated to each printing scan. The plurality of printing scans by the print head also include one printing scan performed by a print head including two or more nozzle arrays.
By repeating these processings, to-be-printed binary data representing eject and no-eject to the respective nozzles of the print head is prepared. Then, the image printing section 77 ejects ink based on the to-be-printed binary data prepared by the image data processing section 76, thereby forming a dot image on a print medium.
Next, how nozzles are arranged in the print head used for the respective ink jet printing apparatus printing apparatuses will be described with reference to
In
The respective nozzle arrays 17A, 17B, 17C, and 17D constituting the respective line heads have the structure as shown below. Since the respective nozzle arrays have the same structure, the following description will describe the nozzle array 17A as an example.
The intermediate nozzle array 171 constituting the nozzle array 17A is composed by a plurality of (four in this example) small nozzle arrays NG1 to NG4. These small nozzle arrays are arranged in a staggered manner. Furthermore, each small nozzle array is provided so that a plurality of nozzles n for ejecting ink droplets of an average of 2.5 μl are arranged in a staggered manner, thereby allowing the nozzles to be arranged in the sub scan direction with a high density. Adjacent small nozzle arrays in the nozzle array 171 are provided so that the ends thereof are overlapped to one another, thereby providing the nozzle array with a fixed arrangement density. In this embodiment, nozzles in the nozzle array 171 are arranged with an arrangement density of 1200 dpi.
By the nozzle array provided as described above, the four small nozzle arrays (i.e., one intermediate nozzle array) can be used to print a region having a width of substantially 4 inch by one printing scan. Furthermore, by the entire line head, the respective nozzle arrays 171 and 175 can be used to print a region having a width of substantially 8 inch. Other line heads 17C, 17B, and 17D also have the same structure.
Although
Next, with reference to
The print head 22 shown in
When the print head 22 is attached to the carriage 32, a plurality of nozzles are arranged in a direction matching with the sub scan direction (direction Y) in which a print medium is transported. Thus, the scan direction of the print head 22 is the direction X orthogonal to this sub scan direction.
On the other hand, the print head 22 shown in
However, in the print head 22 shown in
Furthermore, each small nozzle array is structured such that a plurality of nozzles n for ejecting ink droplets in an average amount of 2.5 pl are arranged in a staggered manner in the direction Y, thereby providing the nozzles with a high arrangement density in the sub scan direction (direction Y). The print head 22 shown in
In the print heads shown in
Next, an embodiment of a thinning-out divided printing which is a feature of the present invention will be described.
In this embodiment, a mask pattern having a low printing ratio region (high thinning-out ratio region) having a predetermined width and a high printing ratio region (low thinning-out ratio region) is used to thin-out to-be-printed data to distribute the to-be-printed data to the respective nozzles of a print head. This is one of characteristic structures of this embodiment.
First, the principle of the present invention found by repeated keen examinations by the present inventors will be described below.
In the serial-type ink jet printing apparatus printing apparatus as shown in
This was confirmed by the experiment as described below. Specifically, according to the confirmed result by the experiment, the print head 22 and the print medium P have therebetween a distance of about 0.5 mm to about 3.0 mm and the main scan was performed at a high speed at which relative scan speed of the print head 22 and the print medium p exceeds 5 inch/s (sec). Then, when a print head is used in which nozzles for ejecting small ink droplets equal to or lower than 6 pl are arranged with a high density of about 600 dpi and when a region in which nozzle arrays simultaneously eject ink droplets has a wide width, strong eddy flow was caused to remarkably deteriorate an ink landing accuracy.
In this case, in the case of a print medium having a relatively rough surface (typical example of which is a plain paper), the fluctuation of an ink landing position to some extent has not so much impact on an image quality within a permissible range. However, when a print medium having small bleeding (e.g., coated paper, gloss paper) is printed, the fluctuation of an ink landing position is remarkable and thus is easily recognized as uneven density.
As a result of the repetition of the experiments as described above, it was confirmed that printing conditions through which remarkable image deterioration is caused in an ink jet printing apparatus printing apparatus are the conditions as described below, for example.
Specifically:
(1) nozzle arrays in the print head arranged with a density equal to or higher than 600 dpi and in the substantially one row (the term “the substantially one row” means to include the staggered arrangements shown in
(2) small ink droplets from a nozzle in an amount equal to or lower than 6 μl;
(3) the relative movement speed of the print head and the print medium (i.e., printing scan speed) equal to or higher than 5 inch/s; and
(4) a distance between the print head and the print medium equal to or longer than 0.5 mm.
