Ink supply tank for a printer

Information

  • Patent Grant
  • 6176629
  • Patent Number
    6,176,629
  • Date Filed
    Friday, January 24, 1997
    27 years ago
  • Date Issued
    Tuesday, January 23, 2001
    23 years ago
Abstract
An ink-supplied wire dot matrix printer head for actuating wires with ink attached to tip ends thereof into contact with a sheet of print paper to transfer ink to the sheet, thereby forming ink dots thereon. The ink-supplied wire dot matrix printer head includes a wire guide member having a wire guide hole for guiding the tip end of the wire, and an ink tank containing an ink absorbing body therein and having an ink supply port in which a portion of the wire guide member is inserted. The wire guide member has a capillary ink path communicating with a side of the wire and supplied with ink from the ink absorbing body.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an Ink Supply Tank for a Printer having wires supplied with ink at their distal end faces and movable against a sheet of print paper for transferring ink to the sheet in the form of dots to record a character, a figure, a graphic image or the like on the sheet, and more particularly to the construction of an ink tank and an ink guide for guiding ink from the ink tank to the distal end faces of the wires.




2. Description of the Prior Art




Ink supply systems for a wire dot matrix printer are known in which no ink ribbon is used, but ink is supplied from an ink tank to the distal ends of the wire and transferred from the wires directly to a sheet of print paper. One known ink guide mechanism for such an ink supply system is disclosed in U.S. Pat. No. 4,194,846 and comprises a porous member capable of absorbing ink and for guiding ink from an ink tank with wires contacting the porous member. The porous member contains fine holes with their sizes or diameters varying within a certain range, with the result that the ink absorbing capability varies from porous member to porous member, and excessive and insufficient quantities of ink tend to be supplied to the distal ends of the wire. The quantities of ink retained in the vicinity of the distal ends of the wires widely differ, and the porous member is liable to vary in dimensions or be deformed due to coaction with the sides of the wires. Therefore, the ink densities of formed dots are irregular.




U.S. Pat. No. 4,456,393 discloses another ink supply mechanism in which ink is supplied by a pump from an ink tank to the distal ends of wires. The disclosed ink supply mechanism is disadvantageous in that the construction of a joint between the pump and a printer head is complex and results in an increased cost. It is necessary to provide a sufficient seal so as to gain sufficient pump performance and a large-torque drive source is required for driving the pump. The ink supply mechanism is rendered particularly complex for a multicolor printer head, and such ink supply mechanism is not suitable for use with a small-size printer head.




Accordingly, it is desirable to provide an ink-supplied wire dot matrix printer head which overcomes these problems associated with the prior art.




SUMMARY OF THE INVENTION




Generally speaking, in accordance with the present invention, there is provided an ink-supplied wire dot matrix printer head having actuating wires. Ink is supplied to the distal ends of the wires which are displaced into contact with a sheet of print paper to transfer the ink to the sheet and thereby form ink dots thereon. The ink-supplied wire dot matrix printer head includes a wire guide member having a wire guide hole for guiding the distal end of the wire, an ink tank containing an ink absorbing body therein and, an ink supply port in which a portion of the wire guide member is inserted. The wire guide member has a capillary ink path communicating with a side of the wire and supplied with ink from the ink absorbing body.




It is an object of the present invention to provide a high-quality and highly reliable ink-supplied wire dot matrix printer head of a simple construction which is capable of supplying a stable and appropriate quantity of ink from an ink tank to the distal ends of wires and is less subject to the influence of environmental changes such as temperature variations.




Still other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which preferred embodiments of the present invention are shown by way of illustrative example and not in a limiting sense.




The invention accordingly comprises the several steps and relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangement of parts which are adopted to effect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.











