Ink jet recording apparatus and cap for such apparatus

Information

  • Patent Grant
  • 6179404
  • Patent Number
    6,179,404
  • Date Filed
    Friday, October 22, 1999
    24 years ago
  • Date Issued
    Tuesday, January 30, 2001
    23 years ago
Abstract
The present invention provides an ink jet recording apparatus comprising a cap member capable of sealing a discharge port for discharging ink and being provided at its bottom with an ink suction opening and an atmosphere communicating opening, an ink absorbing member disposed within the cap member, a suction pump communicated with the ink suction opening, and an atmosphere communicating valve communicated with the atmosphere communicating opening, and wherein areas of the ink absorbing member opposed to the ink suction opening and the atmosphere communicating opening are thinner than the other area and the ink absorbing member abuts against the ink suction opening.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an ink jet recording apparatus for effecting recording on a recording medium by discharging ink from a recording means, and a cap for such an apparatus.




The present invention can be applied to an apparatus such as a printer, a copying machine, a facsimile having a communication system or a word processor having a printer portion for effecting recording on a recording medium such as a paper sheet, thread, fibers, cloth leather, metal, plastic, glass, wood or ceramics and to an industrial recording apparatus in which various processing devices are combined in a composite manner. Here, the word “recording” means not only to afford an image such as characters or figures which are meaningful to a recording medium but also to afford an image such as a pattern which is meaningless to a recording medium.




2. Related Background Art




An ink jet recording system has been used with printers and copying machines because of low noise, low running cost, easiness of compactness and easiness of colorization.




In the past, in ink jet recording apparatus, for the purpose of preventing ink clogging of discharge ports of a recording head due to solidification of ink or increase in ink viscosity caused by the drying of ink, the discharge ports of the recording head have been shielded from atmosphere, or, for the purpose of recovering clogging of discharge ports due to solidification of ink or increase in ink viscosity or bubbles or foreign matters generated in liquid passages, a suction recovering operation for forcibly discharging ink by generating pressure at the discharge openings has been performed. For example, as an example of such a suction recovering operation, a cap member is closely contacted with a discharge port surface of a recording head and ink is sucked from the recording head by generating negative pressure within the cap member and thereafter the ink remaining in the cap is sucked (idle suction) by communicating the interior of the cap with the atmosphere. Further, as another example, in order to prevent scattering of ink from the cap to the discharge ports of the recording head during the suction and to such the ink remaining around the discharge ports of the recording head, an ink absorbing member made of porous material for absorbing the ink is disposed within the cap member.




However, recently, in the ink jet recording systems, high quality recorded images have been requested and improvement in water-resistance and light-resistance of ink has been made. For example, various inks such as ink which becomes water-soluble (to water) after drying or ink including pigment as coloring agent have been used. Some of such inks increases its viscosity to loose fluidity (for example, becomes gel) after it is dried due to vaporization.




After an image was printed on a recording sheet by using the recording head utilizing the above-mentioned ink, if next recording is not effected for a long term, i..e, if the discharge ports of the recording head are kept in the sealed condition by the cap for a long term, small amount of ink remaining in the ink absorbing member after the previous suction recovery may be solidified in the ink absorbing member or may cause clogging. As a result, even when the suction recovery is effected to prepare for next recording, predetermined pressure does not act on the recording head not to suck the ink from the recording head sufficiently or the interior of the cap becomes hard to be communicated with the atmosphere not to achieve the suction of ink (idle suction), thereby not realizing the normal or optimum suction recovery.




SUMMARY OF THE INVENTION




An object of the present invention is to provide an ink jet recording apparatus and a cap for such an apparatus, in which, even when discharge ports of a recording head are sealed for a long term, a recovering operation for the recording head can surely be effected.




Another object of the present invention is to provide an ink jet recording apparatus comprising a cap member capable of sealing discharge ports of a recording head and being provided at its bottom with an ink suction opening and an atmosphere communicating opening, an ink absorbing member disposed within the cap member, a suction pump communicated with the ink suction opening, and an atmosphere opening valve communicated with the atmosphere communicating opening, and wherein areas of the ink absorbing member opposed to the ink suction opening and the atmosphere communicating opening are thinner than the other area and the ink absorbing member abuts against the ink suction opening.