Furthermore, it was also confirmed that, the higher the printing ratio in one main scan is, the higher the image deterioration is.
The relative movement speed of the print head and the print medium (printing scan speed) was determined to be 2.5 inch/s, which is a very slow speed. The driving frequency of each nozzle was set to be 3 kHz. The printing ratio was set to be 100% (in which all nozzles in the nozzle arrays eject ink). The distance between the print head and the print medium was set to be 0.4 mm.
Under the printing conditions as described above, ink droplets ejected from the respective nozzle arrays flied in the substantially one direction as shown by the arrow in
On the other hand,
In this case, eddy flow was caused between the print head and the print medium to cause ink droplets ejected from the nozzles to fly in non-uniform directions, causing fluctuated ink landing positions. The fluctuated ink landing positions caused an image including uneven density and undesirable white and black stripes.
The arrangements shown in
The mask pattern 110 shown in
It is noted that the term “mask pattern thinning-out ratio” is a ratio at which a non print areas showing to-be-thinned-out positions occupy in all areas of a mask pattern composed by predetermined a print permit areas and non print permit areas. On the other hand, the term “mask pattern printing ratio” is a ratio at which print permit areas occupy in all areas of a mask pattern composed by predetermined print permit areas and non print areas and has an opposite meaning to “mask pattern thinning-out ratio. Thus, the low thinning-out ratio region is synonymous with the high printing ratio region and the high thinning-out ratio region is synonymous with the low printing ratio region. The mask pattern thinning out ratio and mask pattern printing ratio are predetermined values and neither is influenced by image data.
The use of this mask pattern 110 can provide, even when the print head having nozzle arrays in which nozzles are arranged with a high density as shown in
For example, when the mask pattern 10 is used to thin-out to-be-printed data, the nozzle arrays are in the state as shown in
The following section will describe how the present inventor has assumed a reason (mechanism) of the above-described fluctuation of ink landing positions by the use of the mask pattern in which a high thinning-out ratio region and a thinning-out ratio region are alternately arranged.
In order to complete an image with a short time in a serial-type ink jet printer or in a full-line-type ink jet printer, a high-speed relative scanning must be performed with a high printing ratio. Then, the disturbed air current is caused in a space between a recording head and a printing medium as described above. An amount and a manner of this disturbed air current largely depend on a scanning ratio or a printing ratio. The above disturbed air current is suppressed by providing a distribution of thinning-out ratios in a mask pattern as in the present invention.
Specifically, a high air current is caused from the top of a print head to the subsequent head by a high-speed relative scanning between a print head and a print medium. This is the above-described air current caused between a print head and a print medium. In a direction substantially orthogonal to this air current, ink droplets are ejected from the print head having a high density. This ejected ink with a high density disturbs the above air current. Specifically, air current is caused to bypass the wall of the ejected ink having a high density. Then, this bypass air current changes a direction in which ink droplets are ejected, leading to a deviation of ink landing positions.
However, when the mask pattern is used in which thinning-out ratios in a nozzle arrangement direction are alternately arranged to provide an order of high, low, and high thinning-out ratios, a space is caused in the wall of the ejected ink having a high density. Specifically, the space is at a position corresponding to a high thinning-out ratio region of the mask pattern. Thus, the wall of the ejected ink includes alternate spaces in the nozzle arrangement direction. Then, air current disappears from this space to proportionally reduce the bypass air current. Consequently, the deviation of the ink landing positions due to this bypass air current is suppressed.
In an image formed by one scan by the print head, there is a tendency where an region printed with a high printing ratio and an region printed with a low printing ratio in accordance with the mask pattern shown in
In the serial-type ink jet printing apparatus printing apparatus as shown in
When the mask pattern is used to perform a printing operation by the above mask pattern in the full-line-type printing apparatus printing apparatus as shown in
The mask pattern 120 shown in
When the print head is attached at a slant, an image to be formed may include stripe-like uneven density in general. However, this problem is solved by increasing an accuracy at which the head is attached. In the case of the full-multi-type line printer in particular, the head is fixed to the print apparatus to transport a to-be-printed medium. Thus, the full-multi-type line printer has less influence on the printing than in the case of the serial type printer.
This case also can reduce the eddy flow caused between the print head and the print medium if the width of the high printing ratio region is equal to or lower than a predetermined region width. Thus, a favorable image can be formed. When a nozzle array has a relatively long length, the space between the nozzle array and the print medium has air currents distributed to correspond to positions in the nozzle array. Thus, the width of the high printing ratio area is preferably designed to correspond to the position in the nozzle array.