BRIEF DESCRIPTION OF THE DRAWINGS




For a full understanding of the invention, reference is had to the following description taken in connection with the accompanying drawings, in which:





FIG. 1

is an exploded perspective view of a printer head according to an embodiment of the present invention;





FIG. 2

is a vertical cross-sectional view of the printer head shown in

FIG. 1

;





FIG. 3

is an exploded perspective view of an ink guide according to the present invention;





FIG. 4

is a perspective view, partly cut away, of an ink tank according to the present invention;





FIG. 5

is a side elevational view showing the manner in which said ink tank is mounted in place;





FIG. 6

is a vertical cross-sectional view of an ink guide according to another embodiment of the present invention;





FIG. 7

is an exploded perspective view of an ink guide according to still another embodiment of the present invention;





FIG. 8

is an exploded perspective view of an ink tank according to a still further embodiment of the present invention;





FIG. 9

is a perspective view, partly broken away, of a one embodiment of the ink tank in accordance with the invention;





FIG. 10

is a schematic view illustrative of the manner in which air trapped in the ink tank of

FIG. 9

is expanded; and





FIG. 11

is a schematic view of an arrangement of wires according to the present invention used with a seven-color printer.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




A printer head according to the present invention is used in four-color printer plotter and a color image printer and has four-color ink systems and wires corresponding respectively to four ink colors. The four-color printer plotter employs black, red, green, and blue inks, and moves the head or a sheet of print paper or both and then projects a wire corresponding to a desired one of the colors against the print paper at a prescribed position thereon to form an ink dot. Desired characters and figures can thus be recorded by repeating the above cycle. In a color image printer using inks of four colors, that is, black, red, green, and blue, a sheet of print paper is scanned by a printer head in a direction perpendicular to the direction of feed of the print paper to form one-dot line in one scanning stoke, and the print paper is fed along by line pitches to record images. In seven-color printers, inks of four colors, that is, black, yellow, magenta, and cyan are used, and the colors of red, green, and blue are formed on a sheet of print paper by superposing inks of two out of the three desired colors other than black, thereby recording color images of seven colors.




The construction of a seven-color printer is schematically shown in

FIG. 11. A

printer head


70


is movable back and forth in the direction of the arrow X, and a sheet of print paper


71


is fed along successively by one line pitch in the direction of the arrow Y. An array of wire positions


72


,


73


,


74


,


75


on the printer head


70


extends along a straight line inclined at an angle with respect to the scanning directions X, the wire positions being spaced in the direction Y at a pitch of L sin θ. Yellow-ink, magenta-ink, cyan-ink, and black-ink wires are located in the positions


72


,


73


,


74


, and


75


, respectively, to effect color-image printing free from undesired color mixing. Since a dot of one color is put on a dot of another color for mixed color formation, seven-color image printers are generally liable to suffer from unwanted color mixing because the ink of the former color is applied to the wire carrying the ink of the later color. According to the printer construction of

FIG. 11

, the ink of yellow which is most susceptible to the influence of the inks of the other colors is first applied to the print paper to prevent the inks of the other colors from being attached to the tip end of the wire carrying the yellow ink, thus avoiding the mixture of the yellow ink with the inks of the other colors. Also as seen in

FIG. 11

, angle Θ is an angle selected to permit adjacent wire positions to be partially out of registration with each other in a direction normal to the direction of printer head displacement (scanning) relative to paper


71


(direction of arrows X).




The present invention is concerned primarily with the printer head, and no further detailed description of the overall printer construction will be given.





FIG. 1

is an exploded perspective view of a printer head, and

FIG. 2

is a vertical cross-sectional view of the printer head constructed in accordance with the invention. An ink tank, shown generally as


2


, is detachably mounted by a holder


70


on top of a printer head body


1


. The ink tank


2


is of a double construction composed of a first ink tank


2




b


for holding black ink and a second ink tank


2




a


which is divided into three sections for color inks. The inks are impregnated in ink-impregnated members


60


of a porous material which are enclosed in the ink tank


2


.




For each ink, the printer head body


1


has in its front portion an ink supply guide


12


, shown in

FIG. 2

, having ink guide grooves


12




b


with ends leading to the ink-impregnated member


60


and a wire guide


13


having a wire guide hole


13




a


in which a wire


11


is partly disposed. The ink supply guide


12


and the wire guide


13


jointly form an ink path from the ink tank


2


to the distal or tip end of the wire


11


. The illustrated printer head is constructed for use in a four-color printer plotter or a four-color image printer, and there are employed four wires corresponding respectively to the four colors.




