Information
-
Patent Grant
-
6776478
-
Patent Number
6,776,478
-
Date Filed
Wednesday, June 18, 200321 years ago
-
Date Issued
Tuesday, August 17, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Taft, Stettinius & Hollister, LLP
-
CPC
-
US Classifications
Field of Search
US
- 347 54
- 347 85
- 347 86
- 347 87
-
International Classifications
-
Abstract
A method of reducing the size of an ink flow regulator in fluid communication between an ink source and a print head nozzle. The method including the steps of: (a) positioning an ink flow regulator and an ink outlet of the ink flow regulator in a first section of the flow regulator; and (b) orienting a pivotable lever, having a first leg coupled to an inlet closure of the regulator and a second leg operatively coupled to an actuating wall of the regulator such that a fulcrum of the pivotable lever separates the first section from a second section of the ink flow regulator, wherein the first section and the second section are in fluid communication with one another.
Description
BACKGROUND
1. Field of the Invention
The present invention is directed to a regulator for regulating the flow of ink from an ink source to a print head in a printer; and, more particularly, to a regulator that is relatively independent upon the inlet pressure, such that the functionality of the regulator is relatively independent of the inlet pressure of the ink source.
2. Background of the Invention
The flow of fluids through predetermined conduits has been generally been accomplished using a valve and/or a pressure source. More specifically, valves come in various shapes and sizes and include as a subset, check valves. These valves prevent the reversal of fluid flow from the direction the fluid passed by the valve. A limitation of check valves is that the volumetric flow of the fluid past the valve is controlled by the inlet side fluid pressure. If the inlet pressure is greater than the outlet pressure, the valve will open and fluid will pass by the valve; if not, the inlet fluid will be relatively stagnant and the valve will not open.
Inkjet printers must take ink from an ink source and direct the ink to the print head where the ink is selectively deposited onto a substrate to form dots comprising an image discernible by the human eye. Two general types of systems have been developed for providing the pressure source to facilitate movement of the ink from the ink source to the print head. These generally include gravitational flow system and pumping systems. Pumping systems as the title would imply create an artificial pressure differential between the ink source and the print head to pump the fluid from the ink source to the print head. Generally, these pumping systems have many moving parts and need complex flow control system operatively coupled thereto. Gravitational flow avoids many of these moving parts and complex systems.
Gravitational fluid flow is the most common way of delivering ink from an ink reservoir to a print head for eventual deposition onto a substrate, especially when the print head includes a carrier for the ink source. However, this gravitational flow may cause a problem in that excess ink is allowed to enter the print head and accumulate, being thereafter released or deposited onto an unintended substrate or onto one or more components of the inkjet printer. Thus, the issue of selective control of ink flow from a gravitational source has also relied upon the use of valves. As discussed above, a check valve has not unitarily been able to solve the problems of regulating ink flow, at least in part because the inlet pressure varies with atmospheric pressure, and when the valve is submerged, the pressure exerted by the fluid itself.
U.S. Pat. No. 6,422,693, entitled “Ink Interconnect Between Print Cartridge and Carriage”, assigned to Hewlett-Packard Company, describes an internal regulator for a print cartridge that regulates the pressure of the ink chamber within the print cartridge. The regulator design includes a plurality of moving parts having many complex features. Thus, there is a need for a regulator to regulate the flow of ink from an ink source to a print head that includes fewer moving parts, that is relatively easy to manufacture and assemble, and that does not necessitate direct coupling to the atmosphere to properly function.
SUMMARY OF THE INVENTION
The invention is directed to a mechanical device providing control over the flow of a fluid from a fluid source to at least a point of accumulation. More specifically, the invention is directed to an ink flow regulator that selectively allows fluid communication between the ink source and the print head so as to supply the print head with ink, while substantially inhibiting the free flow through of print head. The invention comprises a pressurized chamber, generally exhibiting negative gauge pressure therewithin, having an ink flow inlet and an ink flow outlet. A seal is biased against the ink inlet to allow selective fluid communication between the interior of the pressurized chamber and an ink source. A flexible wall, acting as a diaphragm, is integrated with a chamber wall to selectively expand outwardly from and contract inwardly towards the interior of the chamber depending upon the relative pressure differential across the flexible wall. The pressure differential depends upon the pressure of the interior of the chamber verses the pressure on the outside of the flexible wall.
As the flexible wall contracts inwardly towards the interior of the chamber, it actuates a lever. The lever includes a sealing arm and an opposing flexible arm, and pivots on a fulcrum. The sealing arm includes the seal biased against the ink inlet, while the flexible arm is angled with respect to the sealing arm and includes a spoon-shaped aspect contacting the flexible wall. As the flexible wall continues contracting inward, the flexible arm flexes without pivoting the lever until the force of the wall against the flexible arm is sufficient to overcome the bias biasing the sealing arm against the inlet. When the force against the lever is sufficient to overcome the bias, the lever pivots about the fulcrum to release the seal at the ink inlet, thereby allowing ink to flow into the chamber until the pressure differential is reduced such that the bias again overcomes the reduced push created by the inward contraction of the flexible wall.