When a printing to a single printing region is completed by four scans (i.e., when the printing with a 100% printing ratio is performed) and when each scan is printed with an equal printing ratio, the printing ratio in the respective scans is 25%. Thus, influence by eddy flow to ink droplets may be reduced even without the use of the mask pattern as described above in which the width of the high printing ratio region is set to be extremely small. However, the wide width of the high printing ratio region as shown in
Furthermore, in a case where a number of printing scans are used to complete an image, the printing ratio in one scan is reduced due to the above-described reason to cause small eddy flow. Thus, this case may not require the reed-shaped high printing ratio region as described above. Specifically, the present invention is effective when a matrix for printing has a resolution equal to or higher than 600 dpi and an image is completed by about four scans or less. The present invention is remarkably effective when an image is completed by two scans. This effect is provided not only to the serial-type ink jet printing apparatus printing apparatus but also to the full-line-type ink jet printing apparatus printing apparatus as described above in which two or more nozzle arrays for ejecting the same ink are arranged and the respective nozzle arrays are used to complete an image.
As described above, by repeated keen examinations by the present inventors, it was confirmed that an effective configuration is that a high printing ratio region and a low printing ratio region are alternately provided for a single printing scan regardless of whether they are arranged in a cyclic or noncyclic manner and the high printing ratio regions are arranged to have a width equal to or lower than a predetermined region width. Specifically, the experiments showed that the printing ratio set as described above can reduce, even when a print head in which nozzles are arranged with a high density is used to perform a high-speed printing, eddy flow caused between the print head and the print medium to reduce the fluctuation of ink landing positions over the entire nozzle arrays. The experiments also showed that the increased width of the reed-shaped high printing ratio region causes eddy flow in the high printing ratio region, preventing the image quality from being maintained. Furthermore, from the viewpoint of reducing the influence by eddy flow, the width of the reed-shaped low printing ratio region is desirably wide. However, an increased width of the low printing ratio region requires an increased number of printing scans for completing an image. Thus, the width of the low printing ratio region is desirably set to have an appropriate width. When an image is completed by two printing scans for example, the total of the low printing ratio regions in the nozzle array is required to be the total of the high printing ratio regions. The image is also required to be completed by being divided and thinned-out. Thus, the present invention requires a plurality of printing scans (a plurality of scans by multipass or a plurality of scans by a number of heads) to be performed so that the total of the widths of the low printing ratio regions is equal to the total of the widths of the high printing ratio regions.
Other results confirmed by the experiments will be described below.
A print head having a nozzle arrangement density of 600 dpi was used and the distance between the print head and a print medium was set to be 1.5 mm. This print head was used to perform a printing operation with a scan speed of 15 inch/s.
In this case, a reed-shaped thinning out mask pattern was used in which the high printing ratio region Hm having the width of 2.4 mm for 64 nozzles and the low printing ratio region Lm having 2.4 mm in which substantially no printing is performed were provided. In this case, ink droplets ejected form the high printing ratio region Hm in the nozzle array showed fluctuated ink landing positions due to eddy flow.
When the stripe width of the high printing ratio region Hm was gradually reduced to the width of 1.2 mm corresponding to 32 nozzles, uneven density of an image due to eddy flow was reduced to a level causing no problem in the image quality. Thus, it was clarified that the stripe width of the high printing ratio region Hm equal to or lower than 1.2 mm can provide a high-speed printing while suppressing the deterioration of image in a general ink jet printing apparatus.
Another experiment was performed with printing conditions in which the scan speed was 5 inch/s to 50 inch/s, the distance between the print head and the print medium was 0.5 mm to 3.0 mm, and the volume of ejected ink droplets was 6 pl or less. In this case, the high printing ratio region set to have a very small stripe width as described above could suppress the deterioration of the image. The effect of reducing the deterioration of the image as described above was obtained not only in a full-line-type ink jet printing apparatus printing apparatus in which two or more nozzle arrays are provided and the relative movement between the line head and the print medium provides a printing operation but also in a serial-type ink jet printing apparatus printing apparatus in which a printing scan with two passes or more is performed.
When the width of the high printing ratio region was increased to be more than 1.2 mm, generation of eddy flow also could be reduced to a certain level. However, stripe uneven density with a predetermined pitch tended to be remarkable, failing to provide a favorable image quality.