A wire driver unit for each wire


11


includes a magnetic circuit comprising a yoke


18


having a coil core


16


around which a coil


17


is wound, a yoke plate


19


, and a plunger


15


. Coil


17


is energized by a signal from print control


25


, shown schematically in

FIG. 2

, permitting control over the time and sequence of the driving of each wire


11


. Movement of the plunger


15


is transmitted through a clapper


14


to the wire


11


. The wire driver unit is covered with a cover


21


which limits the stroke of the clapper


14


. In a standby position, the tip end of the wire is located back from a distal end surface of the wire guide


13


, and the wire length is selected such that an ink meniscus formed in a front portion of the wire guide hole


13




a


covers the tip end of the wire.




An ink guide assembly, which comprises the ink supply guide


12


and the wire guide


13


, will be described in greater detail with reference to FIG.


3


.




The ink supply guide


12


has axial ink guide grooves


12




b


leading to the ink-impregnated member


60


. Each of the ink guide grooves


12




b


has a width and a depth selected such that ink will be supplied continuously from the ink tank


2


as described later on. The ink supply guide


12


has on a front surface a circular groove


12




a


connected to the ink guide grooves


12




b


through an inner portion


12




c


(FIG.


2


). An end of wire guide


13


is placed in the circular groove


12




a,


defining gaps indicated at A, B (FIG.


2


). There is only a small gap between the wire


11


and the peripheral surface defining the wire guide hole


13


A in the wire guide


13


. The ink is guided by capillary action from the ink tank


2


through the ink guide grooves


12




b


in the ink supply guide


12


, and then through the gaps A, B between the ink supply guide


12


and the wire guide


13


to the tip end of the wire


11


.




Any excessive ink on the front surface of the wire guide


13


is drawn under capillary attraction into cross-sectionally V-shaped collection grooves


13




b


defined in the front and side surfaces of the wire guide


13


and returned into the tank supply guide


12


without smearing the print paper.




The ink tank


2


will now be described in detail with reference to FIG.


4


.




The ink tank


2


, or each ink tank


2




a,




2




b,


comprises a tank body


40


, two ink-impregnated members


61


,


62


of a porous material placed in the space in the ink tank body


40


, and a lid


50


. Ink impregnated members are impregnated with ink under low atmospheric pressure ranging from 5 to 10 mmHg, so that air remaining in the porous ink-impregnated members will be reduced as much as possible to increase the amount of impregnated ink. The ink tank body


40


has a bottom


40




a


including a front ink supply port


41


and a front wall air hole


42


defined in a stepped portion thereof. The ink supply guide


12


projecting from the printer head body has an arm


12




d


inserted in the ink supply port


41


. The bottom


40




a


of the ink tank body has in its raised surface a plurality of slots


45




a,




45




b,




45




c


communicating with the ink supply port


41


in confronting relation to the ink supply grooves


12




b


defined in the arm


12




d


of the ink supply guide


12


. Although not shown, the slots


45




a,




45




b


are joined together to form a single slot, which together with the slot


45




c


guides the ink into the ink supply grooves


12




b.


When arm


12




d


of ink supply guide


12


is inserted in ink supply port


41


, it fills the port


41


as shown in FIG.


2


and the periphery of grooves


12




b


adjacent the ink absorbing member


62


actually defines the ink supply port. The ink tank body


40


also has a side wall


40




c


having on its inner wall a plurality of vertical ridges


47


having lower ends held against the bottom


40




a


and upper ends kept out of contact with the lid


50


. The ink tank body


40


further has a front partition


48


disposed behind the air hole


42


and in front of the ink supply port


41


and having one end joined to the side wall


40




c.


The tank lid


50


has on a lower surface thereof a plurality of longitudinal ridges


51


.




The space or volume defined by the bottom


40




a,


the side wall


40




c,


the partition


48


, and the lid


50


of the tank body


40


accommodates therein the two porous members


61


,


62


as double layers. Porous members


61


and


62


are held in contact only by the raised surface


44


of the bottom


40




a,


the vertical ridges


47


of the side wall


40




c,


the partition


48


, and the ridges


51


of the lid


50


. Porous members


61


and


62


have different average pore sizes or diameters. The porous member


61


which has a larger average pore diameter is placed on top of the other porous member


62


.




