1. Field of the Invention
The present invention relates to an ink-jet recording head used in an ink-jet recording apparatus. In particular, the present invention relates to an ink-jet recording head that includes a reciprocating carriage, a recording head part and a pressure damper part, the recording head part and the pressure damper part being mounted in the carriage. The pressure damper part contains an ink and controls a pressure fluctuation of the ink.
2. Description of the Related Art
For example, concerning an ink-jet recording apparatus for business use, it is necessary to prepare a large-capacity ink tank for the purpose of carrying out a large amount of printing, and the ink tank is mounted in a tank holder that is provided at a body side of the ink-jet recording apparatus.
Meanwhile, a pressure damper part that can contain a predetermined amount of ink is provided in a carriage on which a recording head part is mounted. The ink tank and the pressure damper part are connected by an ink supply tube.
For example, Japanese Laid-Open Patent Application No. 2003-211688 and Japanese Laid-Open Patent Application No. 2009-184183 discuss such ink-jet recording heads having pressure damper parts.
As shown in
In the configuration of
An ink introducing part 107 is provided above the pressure damper part 102 in the gravity direction for introducing an ink into the pressure damper part 102 from an ink tank (not shown).
Further, at a center of the bottom end in the gravity direction of the pressure damper part 102, a tubular connection part 108 extends toward the recording head part 101 for supplying the ink inside the pressure damper part 102 to the recording head part 101. Meanwhile, above the recording head part 101, an ink supply needle 109 is provided to extend vertically. As a result of inserting the ink supply needle 109 into the tubular connection part 108, the pressure damper part 102 and the recording head part 101 are connected.
In the ink-jet recording head of
Usually, the tubular connection part 108 and the ink supply needle 109 are formed of synthetic resin molds, and do not have flexibility in themselves. Further, since the connection members are inserted between the recording head part 101 and the pressure damper part 102 as mentioned above, a space 110 inevitably exists between the recording head part 101 and the pressure damper part 102. As a result, the pressure damper part 102 is away from the recording head part 101 by the length of the space 110, and the height H of the recording head and pressure damper assembly module 100 is increased accordingly.
Recently, a demand has been increased for high-speed printing on paper sheets having large areas. For this purpose, there has been a tendency to increase the scanning range and the scanning speed of the carriage. In such a tendency, it is necessary to reduce the height H of the recording head and pressure damper assembly module as much as possible for the purpose of effectively controlling the pressure fluctuation in the ink contained in the recording head and pressure damper assembly module. However, it may be difficult for the ink-jet recording head shown in
According to one embodiment of the present invention, an ink-jet recording head includes a recording head and pressure damper assembly module that includes a recording head part that has a plurality of nozzle holes on an under surface and an ink passage communicating with the plurality of nozzle holes, and a pressure damper part that has an ink containing chamber inside, wherein the recording head part is mounted at a position of a lower side in a gravity direction, and the pressure damper part is placed higher in the gravity direction than the recording head part. The ink-jet recording head further includes a first flexible tube for supplying ink contained in the ink containing chamber of the pressure damper part to the ink passage of the recording head part, the first flexible tube connecting an ink discharge part communicating with the ink containing chamber of the pressure damper part and an ink supply part at one end side in the recording head part and communicating with one end of the ink passage; and a second flexible tube connected with another end side in the recording head part and communicating with another end of the ink passage. In this configuration, at least the inside of the first flexible tube is filled with the ink.
Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
Below, the embodiments of the present invention will be described using drawings.
As shown in
The ink-jet recording part 73 includes an ink tank 75 installed at a body side in an ink-jet recording apparatus; a direct movement guide 76 extending along a width direction (a X-direction) of the recording medium 72; a carriage 77 reciprocating at high speed along the width directions (X-directions) of the recording medium 72 along the direct movement guide 76; and a cableveyor (registered trademark) 81.
As shown in
An inside space is formed by the frame 1 (see
The cover 2 is provided for the purpose of preventing ink mist from adhering to the recording head and pressure damper assembly module 80, and is made of stainless steel having resistance to ink. By thus using such a material having resistance to ink, the cover 2 is less corrosive even if inks of various compositions are used.
