The present invention relates to printing and, in a particularly important example, to ink jet printheads.
There is a demand for digital printers having a printhead that extends across the full width of the printed page offering both high throughput and high print quality.
In an ink jet printer of this character, having the necessarily large number of closely spaced ink chambers and nozzles, there will always be a risk of failure of one or more nozzles, whether as a consequence of a manufacturing error or through nozzle blockage or other failures in use.
It will be possible to detect and discard manufactured printheads having even a single failed nozzle. However, because of the very large number of nozzles in each printhead, and because of the sophistication of the manufacturing techniques, such quality control measures would likely lead to an uneconomic manufacturing yield.
In use of the printhead, failure of even a single nozzle can lead to perceptible print artefacts, because of the spatial correlation of the artefact as the printed substrate is indexed past the printhead.
Accordingly, it is an object of the present invention to provide improved methods of printing and improved printheads that are able to conceal artefacts arising from nozzle failures or other departures from standard print performance across a print row.
Accordingly, the present invention consists in one aspect in a method of printing parallel rows of contiguous pixels on a substrate indexed in a direction orthogonal to the rows, comprising the steps of printing for each row of pixels N superimposed rows of contiguous super pixels, each print pixel being capable of receiving print contributions from N super pixels, and each super-pixel preferably being elongated in the row direction with an aspect ratio of N:1.
Advantageously, each of the N superimposed rows of contiguous super pixels is offset in the row direction with respect to each of the other superimposed rows, with the distance of said offset preferably being 1/N of the dimension of the super pixel in the row direction.
Preferably, print data is received in the form of an array of print data pixels and wherein the value of each super pixel is derived as a weighted sum of preferably at least three corresponding data pixels with each super pixel preferably symmetrically disposed with respect to print data pixels.
Advantageously, at least one of the weighting coefficients applied to the corresponding data pixels in said weighted sum is negative.
In a preferred form of the invention, the printability of each super-pixel is measured, and the contribution to those pixels covered by that super-pixel is transferred wholly or in part to one or more other super-pixels from which those pixels are capable of receiving print contributions in accordance with any measured deviation in printability of that super pixel.
Suitably, an error in printability is measured for each super pixel and wherein the determination of the value of each super pixel includes a function of measured error in printability, with that function being preferably polynomial and including terms to at least the third power.
According to a further aspect, the present invention consists in an ink jet printer having a plurality of ink chambers each provided with a nozzle arrangement, the plurality of ink chambers being arranged so as to print on a substrate a row of contiguous print elements, the nozzle arrangement of each ink chamber being such that the print element associated with that ink chamber is elongated in the row direction with an aspect ratio of at least 2:1.
Advantageously, at least two sets of ink chambers are provided, each set being arranged so as to print a row of contiguous print elements, the rows of contiguous print elements printed by the respective sets of ink chambers being superimposed.
Suitably, the print elements of one set of ink chambers are offset in the row direction with respect to the print elements of another set of ink chambers with the offset being preferably the reciprocal of the aspect ratio.
In still a further aspect, the present invention consists in a method of printing a representation on a print medium of an array of print data pixels comprising the steps of distributing print data from said array of print data pixels over an array of super pixels in a distribution function such that each super pixel receives a print data contribution from at least two print data pixels and each print data pixel contributes print data to at least two super pixels; and forming print pixels on the medium such that each print pixel receives print contribution from at least two super pixels.
Preferably, the at least two super pixels from which a print pixel receives print contribution, receive print data contributions from different combinations of print data pixels.
Advantageously, each super pixel receives a print data contribution from at least three print data pixels with the print data contribution preferably varying in sign between said print data pixels.
Suitably, the method further comprises the step of measuring the print efficiency of each super pixel, with said distribution function preferably including the measured print efficiency.
In a preferred form of the invention, the step of forming print pixels on the medium such that each print pixel receives print contribution from at least two super pixels comprises the steps at each print pixel of depositing ink in an amount determined by one of the super pixels from which that print pixel receives print contribution and, whilst that deposited ink remains fluid, depositing ink in an amount determined by an other of the super pixels from which that print pixel receives print contribution.
In yet a further aspect, the present invention consists in a printer comprising an input port adapted to receive an array of print data pixels; a print arrangement for forming overlapping super pixels on a print medium and a print processor adapted to distribute print data from said array of print data pixels over the super pixels in a distribution function such that each super pixel receives a print data contribution from at least two print data pixels and each print data pixel contributes print data to at least two super pixels.
