The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
In the above-mentioned printing mechanism 1, the slide base 2 is provided at one side near each lateral end thereof with a first printing pressure cylinder 30, and at an opposite side near each lateral end thereof with a second printing pressure cylinder 40 corresponding to the first printing pressure cylinder 30. A scraper holder 31 is assembled to a lower side of the two first printing pressure cylinders 30 for holding a scraper 32 thereto.
A first and a second driving unit 50, 60 are separately assembled to a lower side of the two second printing pressure cylinders 40. An ink reclaiming blade holding bar 70 is extended between the first and the second driving unit 50, 60 for holding an ink reclaiming blade 71 to a lower side thereof.
In an operable embodiment of the present invention, the first and the second printing pressure cylinder 30, 40 may be replaced with general cylinders or other vertically movable devices.
Generally, the scraper 32 and the ink reclaiming blade 71 have different up and down travel ranges, depending on actual printing requirements. When the scraper 32 and the ink reclaiming blade 71 are elevated at the same time to lift and transfer ink residue, there would be a height difference between the scraper 32 and the ink reclaiming blade 71, preventing the scraper 32 and the ink reclaiming blade 71 from completely closing to each other. As a result, ink residue carried by the scraper 32 and the ink reclaiming blade 71 would leak and drip from a gap between the scraper 32 and the ink reclaiming blade 71 down to a screen plate of the screen printing machine. To solve this problem, an adjusting knob is provided on each of the first and the second printing pressure cylinders 30, 40 as an aid to adjust the depth of travel of the first and the second printing pressure cylinders 30, 40, so that the scraper 32 and the ink reclaiming blade 71 are elevated at the same time to the same height. In the drawings, only the adjusting knobs 41 for the second printing pressure cylinders 40 are illustrated.
Please refer to
Please refer to
In the illustrated embodiment, as can be seen from
The upper base 56 of the first driving unit 50 is provided at a predetermined position with a fixture 561 for holding a shaft seat 562 therein. Similarly, the upper base 66 of the second driving unit 60 is provided at a predetermined position with a fixture 661 for holding a shaft seat 662 therein.
Please refer to
When the printing mechanism 1 starts reclaiming ink residue, the second printing pressure cylinders 40 on the slide base 2 are vertically lowered by a distance, so that the ink reclaiming blade 71 is in contact with a top surface of the screen plate 81. Then, the actuating cylinders 51, 61 of the first and the second driving unit 50, 60, respectively, are horizontally moved toward the scraper 32, so that a receiving space is formed between the ink reclaiming blade 71 and the scraper 32 to lift and hold the ink residue 80 therein. Meanwhile, printing ink 80 remained on the scraper 32 also drips down into the receiving space between the ink reclaiming blade 71 and the scraper 32 instead of dripping onto the screen plate 81.
When the printing mechanism 1 has been returned to its initial position for printing, the actuating cylinders 51, 61 of the first and the second driving unit 50, 60, respectively, are also returned to their initialing position, so that ink residue 80 previously held in the receiving space is released to spread over the screen plate 81, and the ink reclaiming blade 71 is elevated to its initial position again. At this point, the slide base 2 would be slightly moved backward to prevent the ink residue 80 from diffusing to a rear side of the scraper 32 and not being reused in the next printing.
In some high precision manufacturing processes for ceramic capacitor, EL (electroluminescence) cold light strip, light guiding plate, etc. that require highly accurate printing using printing ink and silver gel having a relatively high viscosity, or require a special screen plate for printing, ink residue 80 tends to downward penetrate through the screen plate 81 at the time of ink reclaiming. With the ink residue lifting and transfer mechanism of the present invention, it is possible to solve the problem of downward penetrated ink residue and to control a uniform thickness of the printed film lower than 0.005 mm to meet the requirements of high-tech photoelectric industry.
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.