As shown in
As shown in
As shown in
In the configuration of
The diaphragm plate 811 has elasticity and includes vibration plates 809 and filters 810. The vibration plates 809 efficiently transmit displacement of the piezoelectric elements 808 to the pressure chambers 803. The filters 810 filter out dirt/dust included in the ink that flows into the restrictors 806 from the common ink passage 805. Also the common ink passage 805 is formed in the rigid plate 812.
In the rigid plate 812, also the head part ink supply pipe 11 and the head part air vent pipe 12, communicating with the common ink passage 805 at both ends thereof, respectively, are formed. Further, piezoelectric element storage part 814 is formed in the rigid plate 812 for storing the piezoelectric elements 808 therein.
The piezoelectric elements 808 include many laminated piezoelectric vibrators 815 and a nonconductive attaching member 816 having conductive patterns, and the piezoelectric vibrators 815 are attached to the attaching member 816. The laminated piezoelectric vibrators 815 are arranged to correspond to the respective pressure chambers 803. Also external electrodes 817 including individual electrodes and a common electrode for transmitting separate electric signals to the laminated piezoelectric vibrators 815 are formed in the attaching member 816.
To the side surface of the attaching member 816 on which the external electrodes 817 are formed, the interconnection substrate 10 on which a piezoelectric element driving IC not shown) is mounted is attached and connected.
In the configuration of
After the space and the positional relationship between the head base 5 and the recording head body 8 are adjusted, the recording head body 8 is attached to the head base 5 using screws, and is stuck to the head base 5 using an adhesive that also functions as an ink sealant.
According to the first embodiment, the two head radiator plates 9a and 9b are installed at front and back sides, and have a function of effectively moving away heat generated from the piezoelectric element driving IC and/or the like provided in a driving part inside the recording head body 8. The mechanism of radiation will be described later using
As shown in
The head cover 13 is used for protecting the nozzle surface of the recording head body 8 at a time of shipping and transportation of the ink-jet recording apparatus. As shown in
The pressure damper module 4 has a case member 14 made of a mold of synthetic resin such as polyethylene. A recess part 15 (see
A pressure damper part ink supply pipe 18 is provided at one end of an upper part in the gravity direction of the case member 14.
As shown in
A projection 21 is formed to project outward as being perpendicular to the gravity direction at the other end of the upper part in the gravity direction of the case member 14. Inside the projection 21, an ink discharge passage 22 that communicates with the recess part 15 (ink containing chamber 17) and an ink discharge pipe insertion hole 23 that communicates with the ink discharge passage 22 are formed. A pressure damper part ink discharge pipe 24 is pressed and mounted to the ink discharge pipe insertion hole 23. Thus, the pressure damper part ink discharge pipe 24 is placed in a step part 44 (see
The position of the lower end opening of the ink supply pipe insertion hole 20 formed in the case member 14 and the position of the ink discharge passage 22 are approximately at the same level in the gravity direction (vertical direction) (approximately the same height), and the recess part 15 (ink containing chamber 17) is below them in the gravity direction.
In the case of the first embodiment, as shown in
The lower end part of the pressure damper part ink supply pipe 18 is pressed into the ink supply pipe insertion hole 20 formed in the case member 14, and the flange part 28 of the pressure damper part ink supply pipe 18 is in contact with the top surface of the case member 14 (see
Meanwhile, an O-ring 30 is mounted at an upper end part of the pressure damper part ink discharge pipe 24, and a circumferential step part 31 is formed at an intermediate part of the pressure damper part ink discharge pipe 24. By pressing the pressure damper part ink discharge pipe 24 into the ink discharge pipe insertion hole 23 of the case member 14, the step part 31 is exposed as being approximately flush with the under surface of the projection 21 (see
According to the first embodiment, the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 24 are mounted to the case member 14 using press-fit technology. It is also possible to mount the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 29 to the case member 14 using insert molding technology. However, if insert molding technology were used, it would be necessary to prepare respective case members 14 with pressure damper part ink supply pipes 18 and pressure damper part ink discharge pipes 24 using insert molding technology to be used for ink-jet recording apparatuses of various apparatus types in a case where the shapes, sizes and/or the like of the pressure damper part ink supply pipes 18 and pressure damper part ink discharge pipes 24 are somewhat different thereamong. Thus, the costs would be increased. In contrast thereto, by mounting the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 24 using press-fit technology as in the first embodiment, it is possible to use case members 14 in the same type in common for ink-jet recording apparatuses of various apparatus types, and it is possible to reduce the costs and make the assembling works more efficient.
