Inkjet technology is widely used for precisely and rapidly dispensing small quantities of fluid. Inkjets eject droplets of fluid out of a nozzle by creating a short pulse of high pressure within a firing chamber. During printing, this ejection process can repeat thousands of times per second. Inkjet printing devices are implemented using semiconductor devices, such as thermal inkjet (TIJ) devices or piezoelectric inkjet (PIJ) devices. For example, a TIJ device is a semiconductor device including a heating element (e.g., resistor) in the firing chamber along with other integrated circuitry. To eject a droplet, an electrical current is passed through the heating element. As the heating element generates heat, a small portion of the fluid within the firing chamber is vaporized. The vapor rapidly expands forcing a small droplet out of the firing chamber and nozzle. The electrical current is then turned off and the heating element cools. The vapor bubble rapidly collapses, drawing more fluid into the firing chamber.
Some embodiments of the invention are described with respect to the following figures:
Ink property sensing on a printhead is described. In an example, a substrate for a printhead includes a cap layer having bores. Chambers are formed beneath the cap layer in fluidic communication with the bores. Fluid ejectors are disposed in at least a portion of the chambers. At least one ion-sensitive field effect transistor (ISFET) is disposed in a respective at least one of the chambers. An electrode is disposed in each of the chambers having an ISFET and capacitively coupled to said ISFET through a dielectric. The ISFET can be configured to be responsive to particular ion concentrations in the ink, such as pH. As the ink properties change over time, such as changing pH, the changes can be detected as shifts in the threshold voltage of the ISFET.
The printhead 108 includes nozzles 110 and fluid chambers 112. The fluid chambers 112 are in fluidic communication with the nozzles 110. The fluid chambers 112 include ink property sensor(s) 114 and fluid ejectors 116. The fluid ejectors 116 are disposed in at least a portion of the fluid chambers 112. Each of the ink property sensor(s) 114 can be disposed in a fluid chamber 112 that also has a fluid ejector 116, or in a fluid chamber by itself without a fluid ejector 116. The ink property sensor(s) 114 and the fluid ejectors 116 are electrically coupled to the print controller 106. The print controller 106 drives the fluid ejectors 116 to eject ink from respective fluid chambers 112 through respective nozzles 110 onto media (not shown). The print controller 106 also drives the ink property sensor(s) 114 and obtains measurements from the ink property sensor(s) 114.
Each of the ink property sensor(s) 114 is configured for electrochemical detection of ion concentration in the ink. Ion concentration measurements can be used to determine various properties of the ink. For example, the ink property sensor(s) 114 can measure pH of the ink, where pH is a measure of the activity of solvated hydrogen ions. The pH range of ink in a printhead as the ink ages and is used over time can vary. For example, the pH range for some inks can range from 8.5 down to 5.5, where pH 7.0 is neutral. The change in pH versus percentage change in weight loss can vary for different inks depending on the particular ion combination for the ink solution. Different ion combinations are present in different colors and kinds of ink.
In operation, the print controller 106 can drive the ink property sensor(s) 114 to measure ink ion concentration. The print controller 106 obtains samples of electrical output from the ink property sensor(s) 114 representative of ink ion concentration. In an example, the print controller 106 provides the samples to the computer 104. The computer 104 can include an ink property analyzer 120 implemented using software, hardware, or a combination thereof. The ink property analyzer 120 can analyze the electrical samples and derive ink properties therefrom. In some examples, the functionality of the ink property analyzer 120 can be implemented in the print controller 106 rather than the computer 104.
In an example, the ink property sensor 114 is implemented using N-type metal-oxide semiconductor (NMOS) logic such that the substrate 102 comprises a P-type substrate and the diffusion regions 204 and 206 comprise N+ doped regions. For purposes of clarity, NMOS logic is assumed to be used for implementing the ink property sensor 114. It is to be understood that the ink property sensor 114 can be implemented using P-type metal-oxide semiconductor (PMOS) logic or complementary metal oxide semiconductor (CMOS) logic. In the case of PMOS logic, the substrate 202 comprises N-type silicon and the diffusion regions 204 and 206 comprise P+ doped regions. The configuration for N-wells in N-well CMOS logic are similar to the PMOS configuration, and the configuration for P-wells in P-well CMOS logic are similar to the NMOS configuration.
