1. Field of the Invention
The present invention relates to an ink-jet recording apparatus having a reloadable ink cartridge to serve as an apparatus for printing an image on a sheet of paper, for example, a print sheet, and more particularly, to such an apparatus in which an ink cartridge can be loaded properly.
2. Description of the Related Art
In a case where a printer apparatus is capable of performing color printing, for example, four kinds of ink cartridges respectively storing inks in four colors including yellow, magenta, cyan, and black, are prepared, and these ink cartridges are loaded in four cartridge accommodation units provided correspondingly to the respective colors on the printer apparatus side by matching the colors. Inks accommodated in the ink cartridges of respective colors are supplied to the corresponding ink-jet heads by supply devices provided to the respective cartridge accommodation units.
When the respective ink cartridges are loaded in the cartridge accommodation units, in order to prevent the ink cartridge from being loaded erroneously in the cartridge accommodation unit for a different color, as is disclosed, for example, in JP-A-2001-088317 (Reference 1), each ink cartridge has a different shape, so that the ink cartridge is engaged in the cartridge accommodation unit only when the ink cartridge is loaded in the corresponding cartridge accommodation unit for a right color.
Also, JP-A-2006-181718 (Reference 2) discloses a method, by which a memory unit to store information is provided to the ink cartridge and the information in the memory unit is read on the printer side, so that the user is notified of the information when a wrong ink cartridge is loaded.
Further, JP-A-2006-116787 (Reference 3) discloses a method, by which the ink cartridges are common for all the colors, and completion of a loading operation of the ink cartridge is indicated as soon as the loading operation is completed.
When an ink cartridge is loaded in a wrong cartridge accommodation unit, there arises a problem that different inks are mixed and the inks change in nature and clog an ink supply channel. In this regard, the technique disclosed in Reference 1 is effective. However, the cost increases because the ink cartridge cannot be made common. Moreover, as the recording apparatus or the ink cartridges are reduced in size and the number of ink colors is increased to four or more, it becomes only possible to provide a slight difference to the shapes of the ink cartridges. Hence, whether the ink cartridge is a right one or wrong one cannot be determined unless the loading operation is performed several times.
The technique disclosed in Reference 2 can save the cost because the ink cartridges can be common, and makes it possible to notify the user of the information when a wrong ink cartridge is loaded.
The technique disclosed in Reference 3 enables the user to confirm whether the ink cartridge is loaded properly as soon as the loading operation is completed. However, because the loading of a wrong ink cartridge is informed only after the ink on the ink cartridge side comes into contact with a different ink on the ink accommodation unit side, there is a problem that the inks are deteriorated at the contact portion.
An object of the invention is to provide an ink-jet recording apparatus not only capable of reducing the cost by making the shapes of the ink cartridges common for all the colors, but also capable of eliminating deterioration of inks inside the printer main body by preventing an ink cartridge from being loaded in a wrong accommodation unit so as to avoid a contact between the ink on the ink cartridge side and a different ink on the ink accommodation unit side.
One aspect of the invention is an ink-jet recording apparatus that performs recording on a recording medium by introducing inks from plural ink cartridges respectively accommodating inks in plural different colors, including: plural heads that eject the inks in plural colors toward the recording medium; plural cartridge loading units respectively corresponding to the plural ink cartridges and configured in such a manner that the respective ink cartridges are loaded therein in a reloadable manner; ink inflow ports provided to the respective plural cartridge loading units to introduce the inks accommodated in the ink cartridges to be supplied to the plural heads when connected to ink outflow ports provided to the ink cartridges; a detection unit configured to detect whether the ink cartridges are loaded in the cartridge loading units as predetermined before the ink outflow ports come into contact with the ink inflow ports when the ink cartridges are loaded in the cartridge loading units; and a notifying unit configured to notify a detection result of the detection unit in a form of a display or a sound.
Objects and advantages of the invention will become apparent from the description, which follows, or may be learned by practice of the invention.
The accompanying drawings illustrate embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention.