By providing the film member 16 on one side of the ink containing chamber 17 as described above, it is possible that the ink containing chamber 17 provides a damper function using flexibility of the film member 16. A film cover 32 is placed on the outside of the film member 16 for preventing the film member 16 to be excessively stretched (see
The film cover 32 is made of a metal plate or a synthetic resin mold, a planar shape of which is approximately the same as the case member 14, as shown in
As shown in
When putting the film cover 32 on the case member 14 (film member 16) and attaching it, the ink supply pipe retaining part 33 is fitted to the periphery of the pressure damper part ink supply pipe 18, is engaged with the flange part 28 of the pressure damper part ink supply pipe 18, and thus, can prevent the pressure damper part ink supply pipe 18 from being removed. Also, the ink discharge pipe retaining part 35 is fitted to the periphery of the pressure damper part ink discharge pipe 24, is engaged with the step part 31 of the pressure damper part ink discharge pipe 24, and thus, can prevent the pressure damper part ink discharge pipe 24 from being removed (see
According to the first embodiment, the flange part 28 is provided to the pressure damper part ink supply pipe 18 and the step part 31 is provided to the pressure damper part ink discharge pipe 24. However, in reverse, it is also possible to provide a step part to the pressure damper part ink supply pipe 18 and a flange part to the pressure damper part ink discharge pipe 24. Further alternatively, it is also possible to provide respective flange parts to both the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 24 or respective step parts to both the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 24.
Thus, according to the first embodiment, the film cover 32 is used to prevent the pressure damper part ink supply pipe 18 and the pressure damper part ink discharge pipe 24 from being removed, respectively. Therefore, it is possible to reduce the number of parts/components, reduce the assembling man-hours, and reduce the costs.
As shown in
The head part air vent pipe 12 is connected with a flexible air vent tube 38. At the other end of the air vent tube 38, a sealing valve 19 is provided, and thus, the other end of the air vent tube 38 is in a sealed state. The other end of the air vent tube 38 is fixed at an upper part of the frame 1 (higher than the pressure damper module 4).
In a case where air bubbles accumulated inside the recording head module 3 or the air vent tube 38 are to be discharged, a waste tank 92 is connected with the air vent tube 38 or the sealing valve 19 via an open valve 90, a suction pump 91 and connecting tubes 93, 94 and 95. Then, the suction pump 91 is driven and the open valve 90 (and the sealing value 19 if it is connected) is (are) opened. As a result, the air bubbles are forcibly discharged to the waste tank 92 via the open valve 90(and the sealing value 19 if it is connected), the suction pump 91 and the connecting tubes 93, 94 and 95.
When ink is supplied to the ink-jet recording head from the ink tank 75, air inside the pressure damper module 4 and the recording head module 3 is discharged to the outside of the ink-jet recording head via the head part air vent pipe 12 and the air vent tube 38, while the sealing valve 19 is opened. Instead, the ink is charged into the ink-jet recording head, in the stated order of the ink tank 75, the tank-side ink supply tube 37b, the pressure damper part ink supply pipe 18, the ink containing chamber 17 of the pressure damper module 4, the pressure damper part ink discharge pipe 24, the head-side ink supply tube 37a, the head part ink supply pipe 11 and the ink passage of the recording head module 3.
After the charging of the ink has been finished, such a state is obtained that the inside of the air vent tube 38 as well as the inside of the head-side ink supply tube 37a are filled with the ink. It is to be noted that, both the head-side ink supply tube 37a and the air vent tube 38 have flexibility.
Further, as shown in
Thereby, in addition to the ink containing chamber 17 having the film member 16, also the flexible head-side ink supply tube 37a and the flexible air vent tube 38 near the recording head body 8 can provide the damper effect.