In the ink guide assembly and the ink tank thus constructed, the capillary attraction is successively greater along the ink path, that is, from the porous member


61


having the larger average pore size to the porous member


62


having a smaller average pore size, to the ink guide slots


45


defined in the raised surface of the bottom of the ink tank body, to the ink guide grooves


12




b


defined in the ink supply guide arm


12




d,


to the gaps A,B between the ink supply guide


12


and the wire guide


13


, and to the gap between the wire guide


13


and the wire


11


. The above capillary attraction path can be achieved by selecting elements having the following dimensions:




The average pore size of porous member


61


: 0.4 mm




The average pore size of porous member


62


: 0.3 mm




The width of the ink guide slots


45


: 0.12 mm




The width of the ink guide grooves


12




b


: 0.1 mm




The gap between the ink supply guide


12


and the wire guide


13


: 0.1 mm




The gap between the surface defining the wire guide hole


13




a


and the wire


11


: 0.01 mm




A construction for removably attaching the ink tank


2


will be described with reference to

FIGS. 1 and 5

.




The head body


1


has a frame


30


including side walls extending from upper and back portions of the head body


1


and serving as a holder support


31


. The holder support


31


has a holder support hole


32


, a leaf spring


36


defined by two vertical recesses


33




a,




33




b


and having a holder attachment hole


34


, and a guide slot


35


. A holder


70


has on each of its sides a cylindrical projection


71


rotatably engaging in the holder support hole


32


in the head frame


30


and a semispherical projection


72


engaging in the holder attachment hole


34


. Each of the ink tanks


2




a,




2




b


has a side disposed closer to the holder support


31


and having a cylindrical projection


49


engaging a lower edge of the guide slot


35


.




The ink tank can be attached and detached through the above construction in the following manner:




The holder


70


is supported in the position shown in FIG.


5


and the ink tank


2


is inserted into the holder


70


in the direction of the arrow C. At this time, the ink tank


2


is not required to be accurately positioned in the holder


70


and hence can easily be inserted into the holder


70


. Then, the holder


70


is turned in the direction of the arrow D to bring the projection


49


on the side of the ink tank


2


into contact with an edge of the guide slot


35


in the head frame


30


, whereupon the ink tank


2


is positioned with respect to the head frame


30


. Now, the ink supply port


41


is positioned correctly above the arm


12




d


of the ink supply guide


12


projecting upwardly from the head body. Continued turning movement of the holder


70


causes the arm


12




d


to engage in the ink support port


41


and be inserted into the ink tank


2


. The semispherical projection


72


on the side of the holder


70


on each side of the tank holder


70


engages and spreads the leaf springs


36


apart from each other. The semi-spherical projections


72


finally engage in the attachment holes


34


in the leaf springs


36


, whereupon the leaf springs


36


return to the vertical positions to retain the holder


70


securely in position. At this time, the ink guide slots


45


on the bottom


40




a


of the ink tank


2


are disposed in confronting relation to the ink guide grooves


12




b


in the arm


12




d


of the ink supply guide


12


, thus forming the ink path from the ink tank to the printer head body. The ink tank


2


can be removed in a procedure which is a reversal of the above attachment process.




Operation will now be described.




First, printing operation of the printer head will briefly be described.




Referring to

FIG. 2

, when the coil


17


is energized by the signal from print control


25


, the plunger


15


confronting the coil core


16


is attracted. The clapper


14


to which the plunger


15


is secured moves to project the wire


11


which engages a distal end of the clapper


14


. The tip end of the wire


11


project through the ink meniscus, caries ink thereon, and hits a sheet of print paper (not shown) to transfer the ink to the printer paper. When the wire


11


is in a standby position, the tip end thereof is located inside of the end surface of the wire guide


13


so that an ink meniscus is formed in front of the tip end of the wire


11


. Accordingly, ink is attached successively to the tip end of the wire


11


as the latter is projected and retracted. The transfer of ink to the tip end of the wire, and other details of an inked-wire dot matrix printing process are described in U.S. Pat. No. 4,456,393 issued Jun. 26, 1984, which is incorporated by reference and thus will not be described here in greater detail.




Operation of the ink supply mechanism of the inked-wire dot matrix printer head according to the present invention will now be described.