It is noted that the invention is not a check valve, as the operation of the regulator is independent from the inlet pressure. In other words, a check valve is dependent upon the inlet pressure, whereas this system of the present invention provides a relatively small inlet cross sectional area in relation to the size and relative forces action upon the regulator system that effectively negates any variance in inlet pressure. Thus, increasing the inlet pressure does not affect the operation of the regulator.
It is important for the regulator of the present invention to be compact and take up relatively little volume. In furtherance of these size considerations, the present invention includes an ink inlet aligned with an ink outlet to reduce the overall length. Additionally, the regulator provides the ink outlet and the ink inlet on one side of the lever fulcrum and having the flexible film wall that actuates the lever on the opposite side of the lever fulcrum to reduce the height and width of the regulator.
It is also important for the regulator of the present invention to be as reliable and inexpensive as possible. Further, it is preferable that the lever be able to pivot in a repeatable manner, thus lowering the frictional force losses is an important aspect of the present invention. Still further, it is preferable that the lever does not stick during its pivot and create a spike in negative pressure affecting the functionality of the regulator. In furtherance of these advantages, the invention incorporates materials having properties consistent with the objects and considerations of the present invention to reduce friction where appropriate.
It is a first aspect of the present invention to provide a regulator adapted to regulate the throughput of an ink between an ink source and a print head. The regulator including: (a) a pressurized chamber including an ink inlet adapted to provide fluid communication with an ink source, an ink outlet adapted to provide fluid communication with a print head, and at least one exterior flexible wall having an inner surface facing an interior of the pressurized chamber; and (b) a lever pivotable on a fulcrum including a first arm extending approximate a portion of the exterior flexible wall and an opposing arm operatively coupled to a seal, the seal closing the ink inlet when the lever is in a first position and to opening the ink inlet to allow fluid communication between the ink inlet and the pressurized chamber when the lever is pivoted to a second position, the lever being biased to the first position; where a higher pressure differential across the exterior flexible wall causes the exterior flexible wall to apply force against the first arm, overcoming the bias, to thereby pivot the lever to the second position, opening the ink inlet; where a lower pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall against the first arm to weaken, succumbing to the bias, which pivots the lever back to the first position, closing the ink inlet; where a pressure change from the lower pressure differential to the higher pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall to increase without overcoming the bias; and where the ink inlet and the ink outlet are positioned on the same side of the fulcrum as the opposing arm of the lever.
In a more detailed embodiment of the first aspect, the ink inlet and ink outlet are located on opposing faces (i.e., the top and bottom) of the pressurized chamber. In another more detailed embodiment, the ink inlet and the ink outlet are substantially axially aligned with each other. In yet another more detailed embodiment, the ink inlet and the ink outlet are located on adjacent faces of the pressurized chamber. In a further detailed embodiment, the exterior flexible wall comprises a polymer film. In still a further more detailed embodiment, the fulcrum is between the ink inlet and the flexible wall. In yet a further more detailed embodiment, the ink inlet is in fluid communication with at least one of an ink conduit containing ink or an ink reservoir containing ink.
It is a second aspect of the present invention to provide a method of reducing the size of an ink flow regulator in fluid communication between an ink source and a print head nozzle. The method includes the steps of: (a) positioning an ink inlet of an ink flow regulator and an ink outlet of the ink flow regulator in a first section of the ink flow regulator, and (b) orienting a pivotable lever, having a first leg coupled to an inlet closure of the regulator and a second leg operatively coupled to an actuating wall of the regulator such that a fulcrum of the pivotable lever separates the first section from a second section of the ink flow regulator, wherein the first section and the second section are in fluid communication with one another. In a more detailed embodiment of the second aspect, the ink inlet and the ink outlet are oriented to oppose one another.
It is a third aspect of the present invention to provide a regulator adapted to regulate the throughput of an ink between an ink source and a print head. The regulator including: (a) a pressurized chamber including an ink inlet adapted to provide fluid communication with an ink source, an ink outlet adapted to provide fluid communication with a print head, a bearing seat, and at least one exterior flexible wall having an inner surface facing an interior of the pressurized chamber, and (b) a lever including a first arm extending along a portion of the exterior flexible wall, an opposing arm, and a fulcrum bearing adapted to be received within the bearing seat of the pressurized chamber, the opposing arm operatively coupled to a seal to close the ink inlet when the lever is in a first position and open the ink inlet allowing fluid communication between the ink inlet and the pressurized chamber when the lever is pivoted to a second position, the lever being biased to the first position; where a higher pressure differential across the exterior flexible wall causes the exterior flexible wall to apply force against the first arm contacting the exterior flexible wall, overcoming the bias, to thereby pivot the lever to the second position, opening the ink inlet; where a lower pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall against the first arm contacting the exterior flexible wall to weaken, succumbing to the bias, which pivots the lever back to the first position, closing the ink inlet; and where a pressure change from the lower pressure differential to the higher pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall to increase without overcoming the bias.