Hereinafter, an ink-jet recording apparatus (image forming apparatus) according to one embodiment of the invention will be described in reference to
The housing 11 is provided with cartridge loading units 50Y, 50M, 50C, and 50Bk, a paper storing unit 14 in which recording media S are set, a paper feeding unit 15 that feeds a recording medium S from the paper storing unit 14, a medium carrying unit 16 that carries a recording medium S fed from the paper feeding unit 15, a color ink-jet recording head mechanism 17 that ejects an ink E onto a recording medium S carried by the medium carrying unit 16, a discharge unit 20 that discharges a recording medium S, and a control device 100 that controls the foregoing components in a cooperative manner.
Cartridges 200Y, 200M, 200C, and 200Bk described below are loaded in a reloadable manner in the cartridge loading units 50Y, 50M, 50C, and 50Bk, respectively.
The paper feeding unit 15 is configured to separate the recording media S set in the paper storing unit 14 one by one from the top using a separation roller 21, and to feed the recording medium S to the medium carrying unit 16 using two paper feeding roller pairs 22a and 22b. The medium carrying unit 16 is formed of a drive roller 24 and a driven roller 25 driven by a stepping motor 23, a driven roller 26 to which a tensile force is conferred from an unillustrated spring, and a medium carrying belt 27 stretched over the drive roller 24 and the driven rollers 25 and 26 and provided with holes made at regular intervals on the surface thereof.
On the inner side of the medium carrying belt 27, a medium attraction plate 28 is disposed so as to come into contact with the medium carrying belt 27, and by sucking air from the inner side of the medium carrying belt 27, it attracts a recording medium S on the outer side of the medium carrying belt onto the medium carrying belt 27 via the holes in the medium carrying belt 27.
It is configured in such a manner that the recording medium S is carried in a direction indicated by an arrow α in the drawing while being attracted onto the medium carrying belt 27 to pass by an opposing position to the color ink-jet recording mechanism 17, after which it is discharged to a discharged paper receiving unit 29 with the use of discharge rollers 20a, 20b, and 20c that together form the discharge unit 20.
The color ink-jet recording head mechanism 17 includes ink-jet recording heads 17Y, 17M, 17C, and 17Bk that perform printing using inks E in four colors including yellow, magenta, cyan, and black, and are disposed above the medium carrying belt 26 sequentially in this order from upstream to downstream in the carrying direction of the recording medium S.
These ink-jet recording heads 17Y, 17M, 17C, and 17Bk are line-type heads in which a large number of fine liquid ejection ports, that is, nozzles, are aligned in a direction orthogonal to the carrying direction of the recording medium S across a width sufficiently large enough to cover the full width of the recording medium S, and they are configured to eject inks E in the respective colors from the nozzles. The respective ink-jet recording heads 17Y, 17M, 17C, and 17Bk eject inks E from the nozzles using, for example, a pressure generation unit formed of an electromechanical transducer, such as a piezoelectric element.
Referring to
As is shown in
The ink cartridge 200 includes a housing 201 in the shape of a square prism. A hole 202 for supplying the ink E is made in the top surface of the housing 201, and it is closed with a cap 210 after the ink E is replenished therein. A protrusion 203 that fixes the housing 201 to the cartridge loading unit 50 is provided to the front surface. Further, the plate 220 having stored information about the ink cartridge 200 is attached to the back surface.
A discharge port 203 for discharging the ink E is provided in the bottom surface of the ink cartridge 200, and a valve mechanism 240 is provided to surround the discharge port 203. The valve mechanism 240 is formed in the shape of a circular column, and includes a valve main body 241 provided with a male screw on the outside, a cap 244 provided with a female screw that is threaded into the valve main body 241, and a seal 245 made of rubber and attached to the entire circumference of the hole in the cap 244.
A shaft 246 passing through the discharge port 203, a valve 247 made of rubber and attached to the shaft 246 at the lower end in the drawing, and a coil spring 248 that pushes the valve 247 toward the seal 245 are provided inside the valve main body 241. In a case where the ink cartridge 200 is removed from the ink-jet recording apparatus 10, the valve 247 is pressed against the seal 245 by the coil spring 248, so that the ink E is accommodated liquid-tight in the housing 11.
An inserting operation to load the ink cartridge 200 in the cartridge loading portion 50 will now be described.