Further, as shown in
In order to effectively radiate the heat generated by the piezoelectric element driving IC or the like provided in the driving part inside the recording head body 8, respective heat conduction plates 39-1 and 39-2 are inserted, as shown in
The heat conduction plates 39-1 and 39-2 are made from a plate material having good heat conduction such as copper, aluminium or the like, for example. As shown in
When the ink-jet recording head is assembled, the base end parts 40-1, 40-2 of the two heat conduction plates 39-1 and 39-2 are fixed at several points of the frame 1 and the cover 2, respectively, at facing positions by spot welding or the like. Thereby, the distance between the respective connection parts 42-1 and 42-2 is gradually reduced along the direction toward the elastically contacting parts 41-1 and 41-2, in a manner of a tapered shape. In this state, the recording head module 3 is inserted into the frame 1 via the opening 6 of the head base 5 in the direction of the arrow “A” while the head radiator plates 9 are inserted in the lead.
The extending ends of the head radiator plates 9a, 9b thus come into contact with the inclined surfaces of the connection parts 42-1, 42-2 of the tapered shape. Then, by further inserting the recording head module 3 to a predetermined position in the frame 1, the connection parts 42-1, 42-2 are pressed outward to slightly move away from one another, the elastic resilience force is thus generated in the connection parts 42-1, 42-2, and thereby, the connection parts 42-1, 42-2 of the heat conduction plates 39-1, 39-2 are satisfactorily in contact with the head radiator plates 9a, 9b (see
As a result, the heat from the head radiator plates 9a, 9b is transmitted through the two heat conduction plates 39-1 and 39-2, respectively, and radiates from the frame 1 and the cover 2 having the areas larger than the head radiator plates 9a and 9b and the heat conduction plates 39-1 and 39-2. Therefore, it is possible to avoid various troubles concerning printing (for example, a damage in the recording head body 8 and an accompanying failure in discharge of ink droplets) that may otherwise occur if the heat generated in the recording head module 3 remains inside.
In the same manner as
Also in the case of the second embodiment, the pressure damper module 4 has the case member 14 made of a mold of synthetic resin such as polyethylene, and a recess part 15 (see
An ink supply pipe insertion hole 20 for pressing and mounting a pressure damper part ink supply pipe 18 (see
Projections 21-1 and 21-2 are formed to project outward as being perpendicular to the gravity direction (vertical direction) at both ends of the upper part of the case member 14, respectively. At lower ends of the projections 21, pressure damper part ink discharge pipe insertion holes 23-1 and 23-2 are formed for pressing thereinto to mount pressure damper part ink discharge pipes 24-1 and 24-2 (see
As shown in
Since, as shown in
Further, as shown in
In this configuration, when ink is supplied, the ink is charged into the pressure damper module 4 and the recording head module 3 in the stated order of the ink tank 75 (see
Therefore, in the recording head module 3, the head-side ink supply tubes 37-1 and 37-2 are placed on both sides of the recording head body 8, as shown in
Thus, the ink-jet recording head according to the second embodiment is different from a configuration in the related art in which connection members such as the tubular connection part 108 and the ink supply needle 109 are inserted between the recording head part 101 and the pressure damper part 102 as in the ink-jet recording head in the related art shown in
Further, at a time of printing, since the ink 51 can be supplied to the recording head body 8 from both sides (via the head-side ink supply tubes 37-1 and 37-2), it is possible to carry out high-speed printing. Further, the flexible head-side ink supply tubes 37-1 and 37-2 on both sides of the recording head body 8 provide the damper effect, in addition to the ink containing chamber 17 having the film member 16.
It is to be noted that the other configurations of the ink-jet recording head and the ink-jet recording apparatus according to the second embodiment which have not been described are approximately the same as those of the first embodiment, and thus, duplicate description will be omitted.
According to the embodiments, it is possible to provide ink-jet recording heads in which it is possible to effectively control a pressure fluctuation in ink.
Although the ink-jet recording heads have been described by the embodiments, the present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention.
The present patent application is based on and claims the benefit of priority of Japanese Priority Application No. 2012-192325 filed on Aug. 31, 2012, and Japanese Priority Application No. 2013-171508 filed on Aug. 21, 2013, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2012-192325 | Aug 2012 | JP | national |
2013-171508 | Aug 2013 | JP | national |