In a more detailed embodiment of the third aspect, the bearing has an actuate shaped surface interfacing with a planar bearing seat surface. In a farther detailed embodiment, the lever is pivoted about a fulcrum adjacent to the ink inlet. In yet a further detailed embodiment, the bearing comprises polyethylene. In a more detailed embodiment, the bearing seat comprises acetyl.
It is a fourth aspect of the present invention to provide a method of regulating the flow of ink between an ink source and a print head nozzle. The method including the steps of: (a) positioning an ink flow regulator adapted to regulate the throughput of an ink between an ink source and a print head nozzle, the regulator including: (i) a pressurized chamber including an ink inlet providing fluid communication with the ink source, an ink outlet providing fluid communication with a print head nozzle, and at least one flexible wall having an inner surface facing an interior of the pressurized chamber; and (ii) a lever including a first arm extending in proximity to a portion of the flexible wall and an opposing arm operatively coupled to a biased valve selectively restricting fluid communication between the ink source and the print head nozzle; wherein ink enters the ink inlet and leaves the ink outlet in a unitary direction; (b) actuating the flexible wall in response to a pressure differential across the flexible wall, wherein an interior surface of the flexible wall is in fluid communication with ink within the pressurized chamber and an exterior surface of the flexible wall is in fluid communication with a fluid; (c) pivoting the lever in response to the actuation of the flexible film, so as to overcome the bias and open the valve in a first pivoting direction, and succumbing to the bias and close the valve in a second pivoting direction, opposite the first pivoting direction; and (d) opening and closing the valve in response to the pivoting of the lever.
In a more detailed embodiment of the fourth aspect, the pivoting step includes providing a bearing and bearing seat that interact to provide free pivoting of the lever about a fulcrum. In another more detailed embodiment, the bearing includes polyethylene. In yet another more detailed embodiment, the bearing seat includes acetyl. In a further more detailed embodiment, the bearing has an actuate shaped surface interfacing with a planar bearing seat surface. In still a further more detailed embodiment, the fulcrum is adjacent to the ink inlet.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross-sectional, schematic, first stage representation of an exemplary embodiment of the present invention;
FIG. 2
is a cross-sectional, schematic, second stage representation of the exemplary embodiment of
FIG. 1
;
FIG. 3
is a cross-sectional, schematic, third stage representation of the exemplary embodiment of
FIGS. 1 and 2
;
FIG. 4
is an elevational, cross-sectional view of an exemplary embodiment of the present invention;
FIG. 5
is perspective, cross-sectional view of the exemplary embodiment of
FIG. 4
;
FIG. 6
is an overhead perspective view of a lever component of the embodiments of
FIGS. 4 and 5
;
FIG. 7
is an underneath perspective view of the lever component of
FIG. 6
;
FIG. 8
is an elevational, cross-sectional view of the embodiment similar to the embodiments of
FIGS. 4-7
mounted within an ink cartridge;
FIG. 9
is an elevated perspective, cross-sectional view of the exemplary embodiment of
FIG. 10
;
FIG. 10
is a cross-sectional view of an additional exemplary embodiment of the present invention;
FIG. 11
is an isolated overhead view of the ink outlet of the embodiments of
FIGS. 9 and 10
;
FIG. 12
is an isolated cross-sectional view of the ink outlet of the embodiments of
FIGS. 9 and 10
;
FIG. 13
is an elevational, cross-sectional view of the embodiment similar to the embodiments of
FIGS. 9 and 10
mounted horizontally within an ink cartridge;
FIG. 14
is an elevational, cross-sectional view of the embodiment similar to the embodiments of
FIGS. 9 and 10
mounted vertically within an ink cartridge;
FIG. 15
is a perspective, exploded view of another embodiment of the present invention representing an ink cartridge with multiple ink reservoirs and respective ink regulators according to the present invention provided therein;
FIG. 16
is a perspective overhead view of another embodiment of the present invention representing an ink cartridge with multiple ink reservoirs and respective ink regulators according to the present invention provided therein; and
FIG. 17
is an elevational, cross-sectional view of the embodiment of FIG.
16
.