In addition, the pump 70 performs an ink supply operation only when the ink cartridge 200 is loaded in the cartridge loading unit 50 at the right position. The ink tank 72 is provided with a releasing unit 73 in part so that the ink surface is at atmospheric pressure. Further, a sensor 74 that detects the level of the liquid surface of the ink E is attached. The ink tank 72 is linked to the ink-jet recording head 17 via an ink supply tube 75, and the level of the liquid surface of the ink E inside the ink tank 72 is adjusted so that the meniscus on the nozzle surface of the ink-jet recording head 17 is at a negative pressure with respect to the ink E inside the ink tank 74.
In each of the cartridge loading units 50 for four colors, the terminals 58a through 58d that detect the information of the ink cartridge 200, the display unit 80 that displays a result as to whether the ink cartridge 200 is inserted into the right cartridge loading unit 50 on the basis of the read information, and a buzzer 83 are connected to the control unit 100. In addition, the outputs of the media sensor 61, the color sensor 62, and the jamming sensor 63 all attached to the housing 11 are connected to the same. Further, regarding the control unit 100, the control unit 100 controls the driver unit 76 of the pump 70 in such a manner that the pump 70 performs an ink supply operation only when the ink cartridge 200 is inserted into the right cartridge loading unit 50.
The ink-jet recording apparatus 10 configured as above is used as follows. Initially, the ink cartridge is loaded in the cartridge loading unit 50. In this instance, the loading operation is divided to the first stage at which the bottom portion of the ink cartridge 200 comes into contact with the damper units 55, and the second stage at which the ink receiving unit 52 is inserted into the seal 245 by pushing in the ink cartridge 200 against restoring forces of the coil springs 56 to further allow the protrusion 42 on the front of the ink cartridge 200 to be engaged in the bending portion 59a of the blade spring 59.
A difference between the first stage and the second stage is that a force needed for the user to insert the ink cartridge 200 is larger in the second stage than in the first stage owing to a force against the restoring forces of the coil springs 56. In short, the user is able to distinguish the first stage from the second stage clearly.
The detection, determination, and notification of the information about the ink cartridge 200 are performed in the first stage by transferring the information to the control unit 100 from the plate 43 of the ink cartridge 200 via the terminal 58 of the cartridge loading unit 50 for the control unit 100 to determine whether the ink cartridge 200 is inserted into the right cartridge loading unit 50, and by notifying the determination result in the form of a display using the display unit 80 and/or a sound of the buzzer 83.
Because the ink receiving unit 52 does not fit in the seal 245 in the first stage, the contact between the ink E on the ink cartridge 200 side and that of the cartridge loading unit 50 has not occurred. In this instance, when the ink cartridge 200 of the ink in the right color is loaded in the cartridge loading unit 50, the LED 81a is lit ON, and when the ink cartridge 200 of the ink in a wrong color is loaded in the cartridge loading unit 50, the LED 81a is blinked ON and OFF and the buzzer 83 sounds at the same time to alert the user by giving a notice, so that the user stops the loading operation before he proceeds to the second stage.
Herein, the LED 81a emits light in a color same as the normal color of the ink for the cartridge loading unit 50. For example, the LED 81a at the front of the cartridge loading unit 50, in which the ink cartridge 200Y for yellow is loaded, is a white LED covered with a yellow filter and thereby emits light in yellow. Further, by laminating a seal paper 230Y in yellow on the entire surface of the ink cartridge 200Y of yellow, the color of the ink cartridge 200 and the color of the LED 81a become the same when the right ink cartridge 200 is inserted, whereas the color of the ink cartridge 200 and the color of the LED 81a are different when a wrong ink cartridge 200 is inserted, which allows the user to know whether the operation is right or wrong with ease.
In this case, the LEDs 81a and 81b provided to each cartridge loading unit 50 as shown in
It is thus possible to prevent a change in nature of the ink E by forestalling an ink in a different color from being mixed with the ink E.
In the second stage, the ink receiving unit 52 fits in the seal 245 of the ink cartridge 200, and the contact between the ink E on the ink cartridge 200 side and that of the cartridge loading unit 50 occurs.