For obtaining a proper dot density in inking of an ink dot matrix printing system, it is necessary to apply a continuous appropriate quantity of ink to the tip end of the wire. Therefore, the wire guide hole should have a proper dimension in the vicinity of the wire tip end and a proper amount of ink, without excess or shortage, can be supplied from the ink tank.




In the foregoing printer head construction, the ink guide path from the ink tank


2


to a position in the vicinity of the wire tip end is composed of slots, grooves, and gaps. By selecting suitable dimensions of the widths of the slots, grooves, and gaps, an amount of ink necessary for printing can be guided without an overflow under apropriate capillary attraction. Since the gap between the wire guide


13


and the ink supply guide


12


can be dimensioned to retain ink therein under capillary attraction, an appropriate quantity of ink can be supplied even when the ink supply from the ink supply grooves


12




a


suffers an ink shortage due to increased use of ink.




The dimensions of the ink supply grooves and gaps, the hole diameters of the porous members


61


,


62


, and the widths of the slots


45


are selected such that the capillary attraction is progressively greater along the ink path. Therefore, ink will not be interrupted in the ink path as described below.




As ink is consumed from the ink tank


2


during printing, ink flows from the porous member


62


through the ink guide grooves


12




b,


or through the slots


45


and the ink guide grooves


12




b


into the printer head body. Since the ink moves transversely across the porous member


62


at this time, the distance that the ink moves through the porous member


62


is small and no ink interruption occurs. When the ink supply in the porous member


62


is exhausted, a pressure difference develops immediately between the ink in the porous member


61


and the ink in the porous member


62


. This is due to the difference between their average hole diameters, and the same quantity of ink as consumed is supplied from the porous member


61


to the porous member


62


. No ink interruption takes place at this time since the ink moves transversely in and across the porous member


61


. The amount of ink retained in the porous member


62


thus remains substantially the same as ink is fed out. Therefore, as the printing operation progresses, the ink in the porous member


61


is first used up, and then the ink in the porous member


62


is used up.




The ink guide mechanism in the printer head body operates to the same advantage. When ink flow in the ink path is interrupted due to vibrations or the like, the blocked ink is moved forward until it mixes with a preceding mass of ink since the capillary attraction is greater in the ink path than in the ink tank. Since the capillary attraction is greater in the vicinity of the tip end of the wire than the ink path where the ink flow is blocked, ink is not retracted from the tip end of the wire. Hence, the dot density will not be rendered unstable even momentarily, so that all ink on the wire tip end can be used up.





FIG. 9

of the accompanying drawings illustrates an embodiment of the ink tank construction in accordance with the invention with an ink-impregnated member


160


such as of a porous material being enclosed in tank


140


. The illustrated ink tank construction is of a simple shape and can supply a suitable amount of ink to a printer head body under appropriate capillary attraction by the ink-impregnated member. The ink tank can be impregnated with a large quantity of ink while preventing unwanted ink outflow from an air hole


142


and an ink supply port


141


.




When ink is supplied from the ink tank of such a construction, ink in the tank remote from the ink supply port flows toward the ink supply port under a pressure difference developed between ink close to the ink supply port and ink remote therefrom as capillary attraction of the ink-impregnated member in the vicinity of the ink supply port is increased due to ink consumption. However, as can be seen in porous materials, ink-impregnated members are generally subjected to an increased resistance to ink flow and interrupted ink paths preventing a smooth ink flow as the quantity of impregnated ink is reduced. If the ink flow is blocked until a pressure differential sufficient to move ink in the ink tank is produced, then ink remote from the ink supply port remains retained and unused, resulting in a short ink supply duration.




As shown schematically in

FIG. 10

, the ink tank frequently tends to trap air pockets in the ink-impregnated member. When ambient temperature rises or atmospheric pressure is lowered under such a condition, air communicating directly with the air hole expands and is discharged out of the air hole as indicated by arrows A without applying any pressure on impregnated ink, whereas the completely trapped air is expanded as indicated by the arrows B while moving the ink surrounding it. When such air pocket reaches the ink supply port, an undesired ink outflow occurs. This causes a smear or ink spot on a sheet of print paper, or ink finds its way into a printer head mechanism, resulting in a malfunction.