DETAILED DESCRIPTION
The exemplary embodiments of the present invention are described and illustrated below as ink regulators and/or ink cartridges (reservoirs) utilizing such regulators, for regulating the volumetric flow of ink between an ink source and a point of expulsion, generally encompassing a print head. The various orientational, positional, and reference terms used to describe the elements of the inventions are therefore used according to this frame of reference. Further, the use of letters and symbols in conjunction with reference numerals denote analogous structures and functionality of the base reference numeral. Of course, it will be apparent to those of ordinary skill in the art that the preferred embodiments may also be used in combination with one or more components to produce a functional ink cartridge for an inkjet printer. In such a case, the orientational or positional terms may be different. However, for clarity and precision, only a single orientational or positional reference will be utilized; and, therefore it will be understood that the positional and orientational terms used to describe the elements of the exemplary embodiments of the present invention are only used to describe the elements in relation to one another. For example, the regulator of the exemplary embodiments may be submerged within an ink reservoir and positioned such that the lengthwise portion is aligned vertically therein, thus effectively requiring like manipulation with respect to the orientational explanations.
As shown in
FIGS. 1-3
, an ink regulator
10
for regulating the volumetric flow of ink traveling between an ink source
12
and a print head in fluid communication with an ink outlet
14
generally includes: a pressurized chamber
16
including an ink inlet
18
in fluid communication with the ink source
12
, the ink outlet
14
in fluid communication with the print head, and at least one flexible wall
22
or diaphragm; and a lever
24
, pivoting on a fulcrum
20
, including a flexible arm
26
having a spoon-shaped end
28
extending along a portion of the flexible wall
22
(diaphragm) and an opposing arm
30
operatively coupled to an inlet sealing member
32
. The lever
24
is pivotable between a first position as shown in
FIG. 1
, in which the sealing member
32
presses against the ink inlet
18
to close the ink inlet, to a second position as shown in
FIG. 3
, in which the sealing member
32
is moved away from the ink inlet
18
to open the ink inlet and allow fluid communication between the ink inlet and the pressurized chamber
16
. The lever
24
is biased (as shown by arrow A) to be in the first position, closing the ink inlet
18
. The pressure within the pressurized chamber is set to be lower than that of the ambient pressure (shown by arrow B) outside of the flexible wall/diaphragm
22
; and, as long as the ink inlet
18
remains closed, the pressure differential along the flexible wall will increase as ink flows through the outlet
14
to the print head. Consequently, a lower pressure differential across the flexible wall
22
causes the flexible wall
22
to expand/inflate and, thereby, pull the spoon-shaped end
28
of the flexible arm
26
contacting the flexible wall to pivot the lever
24
to the first position (closing the ink inlet in FIG.
1
). Actually, the bias (represented by arrow A) causes the lever
24
to pivot when the flexible wall
22
no longer applies sufficient force against the spoon-shaped end
28
of the flexible arm to overcome the bias. A higher pressure differential across the flexible wall
22
causes the flexible wall to contract/deflate and, thereby, actuate the flexible arm contacting the flexible wall
22
so as to pivot the lever
24
to the second position (opening the ink inlet
18
as shown in FIG.
3
), overcoming the bias (represented by arrow A). Also, when the pressure differential increases from the lower pressure differential to the higher pressure differential across the flexible wall
22
(resulting from ink flowing from the chamber
16
to the print head), the flexible wall
22
is caused to begin contracting/deflating and, thereby, actuate and flex the flexible arm
26
without causing the lever
24
to substantially pivot (as shown in FIG.
2
).
The regulator will typically function in a cyclical process as shown in
FIGS. 1-3
. Referencing
FIG. 1
, the regulator is mounted to an ink outlet
14
, such as a print head, and the inlet
18
is in fluid communication with an ink source
12
. Generally, the contents of the chamber
16
will be under a lower pressure than the surrounding atmosphere (represented by Arrow B), thereby creating “back pressure” within the chamber
16
. At this stage, the chamber
16
contains a certain amount of ink therein and the closed seal
32
prohibits ink from entering the chamber from the ink source
12
, as the pressure differential across the flexible wall
22
is relatively low. The flexible wall
22
is in contact with the spoon-shaped end
28
of the lever's flexible aim
28
. The lever is also biased (by a spring, for example) in this closed orientation.
Referencing
FIG. 2
, as ink continues to leave the chamber
16
, the pressure within the chamber
16
begins to decrease, which, in turn, causes the pressure differential across the flexible wall
22
to increase (assuming the pressure on the outside of the flexible wall remains relatively constant). This increasing pressure differential causes the flexible wall
22
to begin to contract/deflate. Because the flexible wall
22
is in contact with the spoon-shaped end portion
28
of the lever's flexible arm
26
, this contraction/deflation of the flexible wall causes the lever to flex, but not substantially pivot since the force of the flexible wall against the lever's flexible arm is not yet strong enough to overcome the bias.
Referencing
FIG. 3
, as ink continues to leave the chamber
16
and further increase the pressure differential across the flexible wall, the flexible wall
22
will contract/deflate to an extent that the inward pressure of the flexible wall against the flexible arm
26
of the lever overcomes the static force of the bias to pivot the lever
24
to its open position, thereby releasing the seal between the seal
32
and the ink inlet
18
.