Because the difference between the first stage and the second stage as described above enables the user to know whether the operation is right or wrong in the first stage at which the contact between the ink E on the ink cartridge 200 side and that of the cartridge loading unit 50 has not occurred, it is possible to stop the insertion operation of the ink cartridge 200 before the different inks E come into contact with each other even when a wrong ink cartridge is erroneously inserted. In addition, in the second stage, because it is necessary to push the ink cartridge 200 against the restoring forces of the coil springs, the user has to load the ink cartridge 200 with forces in two steps. Whether the right or wrong cartridge 200 is loaded is displayed when the user is on the point of increasing the force, it is possible to stop the loading operation easily before the ink E on the ink cartridge 200 side comes into contact with that on the cartridge loading unit 50.
After all the ink cartridges 200 are loaded in the corresponding cartridge loading units 50, an image is formed on a recording medium S. Initially, the image processing for recording is started by the image processing unit (not shown), and data for recording is transferred to the respective ink-jet recording heads 17Y through 17Bk. Meanwhile, recording media S set in the paper storing unit 14 are separated one by one at specific timing by the separation roller 21 and fed to the medium carrying unit 16 by the paper feeding rollers 22a and 22b. The recording medium S is then attracted onto the medium carrying belt 27, and carried to the opposing positions to the respective ink-jet recording heads 17Y, 17M, 17C, and 17Bk.
Firstly, the ink-jet recording head 17Y for yellow is operated to eject an ink in yellow from the nozzles for dots to land on the recording medium S. Subsequently, the ink-jet recording head 17M for magenta is operated to eject an ink in magenta from the nozzles for dots to land on the recording medium S. Subsequently, the ink-jet recording head 17C for cyan is operated to eject an ink in cyan from the nozzles for dots to land on the recording medium S. Lastly, when print in black is necessary, the ink-jet recording head 17Bk for black is operated to eject an ink in black from the nozzles for dots to land on the recording medium S, whereupon a color image is formed.
The calibration operation will now be described. Calibration is to adjust the densities of the respective colors by comparing a case where an image in gray is formed by an ink E prepared by mixing three colors including yellow, magenta, and cyan (process gray patch/comparison patch), and a case where an image in gray is formed using an ink E in black alone (gray patch by black/reference patch). To be more specific, to which level of grayscale in black the brightness of the process gray patch corresponds is detected. When the process gray patch and the gray patch by black are compared relatively with each other, they are compared in brightness by the color sensor 62. As is shown in
In the ink-jet method, an ink ejected from the ink-jet recording head lands on a sheet of paper and fixes thereon by being absorbed therein. The brightness of an image varies in this step. Because an image the user uses is an image after this step ends, it is necessary to perform calibration by detecting the brightness of an image in this state. It is therefore preferable to perform the detection when a specific time has passed since patches for calibration (
It is possible to perform precise calibration when a specific time has passed since the image was formed by performing a detection by adjusting a carrying speed of a sheet of paper or halting the sheet of paper at the position of the color sensor 62 after the patches are formed. In addition, in order to perform the calibration more precisely, detections are performed several times and when a difference in brightness falls within a specific range, the calibration is performed on the basis of this brightness.
The calibration operation is to control a driving voltage of the ink-jet recording head on the basis of a difference in brightness so as to eliminate the difference.
Concrete timing of the calibration will now be described. Because it is preferable to perform the calibration when a specific time has passed, the number of sheets of paper has reached a specific number, or when the ink cartridge is replaced with a new one, it is necessary to control the timing in the control unit 100.
Descriptions will be given along the flowchart shown in
In a case where “automatic” is chosen, whether the number of sheets of paper has reached a specific number is determined (ST20). Whether printing is being executed is determined (ST21), and the calibration operation is started when printing is not being executed. Whether a sheet of paper to be fed is specified previously is detected (ST22), and a sheet of paper in the standard cassette is chosen when a sheet of paper is specified (ST23), whereas a sheet of paper on the manual tray is chosen when a sheet of paper is not specified (ST24), and gray patches are formed thereon (ST25).