A further object of the present invention is to provide a cap for an ink jet recording apparatus comprising a cap member capable of sealing discharge ports of a recording head and being provided at its bottom with an ink suction opening communicated with a suction pump and an atmosphere communicating opening communicated with an atmosphere opening valve, and an ink absorbing member disposed within the cap member, and wherein areas of the ink absorbing member opposed to the ink suction opening and the atmosphere communicating opening are thinner than the other area and the ink absorbing member abuts against the ink suction opening.




In the present invention, when ink is sucked from the recording head, an amount of ink remaining in the ink absorbing member can be reduced. Even when the apparats is left as it is for a long term without recording, occurrence of ink solidification and clogging of the ink absorbing member can be reduced. If ink solidification or clogging should be partially generated in the ink absorbing member, after the ink starts to flow once, solidified or clogged ink becomes apt to be solved again from the thinner area of the ink absorbing member. Further, after the ink suction from the recording head, when the interior of the cap member is communicated with the atmosphere, the atmosphere can easily be communicated with the interior of the ink absorbing member, thereby effecting the suction of the residual ink (idle suction) positively. As a result, the recovering operation for the recording head can be effected positively.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing the entire construction of an ink jet recording apparatus according to a first embodiment of the present invention:





FIG. 2

is a perspective view showing a carriage of

FIG. 1 and a

recovering unit for a recording head mounted on the carriage;





FIG. 3

is a perspective view showing the entire construction of the recovering unit of

FIG. 2

;





FIG. 4

is a sectional view showing a main portion of the recovering unit of

FIG. 2

;





FIG. 5

is a sectional view showing a main portion of the recovering unit of

FIG. 2

;





FIG. 6

is a schematic side view of the recovering unit of

FIG. 2

;





FIG. 7

is an explanatory view for explaining a recovering operation of the recovering unit of

FIG. 2

;





FIG. 8

is a top view of a cap in the recovering unit of

FIG. 2

;





FIG. 9

is a sectional view taken along the line


9





9


in

FIG. 8

;





FIG. 10

is a top view of a cap in a recovering unit of an ink jet recording apparatus according to a second embodiment of the present invention;





FIG. 11

is a sectional view taken along the line


11





11


in

FIG. 10

; and





FIG. 12

is a sectional perspective view showing an ink jet recording head available to an embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention will now be explained in connection with embodiments thereof with reference to the accompanying drawings.




First Embodiment





FIG. 1

is a perspective view showing the entire construction of an ink jet recording apparatus according to a first embodiment of the present invention,

FIG. 2

is a perspective view showing a carriage of

FIG. 1 and a

recovering unit for a recording head mounted on the carriage, and

FIG. 3

is a perspective view showing the entire construction of the recovering unit of FIG.


2


.

FIGS. 4 and 5

are sectional views showing a main portion of the recovering unit of

FIG. 2

,

FIG. 6

is a schematic side view of the recovering unit of

FIG. 2

,

FIG. 7

is an explanatory view for explaining a recovering operation of the recovering unit of

FIG. 2

,

FIG. 8

is a top view of a cap in the recovering unit of

FIG. 2

, and

FIG. 9

is a sectional view taken along the line


9





9


in FIG.


8


.




First of all, a fundamental construction of the recording apparatus according to the first embodiment.




In

FIGS. 1

to


3


, a carriage


2


can be shifted along a guide shaft


101


in a main scanning direction perpendicular to a recording sheet conveying direction. The carriage


2


is mounted on the guide shaft


101


by inserting a bearing


100


at a rear part of the carriage onto the guide shaft. Two heads of different type are mounted on the carriage


2


, and such two heads are deviated from each other, for example by about 4 mm, in the recording sheet conveying direction. One of two heads is a photo-head


111


having tanks for magenta and cyan inks having low density and an ink tank for black ink, and a color head


112


capable of discharging yellow, magenta and cyan inks. By combination of these heads, the recording apparatus can effect printing with six color inks, thereby permitting sharp photograph like printing. Alternatively, by replacing the photo-head


111


by a black head having only an ink tank for black color, text printing can be effected at a high speed or business color can be printed at a high speed.




Further, the ink jet recording apparatus is provided with a recovery base


12


having a cap slider


8


(

FIG. 3

) for capping two heads mounted on the carriage


2


to effect recovering treatment, which recovery base is located at a predetermined position within a main body of the apparatus near a right side thereof (near the arrow A


2


).