Thus, the bias and the properties of the lever enable the lever
24
to flex first, and thereafter when the amount of force applied to the lever is greater than the force applied by the spring to bias the lever closed, the lever pivots. This relatively high pressure differential between the contents of the chamber and the environment causes ink from the higher pressure ink source to pour into the chamber. The incoming volume of ink reduces the pressure differential such that the flexible wall expands outward from the chamber (inflating) to arrive again at the position as shown in
FIG. 1
, thus starting the three part cycle over again.
FIGS. 4-7
illustrate an exemplary embodiment of the regulator
10
′ for regulating volumetric flow of ink traveling between an ink source (not shown) and a print head in fluid communication with an ink outlet
14
′. As introduced above, the regulator
10
′ includes a pressurized chamber
16
′ having an ink inlet
18
′ in fluid communication with the ink source and the ink outlet
14
′, which is in fluid communication with the print head (not shown). In this exemplary embodiment, the pressurized chamber
16
′ is formed by an injection molded base
34
having a floor
36
, a pair of elongated opposing side walls
38
and a pair of elongated opposing end walls
40
which collectively form a generally rectangular top opening bounded by the four interior walls. The elongated side walls each include a pair of vertical ribs forming a bearing seat for receiving bearing pins
42
of the lever
24
′, thereby forming the lever's fulcrum
20
′.
The floor
36
includes a generally cylindrical orifice forming the ink outlet
14
′ and a generally oval orifice
44
over which the flexible wall/diaphragm
22
′ is mounted. A pair of perpendicular, diametrical spring supports
46
(forming a cross) are positioned within the cylindrical channel of the outlet
14
′, where the central hub of the cross formed by the pair of diametrical supports
46
extends upwardly to form an axial projection for seating a spring
50
thereabout. Circumferentially arranges gaps
49
between the supports
46
provide fluid communication between the chamber
16
′ and the ink outlet
14
′ (see FIG.
5
). The spring
50
provides the bias represented by arrow A in
FIGS. 1-3
.
The lever
24
′ includes a strip of spring metal
52
with a spoon-shaped first end
28
′ and an encapsulated second end
54
. The spoon-shaped end
28
′ is angled with respect to the encapsulated end
54
. The encapsulated end
54
is encapsulated by a block
56
of plastic material where the block
56
includes the pair of bearing pins
42
extending axially outward along the pivot axis of the fulcrum
20
′; and also includes a counter-bored channel
58
extending therethrough for seating an elastomeric sealing plug
60
therein. The strip
52
of spring metal also includes a hole
62
extending therethrough that is concentric with the channel
58
in the encapsulated body
56
for accommodating the sealing plug
60
. The plug
60
includes a disk-shaped head
64
and an axial stem
66
extending downwardly therefrom. As can be seen in
FIG. 4
, the plug
60
is axially aligned with the spring
50
, and the encapsulated body
56
is seated within the spring
50
by a dome-shaped, concentric projection
68
extending downwardly from the encapsulated body. The spring metal construction of the strip
52
provides the flexibility of the arm
26
′ described above with respect to
FIGS. 1-3
.
The base
34
is capped by a plastic lid
70
having a generally rectangular shape matching that of the rectangular opening formed by the elongated side walls
38
and end walls
40
of the base
34
. The lid
70
has a generally planar top surface with the exception of a generally conical channel extending there through to form the inlet
18
′ of the pressurized chamber
16
′. The lower side of the lid
70
includes a series of bases or projections
72
for registering the lid on the base
34
. In an alternate embodiment, the lid may include a cylindrical tube (coupled to element
71
of
FIG. 8
, for example), aligned with the inlet
18
′ forming a hose coupling. The lid
70
, of course, is mounted to the body
34
to seal the chamber
16
′ there within.
The flexible wall
22
′ is preferably a thin polymer film attached around the outer edges of the oval opening
44
extending through the floor
36
of the base
34
. The area of the film
22
′ positioned within the opening
44
is larger than the area of the opening
44
so that the flexible film
22
′ can expand outwardly and contract inwardly with the changes of the pressure differential between the pressurized chamber
16
′ and the outer surface
74
of the film (where the pressure on the outer surface
74
of the film may be ambient pressure, pressure of ink within and ink reservoir, etc.).
Assembly of the regulator includes providing the base
34
; positioning the spring
50
on the seat
48
; positioning the pins
42
of the lever
24
′ within the bearing seats formed in the elongated side walls
38
of the base
34
and seating the dome
68
on the spring
50
such that the spoon-shaped end
28
′ of the lever contacts the inner surface
76
of the flexible wall
22
′; and mounting the lid
70
thereover so as to seal the pressurized chamber
16
therein. Operation of the regulator
10
′ is as described above with respect to the regulator
10
of
FIGS. 1-3
.