The brightness is detected using the color sensor 62 (ST26), and the flow returns to ST20 when the patches have the same brightness to wait for the number of sheets of paper to reach a specific number (ST27). When the patches are different in brightness, the calibration data is corrected, and the operation is terminated (ST28).
Meanwhile, in a case where “manual” is chosen, the user specifies the calibration operation (ST30), chooses a sheet of paper (ST31), and designates the kind of paper (ST32), after which the flow proceeds to ST21 to perform the calibration operation.
In a case where “semi-automatic” is chosen, whether the number of sheets of paper has reached a specific number is determined (ST40), and when the number of sheets of paper has reached the specific number, such an indication is displayed on the control panel 110, and the flow returns to ST10.
On the other hand, because the developed color of the gray patch differs with the kinds of paper, for an apparatus that uses different kinds of paper, the flowchart shown in
Whether the number of sheets of paper has reached a specific number is determined (ST50), and whether printing is being executed is determined (ST51). When printing is being executed, a sheet of paper same as the one being fed is chosen (ST52), and when printing is not being executed, a sheet of paper in a first cassette is chosen (ST53).
Subsequently, the kind of paper is detected by the media sensor 61 (ST54), and gray patches are formed thereon (ST55). The brightness is detected by the color sensor 62 (ST56), and the calibration data is corrected (ST57). Whether the paper cassette is the chosen one is determined (ST58), and when the paper cassette is the last one, the operation is terminated. When the paper cassette is not the last one, a sheet of paper in a paper cassette that has not been chosen before is chosen (ST59), and the flow returns to ST54. In this manner, the calibration data is acquired for each kind of paper.
Further, the calibration data for each kind of paper acquired through calibration is used as follows.
When printing is started (ST60), a sheet of paper chosen previously by the user is chosen (ST61), based on which the calibration data is chosen according to the kind of paper (ST62), and printing is performed while correction is being made using the calibration data (ST63).
Hence, even when a kind of paper is different, it is possible to make a correction using most appropriate calibration data.
As has been described, according to the invention, when an ink cartridge is inserted into the cartridge loading unit (ink-jet recording apparatus main body), there is the first stage at which the bottom portion of the ink cartridge comes into contact with the damper units, and the second stage at which the ink cartridge is pushed in against restoring forces of the springs until the ink E on the ink cartridge side and that of the ink-jet recording apparatus main body come into contact with each other. In the first stage, the ink E on ink cartridge side and that on the ink-jet recording apparatus side neither come into contact with each other nor are mixed with each other. Hence, in the first stage, whether a right ink cartridge is loaded is determined by transferring information about the color of the ink in the ink cartridge 200 from the plate 220 attached to the ink cartridge 200 to the control unit 100 via the terminal 58 of the ink-jet recording apparatus 10, and the determination result is notified to the user in the form of a display or a sound. The user thus becomes able to know whether the operation is right or wrong in the first stage, which is a stage before the ink E on the ink cartridge side and that on the ink-jet recording apparatus main body side come into contact with each other. This prevents the contact between the ink E on the ink cartridge side and that on the ink-jet recording apparatus main body side.
Hence, the ink E is not deteriorated in the ink-jet recording apparatus, which makes it possible to provide an ink-jet recording apparatus having highly-reloadable, inexpensive, and reloadable ink cartridges of a common shape for all the colors. In addition, in the second stage, because it is necessary to push in the ink cartridge against the restoring forces of the springs in comparison with the first stage, the user becomes able to know whether the loading of the ink cartridge is right or wrong when a force needed to insert the ink cartridge has increased. It is therefore possible to stop the loading operation with ease before the ink E on the ink cartridge side and that on the ink-jet recording apparatus main body side come into contact with each other.
In the embodiment described above, information about the ink color in the ink cartridge 200 is transmitted to the control portion 100 via the terminal 58 from the plate 43. However, as is shown in
Further, the reader 80 that reads out the information of the RF tag is attached at the position of the terminal 58 of
The modification described above is able to achieve the same advantages of the embodiment above.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the invention as defined by the appended claims and equivalents thereof.
This application is a Division of application Ser. No. 11/619,711 filed Jan. 4, 2007, the entire contents of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11619711 | Jan 2007 | US |
Child | 12769792 | US |