With the ink tank construction of

FIG. 4

, the ink-impregnated members are supported on the ridges in the ink body, the ink-impregnated members are surrounded by a layer of air which leads to ambient air through the air hole. Since ink is impregnated under a low pressure, there is substantially no air layer or pocket enclosed by ink in the ink-impregnated members. Therefore, any expansion of air in the tank caused by a temperature rise or a reduction in atmospheric pressure is released through the air hole, so that the pressure in the tank is equalized to atmospheric pressure and does not force the ink out of the ink tank.




The ink tank of the invention is therefore free from an ink outflow due to variations in temperature and atmospheric pressure, and capable of uniformly supplying ink.




The ink tank and ink guide path for supplying ink have dimensions dependent on the accuracy of the shapes of the components. Since the components can be formed easily with high dimensional accuracy by molding, the ink tank and ink guide path are highly dimensionally accurate and can supply ink uniformly. The ink tank and ink guide path can easily be assembled as they are composed of a small number of parts. They are free from wear and deformation for a long period of use and can keep initial performance partly because of the lubrication capability of ink.





FIG. 6

shows an ink guide member


12


′ according to another embodiment of the present invention. The ink guide member


12


′ is of an integral construction comprising the ink supply guide


12


and the wire guide


13


described in the preceding embodiment. The ink guide member


12


′ has an ink guide groove


12





b


capable of guiding and holding ink for application to wire hole


12





a.


The ink guide member


12


′ operates in the same manner as described with reference to the foregoing embodiment.





FIG. 7

is an exploded perspective view of an ink guide member


12


″ according to still another embodiment of the present invention. The ink guide member


12


″ includes an ink guide porous member


12





e


disposed in the ink guide groove


12





b


and serving as an extension of the ink-impregnated members in the ink tank into the ink guide path. Operation of the ink guide member


12


″ is essentially the same as that of the previous embodiments.





FIG. 8

is an exploded perspective view of an ink tank


2


″ according to another embodiment of the present invention. The parts other than a porous member


60


″ are the same as those in the embodiment shown in FIG.


4


. The porous member


60


″ has different front and rear thicknesses so that the thicker front portion is compressed by the tank lid


50


when the porous member


60


″ is filled in the tank body


40


. Therefore, even if the porous member


60


″ has uniform hole diameters, the front portion thereof has a smaller average hole diameter with the hole diameter becoming progressively greater toward the rear portion at the time the porous member


60


″ is placed in ink tank body


40


. The porous member


60


″ is structurally equivalent to a plurality of porous sheet layers of different average hole diameters which are placed in the ink tank body


40


with the average hole diameters member


60


″. Therefore, operation of the porous member


60


″ is basically the same as that of the porous members


61


,


62


shown in FIG.


4


. Compression in the vicinity of the ink supply port or outlet is also achieved where the ink absorbing member overlies the opening (


141


) in the tank as shown in

FIGS. 9 and 10

, since arm


12




d


of ink supply guide


12


is inserted through the opening into compressing engagement with the ink absorbing member in such a construction (compare FIGS.


2


,


4


,


9


and


10


.)




While in the foregoing embodiment of

FIG. 1

the ink tank is placed above the printer head, the tank may be located below the wires to achieve a stable printing density through the ink guiding process according to the present invention.




With the present invention, ink can be uniformly supplied through a simple construction from an ink tank to the tip end of a wire, and ink is uniformly attached to the wire tip end for producing a uniform and proper ink dot density. In the printer head of the invention, ink flow will not be interrupted in an ink guide path and prevents an ink supply failure. A quantity of ink absorbed in the ink guide path is smaller than would be absorbed with a conventional arrangement in which a porous member is used to apply ink directly to the tip end of the wire. Therefore, any wasted ink which is not used for printing is of a small quantity, and all the ink in an ink tank can effectively be used for printing. When the ink tank runs short of ink, and the ink in the tank is rendered highly viscous by being dried at high temperature, or is solidified and thus failing to supply ink, a cartridge ink tank can be mounted in place so that fresh ink can immediately be supplied to the wire tip end for resuming desired printing operation.




According to the printer head of the present invention, no ink flow occurs due to variations in temperature and atmospheric pressure and a uniform ink dot density is produced. Unintentional ink flow out of the ink tank is avoided, thus avoiding smearing the print paper with the undesired ink spots. Ink will not enter the printer head mechanism, preventing malfunctioning. The cartridge ink tank can easily be detached and attached for ink replenishment.