As shown in
FIG. 8
, the regulator
10
′ may be mounted within an ink reservoir
78
of an ink cartridge
80
, having a print head
82
. The outlet
14
′ of the regulator
10
′ is coupled to an inlet
84
of the ink filter cap
122
(that is operatively coupled to the print head
82
) by an adapter
85
. The adapter
85
is mounted to the regulator outlet
14
′ and circumscribes a seal
87
that provides a fluidic seal between the adapter
85
and the ink filter cap
122
. An collar
86
circumscribes the adapter
85
for additional support. A siphon hose (not shown) provides fluid communication between the lowest point
88
of the reservoir
78
and the hose coupling
71
, which is in fluid communication with the regulator's ink inlet
18
′. In this embodiment, pressure provided against the outer surface
74
of the flexible wall
22
′ will be the pressure within the ink reservoir
78
.
FIGS. 9-12
illustrate another exemplary embodiment of the regulator
10
A for regulating the volumetric flow of ink traveling between an ink source (not shown) and a print head (not shown) in fluid communication with an ink outlet
14
A. The regulator
10
A includes a majority of the same structural features of the regulator
10
′ (See
FIGS. 4 and 5
) discussed above, and may utilize the same lever mechanisms as described above (See FIGS.
6
and
7
). However, the regulator
10
A of this exemplary embodiment includes a cylindrical opening
73
in the floor
36
A in fluid communication that abuts a smaller diameter cylindrical ink outlet
14
A (smaller with respect to the cylindrical opening
73
), thereby allowing throughput of ink from the pressurized chamber
16
A by way of the ink outlet
14
A.
The cylindrical opening
73
in the floor
36
A includes a spring seat
75
for seating the lower portion of the spring
50
A therein. The spring seat
75
includes a plurality of protrusions extending outward from the walls of the cylindrical opening
73
that provide substantially L-shaped ribs
77
(four in this exemplary embodiment) in elevational cross-section. The vertical portion of the L-shaped ribs
77
tapers and transitions inward toward the interior walls to provide a relatively smooth transition between the rib surfaces potentially contacting the spring
50
A and the interior walls of the cylindrical opening
73
. The horizontal portion of the L-shaped rib
77
provides a plateau upon which the spring
50
A is seated thereon. The tapered portions of the ribs
77
work in conjunction to provide a conical guide for aligning the spring
50
a
within the spring seat
75
.
In assembling this exemplary embodiment, the tapered portion of the L-shaped ribs
77
effectively provides a conical guide for aligning the spring
50
A within the spring seat
75
. In other words, the L-shaped ribs
77
within the cylindrical opening
73
provides ease in assembly as the spring
50
A is placed longitudinally approximate the throughput
79
and becomes gravitationally vertically aligned within the opening
73
, thereby reducing the level of precision necessary to assembly this exemplary embodiment.
As shown in
FIGS. 13-14
, the regulator
10
A may be mounted within an ink reservoir
78
A of an ink cartridge
80
A operatively coupled to a print head
82
A. The ink outlet
14
A of the regulator
10
A includes an annular groove
89
on the outer circumferential surface of the outlet stern that is adapted to mate with a corresponding annular protrusion
91
of an adapter
93
to provide a snap fit therebetween. The adaptor
93
extends from, or is coupled to the inlet of the print head
82
. The above-described coupling mechanism can thus be used to orient the regulator
10
A in a generally vertical manner as shown in
FIG. 14
, or a generally horizontal manner as shown in FIG.
13
. To ensure a sealed fluidic interface is provided between the outlet
14
A of the regulator
10
A and the adapter
93
, an O-ring
95
or analogous seal is circumferentially arranged about the ink outlet
14
A radially between the outlet stem and the adaptor
93
. Upon snapping the regulator
10
A into place so that the annular groove
89
receives the protrusion
91
of the adapter
93
, the O-ring
95
is compressed, resulting in a radial compression seal between the adapter
93
and the ink outlet
14
A.
A siphon hose (not shown) may be operatively coupled to the ink inlet
18
A to by way of the hose coupling
71
A to provide fluid communication between a lower ink accumulation point
88
A of the reservoir
78
A and the ink inlet
18
A. While the above exemplary embodiments have been described and shown where the coupling adapter
93
is integrated into, and functions concurrently as a filter cap for the print head
82
, it is also within the scope and spirit of the present invention to provide an adapter that is operatively mounted in series between a filter cap of the print head
82
and the regulator
10
A.