Specifically, when an image is completed by three printing scans to a single printing region, the printing ratio in each scan is one third of the total three printing scans. When an image is completed by four printing scans to a single printing region, the printing ratio in each scan is one fourth of the total four printing scans. This reduces eddy flow caused in the respective scans. In other words, it is possible to provide a favorable printing result even when the width for a high printing ratio set by a mask pattern exceeds 1.2 mm. For example, the maximum printing ratio for each printing scan in the printing with 4 passes corresponds to the half of that in a case where an image is completed by two printing scans. Thus, an influence by eddy flow can be reduced even when the predetermined width of the high printing ratio region is increased to 2.4 mm at the maximum. However, the width of the high printing ratio region exceeding 1.2 mm is not desirable because it causes stripe uneven density with a cycle that causes the unevenness to be easily visually recognized.
Some types of printing media showed an influence by minute eddy flow when being subjected to a high-speed printing. For example, when a gloss paper PR101 made by Canon Inc. was subjected to the high-speed printing, an image on the paper sometimes showed an influence by minute eddy flow. However, by repeated keen examinations by the present inventors, it was found that a pseudo half-toning processing method using the area coverage modulation method in which an image is represented by shape units was effective for reducing the influence by minute eddy flow as described above. Specifically, it was found that the pseudo half-toning processing method using a binarization processing with a concentrated area coverage modulation method was effective for this purpose. When this method is used, it was clear that an image quality can be improved by providing the width of a stripe of a high printing ratio region to be an integral multiple of shape units of a dot concentrated-type image.
Next, how to prepare to-be-printed data in an embodiment of the present invention will be described.
To-be-printed data using a print head is prepared by a method using a general ink jet printer. In this embodiment, inputted multivalued image data (e.g., 8 bit RGB data) is converted (color separation) to the respective pieces of multivalued image data (e.g., 8 bit CMYBk data) corresponding to the respective colors of heads (Step 1) as shown in
The dot arrangement pattern shown in this example is a pattern generated for the purpose of constituting an image of half-tone dots. The cells in
When the full-line-type ink jet printing apparatus printing apparatus shown in
In this case, a print head having the first to fourth nozzle arrays for ejecting the same color is prepared and each nozzle array is used to sequentially perform the printing operation. Specifically, the first nozzle array, which is positioned at the uppermost stream of the scan direction (direction in which a print medium is transported), is used to print the pattern data shown in
When the serial-type ink jet printing apparatus printing apparatus shown in
As described above, in the case of any type of ink jet printing apparatus printing apparatus, printing is performed for each region for a shape unit having a width of 0.08 mm (high printing ratio region). Furthermore, among regions having a width of shape units to be simultaneously printed, a region having a width for three shape units in which no printing is performed (width of 0.24 mm) exists (low printing ratio region). Thus, eddy flow caused between the print head and the print medium is reduced significantly and positions to which ink droplets land are maintained with a high accuracy. Furthermore, in the mask pattern M shown in
On the other hand,
The present invention also can be applied to an ink jet printing apparatus printing apparatus using a print head for ejecting a plurality types of inks having substantially the same hue and having different densities or an ink jet printing apparatus printing apparatus using a print head in which nozzles for ejecting different amounts of ink are arranged. In any case, the widths of the high printing ratio region and the low printing ratio region may be determined in accordance with the number of nozzle arrays to be used, the type of ink, the type of a print medium, the printing ratio, and the amount of ink droplets to be printed for example.
This case also provides the high printing ratio region Hn of 0.08 mm, thus providing a printing with a low eddy flow level to print a favorable image.
By the way, an ink jet printing method by which the nozzle array having a high density as described above can be realized in a relatively easy manner and with a low cost includes, for example, an ink jet printing method by which heat energy in a print head is used to form flying ink droplets for printing. However, the present invention is not particularly limited to this.
Next, the present invention will be described in more detail by the examples as shown below.
In the full-line-type ink jet printing apparatus printing apparatus shown in
With regards to a print medium, an ink jet-exclusive photo gloss paper (pro-photo paper, PR101 made by Canon Inc.) was prepared.
The upstream side first nozzle array 17A consisting of the nozzle arrays 171 and 175 of
Next, the second nozzle array 17B consisting of the reference numerals 172 and 176 of
In
In the nozzle arrays 171A and 171D, the two intermediate nozzle arrays 171 and 175 as well as the two intermediate nozzle arrays 174 and 178 for constituting them respectively are connected so that the end parts are overlapped to each other. A nozzle corresponding to the connected part is positioned at the high printing ratio region for both of the nozzle arrays. This can reduce the deterioration of an image at the connected part.
The printing conditions for the printing operation were determined such that the eject frequency was 30 kHz and the relative movement speed of the print head and the print medium was 25 inch/s. As a result, the deterioration of an image presumably caused by the influence by eddy flow was reduced, providing an image with a high quality.