Since the ink supply system of the invention is simple in construction, it takes up a small space. Where a multicolor printer head employs ink supply systems of the invention, the ink supply systems for different ink colors can be spaced widely so that mixing of colors can be avoided.




It will thus be seen that the objects set forth above, among those made apparent from the preceding description are efficiently attained and, since certain changes may be made in carrying out the above construction and method set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.




It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall there between.



Claims
  • 1. A dot matrix printer comprising:an ink-supply tank having a first wall and a second wall extending in a direction substantially perpendicular to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member formed of a porous material mounted within said ink-supply tank; a printing mechanism for applying ink from said ink absorbing member to effect dot matrix printing; and an ink-supply outlet formed in said first wall of said ink-supply tank at a position between the midpoint of said length of said first wall and said second wall, said ink-supply outlet engaging a portion of said ink absorbing member at least in the region of said ink absorbing member facing said ink-supply outlet, the mean pore size of said ink absorbing member in the vicinity of the region thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member other than in the region of the ink absorbing member in the vicinity of said ink-supply outlet.
  • 2. The dot matrix printer of claim 1, said ink-supply outlet occupying substantially less than the entire area of said first wall.
  • 3. The dot matrix printer of claim 2, said ink-supply outlet occupying only a minor portion of the entire area of said first wall.
  • 4. The dot matrix printer of claim 1, wherein said ink absorbing member is formed of a unitary piece of porous material.
  • 5. The dot matrix printer of claim 4, wherein said unitary piece of porous material substantially fills the ink-supply tank.
  • 6. The dot matrix printer of claim 4, wherein said unitary piece of porous material carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 7. The dot matrix printer of claim 1, wherein said ink absorbing member is formed of at least two pieces of porous material, each of said pieces of porous material abutting another of said pieces of porous material along respective surfaces thereof for the transfer of ink therebetween.
  • 8. The dot matrix printer of claim 7, wherein said ink absorbing member substantially fills the ink-supply tank.
  • 9. The dot matrix printer of claim 7, wherein said ink absorbing member carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 10. The dot matrix printer of claim 9, wherein said second wall of said ink-supply tank essentially defines one side of said ink-supply tank.
  • 11. The dot matrix printer of claim 7, wherein at least two of said pieces of porous material are of different average pore size, the average pore size of the piece of porous material engaged by said ink-supply outlet being of the smallest of the average pore sizes of the pieces of porous material.
  • 12. The dot matrix printer of claim 1, wherein said ink-supply tank includes a further wall facing said ink-supply outlet, said ink absorbing member carrying substantially all of the ink in said ink-supply tank when said ink-supply tank being filled to the designed capacity of the ink-supply tank, said ink-supply tank including an inner wall surface having projections to provide a space between said ink absorbing member and said inner wall surface.
  • 13. The dot matrix printer of claim 12, wherein said further wall of said ink-supply tank facing said ink-supply outlet is a cover bearing on said ink absorbing member when assembled to said ink-supply tank to at least in part apply a comprehensive force to effect compression of said ink absorbing member, at least a portion of said projections extending from the inner wall surface of said cover.
  • 14. The dot matrix printer of claim 13, and including means for providing ambient air to the space between said ink absorbing member and said inner wall surface of said ink-supply tank.
  • 15. The dot matrix printer of claim 1, and including ink impregnated in the absorbing member under a pressure sufficiently low to substantially eliminate air bubbles in the ink absorbing member.
  • 16. The dot matrix printer of claim 1, wherein said ink-supply outlet is shaped and dimensioned to conduct ink from said ink absorbing member to the exterior of said ink tank.
  • 17. The dot matrix printer of claim 16, wherein at least a portion of said ink supply outlet is free of porous material.
  • 18. An ink-supply tank for a dot matrix printer, comprising:an ink-supply tank having a first wall and a second wall extending in a direction substantially perpendicular to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member mounted within said ink-supply tank; and an ink-supply outlet formed in said first wall of said ink-supply tank at a position between the midpoint of said length of said first wall and said second wall, said ink-supply outlet engaging a portion of said ink absorbing member at least in the region of said ink absorbing member facing said ink-supply outlet, the mean pore size of said ink absorbing member in the region in the vicinity thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member in the region of said ink-absorbing member other than in the vicinity of said ink-supply outlet.