As shown in

FIGS. 2 and 3

, the cap slider


8


on the recovery base


12


can be slidingly shifted together with the carriage


2


when a projection


8




a


of the slider is pushed by the moving carriage


2


.




The cap slider


8


is provided with a cap holder


7


holding caps


6




a


,


6




b


for covering discharge port forming surfaces of two recording heads


111


,


112


. The cap holder


7


can be shifted in the direction A


2


while being lifted, with the result that the discharge port forming surfaces of the recording heads


111


,


112


are capped by the caps


6




a


,


6




b


. Further, there is provided a suction pump (recovery treating means)


11


for generating negative pressure in the caps


6




a


,


6




b


contacted with two recording heads


111


,


112


when capped, so that recovering treatment for sucking the ink which does not contribute to image recording from the discharge ports of the recording heads by negative pressure is effected.




Further, the recovery base


12


is provided with a wiper holder base


5


, and a wiper


3


is held by a wiper holder


4


provided on the wiper holder base


5


. The wiper


3


can clean the discharge port forming surfaces of two recording heads


111


,


112


. While the wiper holder base


5


is being slid in synchronous with the cap slider


8


, it is lifted by a guiding action between a guide groove


5




a


of the base and a pin


12




c


of the recovery base


12


. In the illustrated embodiment, the wiper


3


is formed from rubber sheet.




According to the illustrated embodiment, in the recording heads


111


,


112


, inks can be discharged from discharge ports (discharge downwardly) formed in the discharge port forming surfaces thereof. A plurality of discharge ports are arranged in a line on each discharge port forming surface along a direction transverse to the main scanning direction (shown by the double-headed arrow A


1


, A


2


). By repeating the shifting movement of the recording heads


111


,


112


in the main scanning direction (A


1


, A


2


) and the conveyance of the recording medium (not shown) in a direction perpendicular to the main scanning direction, an image is formed on the recording medium by ink dots. The recording heads


111


,


112


may be designed to have electrical/thermal converters for applying thermal energy to discharge the ink from the discharge ports, for example.




A home position HP(


6


) (

FIG. 7

) for the recording heads is located at a position rightwardly (toward the direction A


2


) of and out of a recording area of the recording medium, and predetermined recovering operation is effected in an area between an idle suction position (


1


) and a wiper turn position (


7


) including the home position (


6


). The recording area is located leftwardly (toward the direction A


1


) of the position (


7


). In

FIG. 7

, “DISTANCE (mm)” indicates a shifting distance of the carriage and “NUMBER OF PULSE(S)” indicates the number of pulses of a pulse motor for shifting the carriage. Operating contents in various positions will be described later.




Next, a suction pump


11


for generating negative pressure in the caps contacted with the heads when two recording heads


111


,


112


are capped by the caps


6




a


,


6




b


of the cap slider


8


will be explained.




For example, the suction pump


11


is a tube pump disclosed in Japanese Patent Laid-Open No. 8-318624 (1996). In the illustrated embodiment, as shown in

FIGS. 4 and 5

, has sub-roller holders (roller holding means)


14




a


,


14




b


for two systems. As the sub-roller holders


14




a


,


14




b


are rotated, sub-rollers (rollers)


13




a


,


13




b


of the sub-roller holders


14




a


,


14




b


are shifted while squeezing suction tubes (elastic tubes)


10




a


,


10




b


connected to the caps


6




a


,


6




b


to generate negative pressures in the caps


6




a


,


6




b


, thereby effecting the suction recovery of the recording heads


111


,


112


.




A construction of the suction pump will be described with reference to

FIGS. 4 and 5

. As shown in

FIG. 4

, a tube guide surface (guide member)


12




a


of the recovery base


12


has a semi-circular shape. When the sub-roller holder


14




a


is rotated in a direction shown by the arrow a, the suction sub-roller


13




a


is relatively shifted along a cam


14




c


of the sub-roller holder


14




a


in a direction shown by the arrow b and is held near an outer periphery of the sub-roller holder