As shown in
FIG. 15
, another second exemplary embodiment of the present invention representing a multi-color print head assembly
90
with three ink sources (not shown) and three respective ink regulators
10
″ for controlling the volumetric flow of colored inks from the respective ink sources to the tri-color print head
92
. Generally, a simple three-color print head will include ink sources comprising yellow colored ink, cyan colored ink, and magenta colored ink. However, it is within the scope of the present invention to provide multi-color print head assemblies having two or more ink sources, as well as single color print head assemblies. Thus, this exemplary embodiment provides a compact regulation system accommodating multi-color printing applications. For purposes of brevity, reference is had to the previous exemplary embodiments as to the general functionality of the individual regulators
10
″.
The print head assembly
90
includes a multi-chamber body
34
″, a top lid
70
″ having three inlet hose couplings
71
″ for providing fluid communication with the three ink sources, three levers
24
″, three springs
50
″, a seal
92
, three filters
94
, a nose
96
, and the tricolor print head heater chip assembly
101
. Each chamber
16
″ is generally analogous to the chamber described in the previous exemplary embodiments.
FIG. 15
provides a view of the vertical ribs
98
provided on the elongated side walls
38
″, and optionally on the underneath side of the top lid
70
″, providing the bearing seats for the bearing pins
42
″ of the levers
24
″ as discussed above with respect to the above exemplary embodiments. Further, each chamber includes internal bearing seats, an opening accommodating inward movement of the flexible wall (not shown), and a spring guide (not shown). Likewise, each lever
24
″ is analogous to that described in the above exemplary embodiment.
Referencing
FIGS. 16 and 17
, three of the regulators
10
′ are housed within respective ink reservoirs
100
,
102
and
104
contained within a multi-color printer ink cartridge
106
. The regulators
10
′ are generally oriented in a vertical fashion with the ink inlets
18
′ and ink outlets
14
′ positioned toward the bottom of the respective reservoirs, and the spoon-shaped ends
28
′ of the levers
24
′ directed upwards. Each of the regulators
10
′ includes an adapter
107
that mounts the outlet
14
′ of the regulator to the filter cap
122
. The ink filter cap
122
is operatively coupled to the print head
108
. Each adapter
107
circumscribes a seal
109
that maintains a sealed fluidic interface between the outlet
14
′ of the regulator and the inlet
84
of the ink filter cap
122
. In such an arrangement it is possible for each of the three respective regulators to function independently of one another, and thus, the fluid level within one of the respective reservoirs has no bearing upon the functional nature of the regulators in the opposing reservoirs. It should also be noted that each of the regulators may include a siphon/hose providing fluid communication between the fluid inlet
18
′ and the floor of the respective fluid reservoirs, such that the lower pressure within the fluid regulator is able to draw in almost all of the fluid within a respective chamber. Each of the respective reservoirs provides an individual fluid conduit to the multi-color print head
108
while functioning independent of whether or not the respective regulator is submerged completely within ink, partially submerged within ink or completely surrounded by gas. It should also be understood that this exemplary embodiment could easily be adapted to provide two or more individual fluid reservoirs by simply isolating each respective reservoir having its own individual fluid regulator contained therein and operatively coupled to the regulator such that the ink flow from the reservoir must be in series or must go through the regulator before exiting the respective reservoir.
Following from the above description and invention summaries, it should be apparent to those of ordinary skill in the art that, while the methods and apparatuses herein described constitute exemplary embodiments of the present invention, the inventions contained herein are not limited to these precise embodiments and that changes may be made to them without departing from the scope of the inventions as defined by the claims. Additionally, it is to be understood that the invention is defined by the claims and it is not intended that any limitations or elements describing the exemplary embodiments set forth herein are to be incorporated into the meanings of the claims unless such limitations or elements are explicitly listed in the claims. Likewise, it is to be understood that it is not necessary to meet any or all of the identified advantages or objects of the invention disclosed herein in order to fall within the scope of any claims, since the invention is defined by the claims and since inherent and/or unforeseen advantages of the present invention may exist even though they may not have been explicitly discussed herein.
Claims
- 1. A regulator adapted to regulate the throughput of an ink between an ink source and a print head, the regulator comprising;a pressurized chamber including an ink inlet adapted to provide fluid communication with an ink source, an ink outlet adapted to provide fluid communication with a print head, and at least one exterior flexible wall having an inner surface facing an interior of the pressurized-chamber; and a lever pivotable on a fulcrum including a first arm extending approximate a portion of the exterior flexible wall and an opposing arm operatively coupled to a seal, the seal closing the ink inlet when the lever is in a first position and to opening the ink inlet to allow fluid communication between the ink inlet and the pressurized chamber when the lever is pivoted to a second position, the lever being biased to the first position; wherein a higher pressure differential across the exterior flexible wall causes the exterior flexible wall to apply force against the first arm, overcoming the bias, to thereby pivot the lever to the second position, opening the ink inlet; wherein a lower pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall against the first arm to weaken, succumbing to the bias, which pivots the lever back to the first position, closing the ink inlet; wherein a pressure change from the lower pressure differential to the higher pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall to increase without overcoming the bias; and wherein the ink inlet and the ink outlet positioned on the same side of the fulcrum as the opposing arm of the lever.
