A first embodiment of the present invention will be described below with reference to the drawings.
First, an ink jet recording apparatus to which an embodiment of the present invention is applicable will be described.
An electrothermal transducer 3 (hereinafter referred to as a discharge heater 3) for producing thermal energy in response to a supply of an application voltage to cause ink droplets to be discharged from the plurality of discharge ports arranged in a row is disposed on a heater board. The discharge heater 3 is provided for each discharge port. The heater board includes a thermal storage layer 22 made of, for example, a thermal-oxide film (silicon oxide (SiO2)). An ink channel is disposed above the discharge heater 3. An application of a drive signal to these discharge heaters 3 corresponding to the discharge ports heats ink inside the discharge ports and causes ink droplets from the discharge ports. That is, ink in the ink channel above the discharge heaters 3 is discharged from the respective discharge ports.
In
The temperature sensor 5 has a rectangular shape in plan in the present embodiment. However, the temperature sensor 5 may have a serpentine shape in order to output a high voltage value even with a minute temperature change with the aim of obtaining higher resistance.
The CPU 400 includes a read-only memory (ROM) 401 and a random-access memory (RAM) 402. The CPU 400 performs control for supplying an appropriate recording condition in response to received information, driving a recording head 412, and thus recording information. A program for executing a recovery procedure for the recording head 412 is previously stored in the RAM 402. The CPU 400 supplies a recovery condition, such as a preliminary discharge condition, to a recovery-processing control circuit 407 and the recording head 412, as needed. A recovery-processing motor 408 drives the recording head 412, a (cleaning) blade 409, a cap 410, and a suction pump 411. The recording head 412 faces the blade 409, the cap 410, and the suction pump 411. A recording-head temperature control circuit 413 controls the temperature of the recording head 412 based on an output of a temperature sensor (not shown) of the recording head 412. When the temperature of the recording head 412 is below a desired temperature, the recording-head temperature control circuit 413 enables the temperature of the recording head 412 to be maintained in a desired range by driving a heater (not shown) for use in temperature adjustment. The recording apparatus also includes an operation unit 406 for causing the recording apparatus to execute a predetermined operation in response to a user action. The use of the operation unit 406 enables a variety of operations, such as a manual recovery operation, switching on/off of a power supply, and a test print.
A recording-head drive control circuit 414 drives the discharge heater 3, which is an electrothermal transducer of the recording head 412, in accordance with a drive condition supplied from the CPU 400 and causes the recording head 412 to perform preliminary discharge or recording-ink discharge.
In the case of a state that is unable to normally discharge ink, as indicated by a curve “b” illustrated in
A curve “c” illustrated in
Similarly, in abnormal discharge states other than the above-described cases, an inflection point is not present while the temperature falls in a curve representing a change in temperature measured by the temperature sensor 5 or an inflection point is present at a different timing from that in normal discharge. Therefore, it is determined whether ink is normally discharged from the discharge port on the basis of calculation of a change in temperature measured by the temperature sensor 5 within a predetermined time range.
A comparison between
A flow of the process of determining a discharge defect will be described with reference to
In step S1, the pulse width of a drive voltage applied to the discharge heater 3 is referred to.
In step S2, in response to the drive waveform referred to in step S1, the timing of the presence of an inflection point in normal discharge is read from a storage element. The inflection point in normal discharge can be stored prior to shipping, for example, in an inspection at a factory. Here, the timing previously stored prior to shipping is read from a storage element, such as a memory.
In step S3, a change in temperature occurring when the drive voltage is applied to a nozzle subjected to the process of determining an abnormal discharge state is measured by the temperature sensor 5.
In step S4, a change in temperature measured in step S3 is differentiated twice with respect to time. This differentiation is performed within a time range 1 μs before and after the timing of the presence of the inflection point read in step S2.
In step S5, it is determined whether a profile of a second derivative of the change in temperature calculated in step S4 has a negative peak, which is a minimum value below zero. If the negative peak is present in the time range defined in step S4, the discharge state is determined to be normal. If the negative peak is not present in the time range defined in step S4, the discharge state is determined to be abnormal.
If it is determined that the discharge state is normal (YES in step S5), flow proceeds to step S7. If it is determined that the discharge state is abnormal (NO in step S5), flow proceeds to step S6, where printing pauses or a recovery operation starts, and flow then proceeds to step S7.
In step S7, it is determined whether the process of determining an abnormal discharge state has been completed. If it has not been completed (NO in step S7), a subject of the process of determining an abnormal discharge state is shifted to another nozzle, and steps S1 to S5 are repeated until a signal that indicates the completion of the process of determining an abnormal discharge state is detected.
In the flow described above, step S6, which comes after the discharge state is determined to be abnormal in step S5, is not limited to pausing of printing or execution of the recovery operation. For example, in step S6, a nozzle determined to be in an abnormal discharge state may be stored, and a determination process of steps S3 to S5 may be repeated until the process of determining an abnormal discharge state has been completed for all nozzles. In this case, it is possible to carry out a necessary recovery operation or stop printing after the completion of the process of determination for all nozzles.
A second embodiment will be described below.
In the first embodiment, the discharge state is determined by calculation of a measured change in temperature and determination as to the presence or absence of an inflection point while the temperature falls.
The present invention is not limited to the first embodiment described above. Another method for determining an abnormal discharge state is comparison between the shape of a temperature curve in normal discharge and that in abnormal discharge.
For example, a curve that represents a change in temperature in normal discharge is previously stored, and a measured change in temperature is compared therewith. That is, the discharge state is determined on the basis of the difference between the measured change in temperature and the previously stored change in temperature in normal discharge.
As described above, the use of a method for accurately determining a discharge defect in such a way that comparison is performed at a single point enables the discharge state to be determined promptly and precisely for each nozzle. As a result, even when abnormal discharge occurs in continuous printing, compensation by another nozzle or a recovery operation is appropriately performed, or alternatively, printing appropriately stops. This obviates the risk of outputting large amounts of printed materials with degraded image quality, and therefore, the image quality is maintained at high level.
In the above embodiments, a serial ink jet recording apparatus is described by way of example with reference to
In the present embodiment, the neighborhood of the timing of the presence of an inflection point while the temperature falls is a subject of calculation. The presence or absence of an inflection point in a curve that represents a change in temperature is determined by sampling a change in temperature from the start of driving of a heater to the decrease of the temperature.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.
This application claims the benefit of Japanese Application No. 2006-170246 filed Jun. 20, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-170246 | Jun 2006 | JP | national |