14




a


by an end (directing toward the direction b) of the cam


14




c


. In this condition, the suction sub-roller


13




a


is rotated in the direction a together with the sub-roller holder


14




a


. In this case, the suction sub-roller


13




a


squeezes the suction tube


10




a


disposed between the tube guide surface


12




a


of the recovery base and the suction sub-roller


13




a


, thereby generating the negative pressure in the cap


6




b


to which the suction tube


10




a


is connected. In order to ensure that the suction sub-roller


13




a


is positively held near the outer periphery of the cam


14




c


, i.e., that the suction sub-roller


13




a


positively squeezes the suction tube


10




a


, dampers (elastic members)


18




a


,


18




b


are provided in a confronting relation to the tube guide surface


12




a


. The dampers


18




a


,


18




b


are mounted to a pump cover


19


which is supported by the recovery base


12


. Further, the dampers


18




a


,


18




b


are located on a rotation path of the sub-roller


13




a


. With this arrangement, as the sub-roller holder


14




a


is rotated in the direction a in

FIG. 4

, when the suction sub-roller


13




a


contacts with the damper


18




a


or


18




b


, the suction sub-roller


13




a


is always biased toward the outer periphery of the cam


14




c


by an elastic force of the damper to urge the tube


10




a


. When the suction sub-roller


13




a


is released from the suction tube


10




a


, the suction sub-roller tries to shift inwardly from the outer periphery of the cam


14




c


by an elastic force (repelling force) of the suction tube


10




a


. In this case, the suction sub-roller


13




a


may abut against an inner peripheral end of the cam


14




c


to generate collision noise. To avoid this, the damper


18




b


is provided so that the suction sub-roller


13




a


is prevented from shifting up to the inner peripheral end of the cam


14




c


. However, even by adopting such an arrangement, if a position where the suction sub-roller


13




a


is released from the suction tube


10




a


is spaced apart from a position of the damper


18




b


, after the suction sub-roller


13




a


abuts against the damper


18




b


, shock may not be absorbed to generate tremble noise between the suction sub-roller and the cam


14




c


. In the illustrated embodiment, the tube guide surface


12




a


is extended toward a direction perpendicular to a line connecting between the rotation center of the sub-roller holder


14




a


and the position where the suction sub-roller


13




a


is released from the suction tube


10




a


. With this arrangement, a timing for releasing the suction sub-roller


13




a


from the suction tube


10




a


can be delayed, with the result that a distance through which the suction sub-roller


13




a


strikes against the damper


18




b


can be shortened, thereby minimizing the collision noise of the suction sub-roller


13




a.






Further, the other sub-roller holder


14




b


is rotated in the direction a in

FIG. 5

, and the suction sub-roller


13




b


is shifted inwardly along a groove-shaped cam


14




d


of the sub-roller holder


14




b


and is rotated together with the sub-roller holder


14




b


at a position where the suction tube


10




b


is not sealingly closed. Accordingly, the interior of the cap


6




a


communicated with the suction tube


10




b


is communicated with the atmosphere.




Conversely, when the sub-roller holder


14




b


is rotated in the direction b in

FIG. 5

, the suction sub-roller


13




b


is relatively shifted along the cam


14




b


in the direction a and is held near an outer periphery of the sub-roller holder


14




b


by an end (directing toward the direction a) of the cam


14




d


. In this condition, the suction sub-roller


13




b


is rotated in the direction b together with the sub-roller holder


14




b


. In this case, the suction sub-roller


13




b


squeezes the suction tube


10




b


disposed between the tube guide surface


12




a


of the recovery base


12


and the suction sub-roller


13




b


, thereby generating the negative pressure in the cap


6




a


to which the suction tube


10




b


is connected. In order to ensure that the suction sub-roller


13




b


is positively held near the outer periphery of the cam


14




d


, i.e., that the suction sub-roller


13




b


positively squeezes the suction tube


10




b


, dampers (elastic members)


18




c


,


18




d


are provided in a confronting relation to the tube guide surface


12




a


. Similar to the dampers


18




a


,


18




b


shown in

FIG. 4

, the dampers


18




c


,


18




d


are mounted to the pump cover


19


and are located on a rotation path of the sub-roller


13




b


. With this arrangement, as the sub-roller holder


14




b


is rotated in the direction b in

FIG. 5

, when the suction sub-roller


13




b


contacts with the damper


18




c


or


18




d


, the suction sub-roller


13




b


is always biased toward the outer periphery of the cam


14




d


by an elastic force of the damper to urge the tube


10




b


. When the suction sub-roller


13




b


is released from the suction tube


10




b


, the suction sub-roller tries to shift inwardly from the outer periphery of the cam