A gate oxide layer 208 is formed on the substrate 202. The gate oxide layer 208 can comprise a dielectric oxide material, such as silicon dioxide (SiO2), a high-k dielectric material, such as halflium oxide (HfO2) or aluminum oxide (Al2O3), or the like. A polysilicon layer is formed and patterned over the gate oxide layer 208 resulting in formation of the polysilicon region 210 between the diffusion regions 204 and 206. A first metal layer (M1) is formed and patterned over the polysilicon layer resulting in formation of M1 regions 209, 211, and 212 that are in electrical contact with the diffusion region 206, the polysilicon region 210, and the diffusion region 204, respectively. In an example, as shown in
In another example, as shown in
Together, the polysilicon 210 and the respective portions of the metal layers 212 and 214 in electrical contact therewith comprise a “floating-gate” of metal-oxide field effect transistor (MOSFET) having the source 204 and the drain 206 (assuming N-MOS). Together with the dielectric layer 216, the MOSFET is an ion-sensitive FET or “ISFET”. For purposes of clarity by example, two metal layers M1 and M2 are shown. It is to be understood that the ink property sensor 114 can be formed using more or less than 2 metal layers. The metal layer(s) can comprise any metal or metal alloy (e.g., Aluminum (Al), Aluminum copper (AlCu), Tantalum aluminum (TaAl), etc.).
The dielectric layer 216 contacts ink 218. An electrode 220 is also disposed to be in electrical contact with the ink 218. The electrode 220 is also capacitively coupled with the floating-gate of the FET (e.g., the portion of the metal layer 214 forming the floating-gate) through the ink 218, the dielectric 216, and the dielectric 213. The electrode 220 can comprises any metal or metal alloy. Specific examples of the electrode 220 are described below.
In operation, the source 204 is coupled to a reference voltage (e.g., electrical ground) and a voltage is applied to the electrode 220. The electrode 220 essentially acts as the reference gate of the ISFET. The voltage between the electrode 220 and the source 204 is the gate-to-source voltage, referred to as Vgs. The charge distribution for the ISFET will change according to the ion concentration in the ink. As the charge distribution changes, the threshold voltage of the ISFET changes. For example, if the ink property sensor 114 is configured to measure pH, then the ISFET's threshold voltage depends on the pH of the ink in contact with the dielectric 216. Change in the threshold voltage of the ISFET can be measured by measuring change in drain-to-source current (Ids) for a particular drain-to-source voltage (Vds). In general, materials for the electrode 220 and the dielectric 216 can be selected such that the threshold voltage of the ISFET changes over time in response to changes in a particular ion combination (pH described herein by way of example). Changes in the threshold voltage are detected through measurements of drain-to-source current given a particular drain-to-source voltage.
In an example, the orifice plate 308 is metal and the electrode 316 is formed as a protrusion of the orifice plate 308. In such case, the orifice plate 308 and the electrode 316 may comprise nickel (Ni) with a palladium (Pa) or Titanium (Ti) coating, for example. In another example, the orifice plate 308 may be polymeric and the electrode 316 may be embedded in the polymer material. In such case, the electrode 316 may comprise TaAl, for example.
In the foregoing description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details. While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/013968 | 1/31/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/116121 | 8/6/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6007188 | MacLeod | Dec 1999 | A |
6557974 | Weber | May 2003 | B1 |
7922274 | Kubota et al. | Apr 2011 | B2 |
20020003551 | Beck | Jan 2002 | A1 |
20080024565 | Smith | Jan 2008 | A1 |
20130280813 | Rothberg et al. | Oct 2013 | A1 |
20150330941 | Smith | Nov 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160339696 A1 | Nov 2016 | US |