- 2. The regulator of claim 1, wherein the ink inlet and ink outlet are located on opposing faces of the pressurized chamber.
- 3. The regulator of claim 2, wherein the ink inlet and the ink outlet are substantially axially aligned with each other.
- 4. The regulator of claim 1, wherein the ink inlet and the ink outlet are located on adjacent faces of the pressurized chamber.
- 5. The regulator of claim 1, wherein the fulcrum is between the ink inlet and the flexible wall.
- 6. The regulator of claim 1, further comprising at least one of an ink conduit and an ink reservoir containing ink therein in fluid communication with the ink inlet.
- 7. A method of reducing the size of an ink flow regulator in fluid communication between an ink source and a print head nozzle, the method comprising the steps of:positioning an ink inlet of an ink flow regulator and an ink outlet of the ink flow regulator in a first section of the ink flow regulator; and orienting a pivotable lever, having a first leg coupled to an inlet closure of the regulator and a second leg oriented within a second section and operatively coupled to an actuating wall of the regulator such that a fulcrum of the pivotable lever separates the first section from the second section of the ink flow regulator, wherein the first section and the second section are in fluid communication with one another.
- 8. The method of claim 7, further comprising the step of orienting the ink inlet and the ink outlet to oppose one another.
- 9. A regulator adapted to regulate the throughput of an ink between an ink source and a print head, the regulator comprising:a pressurized chamber including an ink inlet adapted to provide fluid communication with an ink source, an ink outlet adapted to provide fluid communication with a print head, a bearing sent and at last one exterior flexible wall having an inner surface facing an interior of the pressurized chamber; and a lever including a first arm extending along a portion of the exterior flexible wall, an opposing arm, and a fulcrum bearing adapted to be received within the baring seat of the pressurized chamber, the opposing arm operatively coupled to a seal to close the ink inlet when the lever is in a first position and open the ink inlet allowing fluid communication between the ink inlet and the pressurized chamber when the lever is pivoted to a second position, the lever being biased to the first position; wherein a higher pressure differential across the exterior flexible wall causes the exterior flexible wall to apply force against the first arm contacting the exterior flexible wall, overcoming the bias, to thereby pivot the lever to the second position opening the ink inlet; wherein a lower pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall against the first arm contacting the exterior flexible wall to weaken, succumbing to the bias, which pivots the lever back to the first position, closing the ink inlet; and wherein a pressure change from the lower pressure differential to the higher pressure differential across the exterior flexible wall causes the force applied by the exterior flexible wall to increase without overcoming the bias.
- 10. The regulator of claim 9, wherein the fulcrum bearing comprises polyethylene.
- 11. The regulator of claim 9, wherein the bearing seat comprises acetyl.
- 12. The regulator of claim 9, wherein the fulcrum bearing has an actuate shape surface interfacing with a planar bearing seat surface.
- 13. The method of claim 9, wherein the fulcrum bearing is operatively coupled to an encapsulated end of the opposing arm.
- 14. A method of regulating the flow of ink between an ink source and a print head nozzle, the method comprising the steps of:positioning an ink flow regulator adapted to regulate the throughput of an ink between an ink source and a print head nozzle, the regulator comprising: a pressurized chamber including an ink inlet providing fluid communication with the ink source, an ink outlet providing fluid communication with a print head nozzle, and at least one flexible wall having an inner surface facing an interior of the pressurized chamber; and a lever including a first arm extending in proximity to a portion of the flexible wall and an opposing arm operatively coupled to a biased valve selectively restricting fluid communication between the ink source and the print head nozzle; wherein ink enters the ink inlet and leaves the ink outlet in a unitary direction; actuating the flexible wall in response to a pressure differential across the flexible wall, wherein an interior surface of the flexible wall is in fluid communication with ink within the press chamber and an exterior surface of the flexible wall is in fluid communication with a fluid; pivoting the lever in response to the actuation of the flexible film, so as to overcome the bias and open the valve in a first pivoting direction, and succumbing to the bias and close the valve in a second pivoting direction, opposite the first pivoting direction; and opening and closing the valve in response to the pivoting of the lever.
- 15. The method of claim 14, wherein the pivoting step includes providing a bearing and bearing seat that interact to provide free pivoting of the lever about a fulcrun.
- 16. The method of claim 15, wherein the bearing comprises polyethylene.
- 17. The method of claim 15, wherein the bearing has an comprises acetal.
- 18. The method of claim 15, wherein the bearing has shaped surface interfacing with a planar bearing seat surface.
- 19. The method of claim 15, wherein the fulcrum is adjacent to the ink inlet.
US Referenced Citations (122)