14




d


by an elastic force of the suction tube


10




b


. In this case, the suction sub-roller


13




b


may abut against an inner peripheral end of the cam


14




d


to generate collision noise. To avoid this, the damper


18




d


is provided so that the suction sub-roller


13




b


is prevented from shifting up to the inner peripheral end of the cam


14




d


. However, even by adopting such an arrangement, if a position where the suction sub-roller


13




b


is released from the suction tube


10




b


is spaced apart from a position of the damper


18




d


, after the suction sub-roller


13




b


abuts against the damper


18




d


, shock may not be absorbed to generate tremble noise between the suction sub-roller and the cam


14




d


. Similar to the above, in the illustrated embodiment, the tube guide surface


12




a


is extended toward a direction perpendicular to a line connecting between the rotation center of the sub-roller holder


14




b


and the position where the suction sub-roller


13




b


is released from the suction tube


10




b


. With this arrangement, a timing for releasing the suction sub-roller


13




b


from the suction tube


10




b


can be delayed, with the result that a distance through which the suction sub-roller


13




b


strikes against the damper


18




d


can be shortened, thereby minimizing the collision noise of the suction sub-roller


13




b.






The other sub-roller holder


14




a


is rotated in the direction b in

FIG. 4

, and the suction sub-roller


13




a


is shifted along the cam


14




c


of the sub-roller holder


14




a


and is held radially inwardly of the sub-roller holder


14




a


by an end (directing toward the direction a in

FIG. 4

) of the cam


14




c


. In this condition, the suction sub-roller is rotated together with the sub-roller holder


14




a


in the direction b in FIG.


4


. In this case, the suction sub-roller


13




a


is rotated to a position where the suction tube


10




a


is not sealingly closed, with the result that the suction tube


10




a


is not squeezed. Thus, the negative pressure is not generated in the suction tube


10




a


and the interior of the cap


6




b


communicated with the suction tube


10




a


is communicated with the atmosphere.




Further, when the suction pump


11


is operated in a normal direction (direction b in

FIGS. 4

to


6


), a carriage lock


15


shown in

FIG. 6

is lifted via a friction member


15




a


to lock movement of the carriage


2


, and, when the suction pump


11


is operated in a reverse direction (direction a in

FIGS. 4

to


6


), the carriage lock is lowered via the friction member


15




a


to unlock the movement of the carriage


2


.




Next, an arrangement around the caps


6




a


,


6




b


will be explained.




As shown in

FIG. 3

, the caps


6




a


,


6




b


are held by the cap holder


7


, and the cap holder


7


is held by the cap slider


8


via a cap spring (not shown). When the carriage


2


is shifted rightwardly (toward the direction A


2


) beyond the position shown in

FIG. 3

(corresponding to the position (


3


) (CAP) in FIG.


7


), the cap holder


7


is lifted to cause the caps


6




a


,


6




b


to cap the recording heads


111


,


112


.




Each of the caps


6




a


,


6




b


is provided with two holes, and one of two holes in the cap


6




a


is connected to one end of the suction tube


10




b


, and the other hole is connected to one end of an atmosphere communicating tube


9




b


. One of two holes in the cap


6




b


is connected to one end of the suction tube


10




a


, and the other hole is connected to one end of an atmosphere communicating tube


9




a.






The other ends of the atmosphere communicating tube


9




a


,


9




b


are inserted into the cap slider


8


, and valves


17


are attached to such the other ends via packing members


17




a


. Each valve


17


is opened and closed by its sliding movement when it is pushed by the cap slider


8


, so that it is closed at a position (


2


) in FIG.


7


and is opened at a position (


1


). Accordingly, in the position (position (


2


) in

FIG. 7

) where the heads are capped and the atmosphere communicating tube


9




a


,


9




b


are closed, in accordance with the rotational directions of the sub-roller holders


14




a


,


14




b


obtained by the suction pump


11


, the recovering operation for sucking the ink from the discharge ports of the recording heads


111


,


112


through the suction tubes


10




a


,


10




b


is permitted. Further, in the position (position (


1


) in

FIG. 7

) where the heads are capped and the atmosphere communicating tube


9




a


,


9




b


are opened, in accordance with the rotational direction of the suction pump


11


, the idle suction for sucking the residual ink in the caps


6




a


,


6




b


and the suction tubes


10




a


,


10




b


through the suction tubes


10




a


,


10




b


is permitted.