The present invention will now be described by way of example with reference to accompanying drawings in which:
Referring Initially to
Ink jet printheads of this general form are described for example in EP-A-0 277 703 and EP-A-0 278 590.
To increase the number of ink droplets that can be deposited for a unit length of the print row, it has been previously proposed to provide a second array of ink chambers 18 similarly defined by a piezoelectric wall structure 20 and having a nozzle plate 22 defining one nozzle per ink chamber 18. This second array of ink chambers 18 is shown as depositing Ink droplets 24 on the substrate. In this way, It is possible effectively to double the print resolution as compared with the “intrinsic” resolution defined by the nozzle spacing in a single array of ink chambers.
Each ink chamber 10 may be formed as an elongate channel, which is collinear with and shares the same ink supply ports, as an elongate channel forming a corresponding one of the ink chambers 18. The parallel array of ink channels is then angled to create the offset in the two sets of nozzles.
If one chamber or nozzle should fall (as marked schematically at X), there will be an unprintable pixel in the print row. Even though the number of ink drops per unit length of the print row may be high (perhaps 360 dpi), a single unprintable pixel may still produce a visually unacceptable artefact because of the spatial correlation of that artefact as the print substrate is indexed relative to the printhead.
Referring now to
The chamber structure may be modified such that it provides narrower wall structures 12 and a wider print chamber 10 to allow space for the two nozzles. The walls may be as thin as 25 μm without significant loss of activity.
The print head of
The channel terminates with a nozzle plate 14, within which the nozzles are formed—as depicted in
The print head of
As illustrated schematically in
The second set of ink chambers 18 may be located within a separate print head to that containing the first set of ink chambers 10 or may be part of the same print head such as described in WO 00/29217.
The ink drops 30 from the first array of ink chambers are offset along the print row with respect to the ink drops 32 of the second set of the chambers 18 by half the pitch of the ink chambers. With this arrangement, if there is a failure of a single chamber such as that shown schematically at X, no pixel remains unprintable.
It is convenient to regard the elongated ink drops 30 and 32 as printing “super-pixels”, each pixel printed on the substrate receiving contributions from up to two super-pixels. The printed pixel structure is depicted in
Although the row of super-pixels 13 (being the odd-numbered super-pixels 1, 3, 5 . . . ) are shown in
One approach to deriving the greyscale levels for the super-pixels from the greyscale pixel values received as input print data is as follows.
The greyscale value of each super-pixel is set as one quarter of the sum of the greyscale values for the two pixels covered by the super-pixels, thus:
S1=(PA+PB)/4 S2=(PB+PC)/4
This processing will serve as a low-pass spatial filter of the print image. In regions where this spatial filtering may have a noticeable effect on the image, as for example an edge, it will be possible to vary the algorithm or to pre-emphasize the edge so that the filtering has less noticeable effect
In one embodiment of this Invention, a print test is conducted to measure the print rate at each super-pixel for a nominal full black print density. This information is then employed in a calibration process which determines during future use of the printhead how the super-pixel greyscale values S1, S2 . . . are derived from the input pixel greyscale values PA, PB. . . .
Thus in a case where the greyscale value of a pixel would be shared 50%-50% between two super-pixels, prior knowledge that one super-pixel is being printed less effectively than another may cause an alternative division to be made. In the case where one super-pixel is not being printed at all, a division 0%-100% can be made. If there is simply a reduction in the printed weight of a super-pixel by reason of some manufacturing variance, a distribution such as 50%; 75% may be suitable.
A further approach to derive greyscale levels for the super pixels from the greyscale values received as input print data whilst correcting for both errors within the print heads and enhancing the edges is as follows:
A full black reference image is printed and for each super pixel the optical density is measured. An average optical density is calculated and the error for each super pixel calculated using the equation:
Ep=1−(ODp/ODaverage)
Where Ep is the error, ODp is the measured optical density of super pixel p and ODaverage is the calculated average optical density across the row of super pixels.
A distributed error is calculated from the equation:
DEp=2Epn−Ep+1n−Ep−1n
where n is a value greater than 1 and chosen such that only gross errors are distributed through this term. A value of 4 is appropriate.
The image data is input as a value between 0 (no image data) and 1, full black for each print data pixel. The grey level for each print data pixel is denoted by the term g.