The same ink jet printing apparatus printing apparatus as that of Example 1 was used to perform a divided printing by the mask pattern M for uniformly thinning-out the image data to the nozzle array as shown in
The same ink jet printing apparatus printing apparatus as that of Example 1 was used to perform a divided printing by the high printing ratio region and the low printing ratio region as shown in
The same ink jet printing apparatus printing apparatus as that of Example 1 was used to perform a divided printing by the high printing ratio region and the low printing ratio region. In this case, the width of the high printing ratio region was further increased so that a nozzle array having a density of 1200 dpi corresponds to 64 nozzles (1.2 m). The printing as described above also reduced uneven density presumably caused by an influence by air current, providing an image having a high quality. However, a very small amount of stripe-like uneven density with a predetermined width of pitch was visually recognized.
The same ink jet printing apparatus printing apparatus as that of Example 1 was used to perform a divided printing by the high printing ratio region and the low printing ratio region as shown in
The same ink jet printing apparatus printing apparatus as that of Example 1 was used. The mask pattern M in which reed-shaped high printing ratio regions extending in the main scan direction as shown in
The print head 22 having nozzle arrays in which 768 nozzles for ejecting an average amount of 2.5 pl as shown in
With regards to a print medium, an ink jet-exclusive photo gloss paper (pro-photo paper, PR101 made by Canon Inc.) was prepared.
In this printing operation, data at the position shown by the circled number 1 of
The printing operation under the printing conditions as described above did not cause uneven density presumably caused by an influence by eddy flow, providing an image having a high quality.
The same ink jet printing apparatus printing apparatus as that of Example 5 was used. The thinning-out mask pattern shown in
The same ink jet printing apparatus printing apparatus as that of Example 4 was used. The thinning-out mask pattern in which the boundary between the high printing ratio region and the low printing ratio region has an inclined printing ratio was used to thin-out to-be-printed data and the print head 22 was used to perform a divided printing. The printing as described above did not cause uneven density presumably caused by an influence by eddy flow, providing an image having a high quality.
The same ink jet printing apparatus printing apparatus as that of Example 4 was used. The thinning-out mask pattern M as shown in
The same ink jet printing apparatus printing apparatus as that of Example 4 was used. The arrangement as shown in
The same ink jet printing apparatus printing apparatus as that of Example 4 was used. The thinning-out mask pattern M as shown in
The same ink jet printing apparatus printing apparatus as that of Example 4 was used to develop the binarized image data subjected to the area coverage modulation shown in
The same ink jet printing apparatus printing apparatus as that of Example 4 was used to develop the binarized image data subjected to the area coverage modulation shown in
The same ink jet printing apparatus printing apparatus as that of Example 8 was used to perform a printing in accordance with image data based on a shape unit of a printing matrix consisting of 4×4 cells. In this case, the thinning-out mask pattern M was set to include low printing ratio regions among high printing ratio regions so that the low printing ratio regions are an integral multiple of shape units. Then, a multipass printing by two passes was performed. The printing was performed so that the respective passes correspond to the positions of the high printing ratio regions and low printing ratio regions of
As described above, the present invention is effective when a serial-type printing apparatus printing apparatus using a print head in which relatively short nozzle arrays are arranged is used to perform a divided printing (e.g., multipass printing) or when a full-line-type printing apparatus printing apparatus in which a plurality of relatively long nozzle arrays are arranged is used to perform a printing. Specifically, any of the printing methods can remarkably improve the fluctuation of ink landing positions of ink droplets due to eddy flow caused between the print head and the print medium, thereby providing a high-quality printed material with a high speed. The present invention also can be appropriately used for the printing by a dot-concentrated type area coverage modulation method to provide a high-speed printing while maintaining the gradation reproducibility.
The present invention is applicable to all devices using printing media such as paper, cloth, leather, nonwoven fabric, OHP sheet, and metal. Specifically, the present invention is applicable to office machines (e.g., printer, copier, facsimile) and industrial production machines for example.
The present invention is also suitable for a case where an area coverage modulation method that is widely known as “screen half toning method” called as the cluster type or the dot concentrated type is realized by an ink jet type printed. Printers for realizing the area coverage modulation method include a proof type printer widely used in the printing business.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application is a continuation application of PCT application No. PCT/JP2005/022899 under 37 Code of Federal Regulations § 1.53 (b) and the said PCT application claims the benefit of Japanese Patent Application No. 2004-360514, filed Dec. 13, 2004, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2004-360514 | Dec 2004 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP05/22899 | Dec 2005 | US |
Child | 11755431 | May 2007 | US |