The other ends of the suction tubes


10




a


,


10




b


act as ink discharge ends


10


-


1




a


,


10


-


1




b


, and the ink discharged from the ink discharge ends


10


-


1




a


,


10


-


1




b


is sent to a waste ink processing member


210


disposed below the ink discharge ends and are processed there.





FIGS. 8 and 9

show the caps


6




a


,


6




b


in detail, where

FIG. 8

is a top view and

FIG. 9

is a sectional view taken along the line


9





9


in

FIG. 8

, showing a condition that the discharge ports of the recording heads


111


,


112


are sealingly closed by the caps (elastic members)


6




a


,


6




b


. As mentioned above, each of the caps


6




a


,


6




b


is provided at its bottom with two communication holes which act as an ink suction opening


6




c


and an atmosphere communicating opening


6




d


, respectively. In order to prevent scattering of the ink toward the discharge ports of the recording heads


111


,


112


and to suck the ink remaining around the discharge ports of the recording heads


111


,


112


, an ink absorbing members


20


made of porous material are disposed within the caps


6




a


,


6




b.






The ink absorbing members


20


are disposed to contact with inner surfaces of the caps


6




a


,


6




b


and abut against the ink suction openings


6




c


and the atmosphere communicating openings


6




d


. Areas of each ink absorbing member


20


opposed to the ink suction hole and the atmosphere communicating hole of the cap


6




a


or


5




b


have thicknesses thinner than the other area. The ink suction openings have substantially the same diameters at areas thereof contacted with the ink absorbing members. The ink suction opening and the atmosphere communicating opening are symmetrically arranged in the vicinity of both longitudinal ends of the cap member. A central area of the ink absorbing member with respect to the longitudinal direction of the cap member has a thickness greater than those of other areas. The longitudinal direction of the cap member substantially coincides with a direction along which the plurality of discharge ports are arranged in a line.




In the illustrated embodiment, the thickness of the ink absorbing member is selected to 2.6 mm, and thickness of the areas of the ink absorbing member opposed to the ink suction hole and the atmosphere communicating hole of the cap member is selected to 1.3 mm.




With this arrangement, when the ink is absorbed from the recording heads


111


,


112


, the amount of residual ink in the ink absorbing member


20


is decreased. Even when the apparatus are left as it is for a long term without effecting the recording, occurrence of ink solidification and clogging of the ink absorbing members


20


can be suppressed. If ink solidification or clogging should be partially generated in the ink absorbing members, after the ink starts to flow once, solidified or clogged ink becomes apt to be solved again from the thinner areas of the ink absorbing members. Further, after the ink suction from the recording heads


111


,


112


, when the interior of the caps


6




a


,


6




b


are communicated with the atmosphere, the atmosphere can easily be communicated with the interior of the ink absorbing members


20


, thereby effecting the suction of the residual ink (idle suction) positively.




In a position (position (


5


) in

FIG. 7

) where the caps


6




a


,


6




b


are spaced apart from and disposed below the recording heads


111


,


112


, pre-discharge for discharging the ink not contributing the recording from the recording heads


111


,


112


can be performed. Further, in a position (


4


) a in

FIG. 7

ASF (auto sheet feeder) trigger for automatically feeding the recording media can be outputted.




Further, the cap slider


8


and the wiper holder base


5


are operated in synchronous with each other, so that, when the carriage


2


is situated rightwardly (toward the direction A


2


) beyond the position (


4


) in

FIG. 7

, the wiper holder base


5


is lifted, by the guide groove


5




a


and the pin


12




c


of the recovery base


12


, up to a position where the wiper holder base can abut against the recording heads


111


,


112


, with the result that the wiper lock


16


is engaged by the pawl of the recovery base


12


. That is to say, when the carriage


2


is shifted from the left to the right beyond the position (


4


) in

FIG. 7

, at his position (


4


), the wiper


3


is held at a position where the wiper can abut against the head. On the other hand, when the carriage


2


is shifted from the right to the left beyond the position (


7


) in

FIG. 7

, at his position (


7


), the wiper lock


16


is unlocked, with the result that the wiper


3


does not contact with the heads


111


,


112


.