Super pixels are defined as shown diagrammatically in
It should be noted that an alternative arrangement can be identified (as shown in
The base level G for each super pixel is then calculated from the equation:
Gp=(gp+(gp+1+gp−1)/2)/2
It has been mentioned above that an effect of distributing the input print data values over super pixels may be to soften the printed representation in the row direction. If appropriate, edges in the print data may be “pre-enhanced” so as to reduce the perceived effect of this softening. In the present example, this enhancement is conveniently effected by defining:
Edgep=EHF*(2gp−gp+1−gp−1)
EHF is an arbitrary value selected on the edge enhancement required; a typical value being around 0.5.
The error in the grey value is at each super pixel (arising from the measured error and the distribution of that error over neighbouring super pixels) is then calculated from the equation:
GErrorp=Gp*(Ep−DEp*EECF)
where EECF is an arbitrary edge error correction factor; a typical value being around 0.5.
The print data for each super pixel is subsequently calculated from the equation:
Print=Gp/2+GErrorp/2+Edgep
The calculated Print data is sent to the ejection channels to print the required image.
As illustrated schematically in
This described arrangement has a number of advantageous features. If a particular ejection chamber is inoperable (so that the measured error Ep−1), the effect of the error distribution is to increase correspondingly the grey level of those super pixels in the other row that overlap with the “failed” super pixel. There is therefore avoided the highly visible artefact of a straight line of unprintable pixels. This is illustrated diagrammatically in
The softening that would otherwise accompany such redundancy in the print capability is reduced by an edge enhancement process, ingeniously implemented by adding negative terms to the weighted sum of input data pixels from which the print values for the super pixels are calculated.
Less gross errors detected by the measurement process are of course also compensated. The use of both linear and polynomial terms to provide for this compensation of measured super pixel “printability” is of course only one of a number of alternative approaches. A gross error (typically arising from a failing ejection chamber) might be detected by thresholding the measured error and substituting an alternative error distribution function, if that threshold is exceeded.
It will of course be understood that the calculations described above represent only one example of a technique for distributing input print values over super pixels. In certain applications, the step of measuring the printability of super pixels may be omitted. In other applications, non-algebraic techniques may be employed. Also, the distribution may be caused to vary with the input print data, if thought appropriate.
In other alternative arrangements, a number of super-pixels greater than two may contribute to each pixel. Thus, an arrangement having three arrays of print chambers, with each super-pixel covering three pixels and with each pixel receiving print contributions from three super-pixels, can also be employed. This arrangement would be expected to increase the resilience to super-pixel failures at the price of increased spatial filtering. In this case, with N=3 (rather than N=2, as in the previously described embodiments), the offset between rows of super pixels can be 1/N of the dimension of the super pixel in that direction. In other arrangements, there may be no offset between superimposed rows of sub pixels.
Experiments have shown that with piezoelectric operated ink jet print heads, it is possible to double the number of nozzles in an ink channel with only a modest increase in the actuation voltage required. If necessary, the nozzles formed in the applied nozzle plate may overhang the piezoelectric wall structure to a certain degree without dramatically impairing the operation. The skilled man will recognize that there are many alternative techniques for printing an elongate super-pixel having an aspect ratio of 2:1, 3:1 or greater. In certain applications of the present invention, super pixels may have an aspect ratio of 1:1.
In the description of preferred embodiments, the example has been taken of an ink jet printer with N rows of ejection chambers extending (or scanned) across the print medium, with the medium indexed in a direction orthogonal to the row direction after each pass. In an alternative, the super pixels from one pass are superimposed with super pixels from another pass. Care should be taken that N super pixels contribute to each print pixel; this can be achieved—for example by ensuring that all N super pixels are printed whilst the ink remains wet or (in the case of curable inks) un-cured.
Concepts here described will find application in other print arrangements. In particular, the method of printing a representation on a print medium of an array of print data pixels comprising the steps of distributing print data from said array of print data pixels over an array of super pixels In a distribution function such that each super pixel receives a print data contribution from at least two print data pixels and each print data pixel contributes print data to at least two super pixels; and forming print pixels on the medium such that each print pixel receives print contribution from at least two super pixels, will find useful application in arrangements other than ink jet printing and in arrangements other than a one dimensional printhead indexed across a print medium.
Number | Date | Country | Kind |
---|---|---|---|
0220227.3 | Aug 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/03767 | 9/1/2003 | WO | 8/5/2005 |