Next, a series wiping operation will be explained.




First of all, when the recording apparatus is powered ON, in the locking condition of the carriage lock


15


as shown in

FIG. 6

, the suction pump


11


is rotated in the normal direction (direction a) by a drive source (not shown), with the result that the locking condition of the carriage


2


attained by the carriage lock


15


is released or unlocked. After the locking condition of the carriage lock


15


is released, the carriage


2


is shifted to the wiper turn position (


7


) in FIG.


7


. The wiping start (trigger) position (


4


) is located between the cap position (


3


) and the recording waiting position (PII)


5


. While the carriage


2


is being shifted to the recording waiting position (


6


), the caps


6




a


,


6




b


are opened and the wiping operation for the recording heads


111


,


112


is effected by the wiper


3


. Further, when the carriage


2


is shifted up to the position (


7


) in

FIG. 7

, the projection of the carriage


2


abuts against the wiper lock lever


16




a


to disengage the wiper lock


16


from the pawl of the recovery base


12


, with the result that the wiper


3


is shifted downwardly to be retarded from the recording heads


111


,


112


. In this condition, the wiper


3


does not abut against the recording heads


111


,


112


. As shown in

FIG. 3

, the wiper


3


is provided with four slits


3




a


,


3




b


,


3




c


,


3




d


. The slit


3




a


is formed at a position corresponding to one of opposed sides of the recording head


112


, the slit


3




c


is formed at a position corresponding to the other of opposed sides of the recording head


112


, the slit


3




b


is formed at a position corresponding to one of opposed sides of the recording head


111


, the slit


3




c


is formed at a position corresponding to the other of opposed sides of the recording head


111


. In the illustrated embodiment, the slits


3




a


,


3




b


,


3




c


,


3




d


are straightly formed in a predetermined area of the sheet-shaped wiper


3


directing from an upper end to a lower end thereof at a position opposed to the opposed sides of the recording head


112


and the opposed sides of the recording head


111


.




Second Embodiment




Now, a second embodiment of the present invention will be explained with reference to

FIGS. 10 and 11

, regarding features different from those in the first embodiment.

FIGS. 10 and 11

show a cap of a recovering unit of an ink jet recording apparatus according to the second embodiment of the present invention, where

FIG. 10

is a top view of the cap and

FIG. 11

is a sectional view taken along the line


11





11


in FIG.


10


.




As shown in

FIGS. 10 and 11

, in the recovering unit of the ink jet recording apparatus according to the second embodiment, only the configuration of the ink absorbing member differs from that in the first embodiment. That is to say, in the first embodiment, while an example that the ink absorbing members


20


abut against the ink suction holes and the atmosphere communicating holes formed in the bottoms of the caps


6




a


,


6




b


was explained, in the second embodiment, as shown in

FIG. 11

, an ink absorbing member


21


abuts against the ink suction hole but does not abut against the atmosphere communicating hole. Further, similar to the first embodiment, a thickness of areas of the ink absorbing member


21


opposed to the ink suction hole and the atmosphere communicating hole of the cap


6




a


or


6




b


is thinner than a thickness of the other area.




With the arrangement as mentioned above, after the sucking of ink, when the ink remaining in the caps is sucked (idle suction) by communicating the interior of the caps with the atmosphere, since an area of each ink absorbing member


21


directly contacted with the atmosphere is increased, more effective ink absorption can be achieved.




Now, a general construction of the above-mentioned ink jet recording head will be described with reference to FIG.


12


.




A top plate


1100


forming a part of the ink jet recording head H is formed from resin material and integrally includes a top plate member having a liquid chamber


1104


for reserving recording liquid and a plurality of liquid passages


1103


, a discharge port forming member


1101


having a plurality of discharge ports (orifices)


1102


communicated with the plurality of liquid passages


1103


, respectively, and a recording liquid supplying port member


1105


. Further, in a heater board (element substrate)


1107


, a plurality of heaters (electrical/thermal converters)


1106


disposed on a silicone substrate and electrical wirings (not shown) made of aluminum or the like for supplying electricity to the heaters are formed by a well-known film forming technique, and the heater board is positioned and secured onto a base plate


1110


by a well-known die-bonding technique. A wiring substrate


1108


is provided with wirings connected to the wirings of the heaters board


1107


by a well-known wire-bonding technique, and a plurality of pads


1109


disposed at ends of the wirings and adapted to receive electrical signals from a main body of the image forming apparatus. The top plate


1100


and the heater board


1107


are joined together in such a manner that the liquid passages


1103


are opposed to the heaters


1106


to form an assembly, and the assembly is secured to the base plate


1110


together with the wiring substrate


1108


, thereby forming the ink jet recording head H.



Claims
  • 1. An ink jet recording apparatus comprising:a cap member capable of sealing a discharge port for discharging ink and being provided at its bottom with an ink suction opening and an atmosphere communicating opening; an ink absorbing member disposed within said cap member; a suction pump communicated with said ink suction opening; and an atmosphere communicating valve communicated with said atmosphere communicating opening; wherein a plurality of areas of said ink absorbing member are opposed to said ink suction opening and said atmosphere communicating opening, said areas are thinner than a remaining area of said ink absorbing member, and said ink absorbing member abuts against said ink suction opening.
  • 2. An ink jet recording apparatus according to claim 1, wherein said ink absorbing member abuts against said atmosphere communicating opening.
  • 3. An ink jet recording apparatus according to claim 1, wherein said ink absorbing member does not abut against said atmosphere communicating opening.
  • 4. An ink jet recording apparatus according to claim 1, wherein said ink suction opening has a substantial constant diameter in a vicinity of an area where said ink suction opening abuts against said ink absorbing member.
  • 5. An ink jet recording apparatus according to claim 1, wherein said cap member has a longitudinal shape and a pair of longitudinal ends which are opposed to one another in a longitudinal direction, and wherein said ink suction opening and said atmosphere communicating opening are disposed symmetrically in a vicinity of both longitudinal ends of said cap member.
  • 6. An ink jet recording apparatus according to claim 1, wherein a central area of said ink absorbing member in a longitudinal direction of said cap member has a thickness greater than those of other areas.
  • 7. An ink jet recording apparatus according to claim 5 or 6, further comprising a plurality of discharge ports arranged in a longitudinal direction, wherein said cap member has a shape which substantially coincides with the longitudinal direction along which the plurality of discharge ports are arranged.
  • 8. An ink jet recording apparatus according to claim 1, wherein said cap is capable of sealing said discharge port which is provided on a recording head having an electrical/thermal converter for generating thermal energy used for discharging the ink from said discharge port.
  • 9. A cap for an ink jet recording apparatus, comprising:a cap member capable of sealing a discharge port for discharging ink and being provided at its bottom with an ink suction opening communicated with a suction pump and an atmosphere communicating opening communicated with an atmosphere communicating valve; and an ink absorbing member disposed within said cap member; wherein a plurality of areas of said ink absorbing member are opposed to said ink suction opening and said atmosphere communicating opening, said areas are thinner than a remaining area of said ink absorbing member, and said ink absorbing member abuts against said ink suction opening.
  • 10. A cap according to claim 9, wherein said ink absorbing member abuts against said atmosphere communicating opening.
  • 11. A cap according to claim 9, wherein said ink absorbing member does not abut against said atmosphere communicating opening.
  • 12. A cap according to claim 9, wherein said ink suction opening has a substantially constant diameter in a vicinity of an area where said ink suction opening abuts against said ink absorbing member.
  • 13. A cap according to claim 9, wherein said cap member has a longitudinal shape and a pair of longitudinal ends which are opposed to one another in a longitudinal direction, and wherein said ink suction opening and said atmosphere communicating opening are disposed symmetrically in a vicinity of both longitudinal ends of said cap member.
  • 14. A cap according to claim 9, wherein a central area of said ink absorbing member in a longitudinal direction of said cap member has a thickness greater than those of other areas.
Priority Claims (1)
Number Date Country Kind
10-306177 Oct 1998 JP
US Referenced Citations (2)
Number Name Date Kind
5798775 Takahashi et al. Aug 1998
6017109 Saijo Jan 2000
Foreign Referenced Citations (6)
Number Date Country
0 435 666 Jul 1991 EP
0 744 294 Nov 1996 EP
7-290723 Nov 1995 JP
8-318624 Dec 1996 JP
10-244707 Aug 1998 JP
11-138855 May 1999 JP