  • 19. The ink-supply tank of claim 18, said ink-supply outlet occupying substantially less than the entire area of said first wall.
  • 20. The ink-supply tank of claim 19, said ink-supply outlet occupying only a minor portion of the entire area of said first wall.
  • 21. The ink-supply tank of claim 18, wherein said ink absorbing member is formed of a unitary piece of porous material.
  • 22. The ink-supply tank of claim 21, wherein said unitary piece of porous material substantially fills the ink-supply tank.
  • 23. The ink-supply tank of claim 21, wherein said unitary piece of porous material carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 24. The ink-supply tank of claim 18, wherein said ink absorbing member is formed of at least two pieces of porous material, each of said pieces of porous material abutting another of said pieces of porous material along respective surfaces thereof for the transfer of ink therebetween.
  • 25. The ink-supply tank of claim 24, wherein said ink absorbing member substantially fills the ink-supply tank.
  • 26. The ink-supply tank of claim 24, wherein said ink absorbing member carries substantially all of the ink that said ink supply tank was designed to hold.
  • 27. The ink-supply tank of claim 26, wherein said second wall of said ink-supply tank essentially defines one side of said ink-supply tank.
  • 28. The ink-supply tank of claim 24, wherein at least two of said pieces of porous material are of different average pore size, the average pore size of the piece of porous material engaged by said ink-supply outlet being of the smallest of the average pore sizes of the pieces of porous material.
  • 29. The ink-supply tank of claim 18, wherein said ink-supply tank includes a further wall facing said ink-supply outlet, said ink absorbing member carrying substantially all of the ink in said ink-supply tank when said ink-supply tank being filled to the designed capacity of the ink-supply tank, said ink-supply tank including an inner wall surface having projections to provide a space between said ink absorbing member and said wall surface.
  • 30. The ink-supply tank of claim 29, wherein said further wall of said ink-supply tank facing said ink-supply outlet is a cover bearing on said ink absorbing member when assembled to said ink-supply tank to at least in part apply a compressive force to effect compression of said ink absorbing member, at least a portion of said projections extending from the inner wall surface of said cover.
  • 31. The ink-supply tank of claim 30, and including ink impregnated in the ink absorbing member under a pressure sufficiently low to substantially eliminate air bubbles in the ink absorbing member.
  • 32. The ink-supply tank of claim 18, and including means for providing ambient air to the space between said ink absorbing member and the inner wall surface of said ink-supply tank.
  • 33. The ink-supply tank of claim 18, wherein said ink-supply outlet is shaped and dimensioned to conduct ink from said ink absorbing member to the exterior of said ink tank.
  • 34. The ink-supply tank of claim 33, wherein at least a portion of said ink supply outlet is free of porous material.
  • 35. A method for supplying ink for a dot matrix printer comprising:providing an ink absorbing member mounted within an ink-supply tank; providing an ink-supply outlet formed in a first wall of said ink-supply tank, said ink supply outlet engaging said ink absorbing member to permit ink to flow to the exterior of said ink-supply tank for delivery to a dot matrix printer, said ink absorbing member having a mean pore size in the region in the vicinity of said ink absorbing member facing said ink-supply outlet which is smaller than the mean pore size other than in the region in the vicinity of said ink absorbing member facing said ink-supply outlet; providing a second wall in said ink-supply tank extending substantially in the same direction as the axis of said ink-supply outlet, said first wall having a length as viewed in a direction therealong extending from said second wall; disposing said ink-supply outlet in said first wall at a position between the midpoint of said length of said first wall and said second wall; and withdrawing said ink from said ink-supply tank through said ink-supply outlet for delivery to a dot matrix printer.
  • 36. An ink supply system for a dot matrix printer haing a printing mechanism comprising:an ink-supply tank having a first wall and a second wall extending in a direction substantially perpendicular to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member formed of a porous material mounted within the ink-supply tank; and an ink-supply outlet formed in said first wall of said ink-supply tank at a position between the midpoint of said length of said first wall and said second wall to permit ink to flow from said ink-supply tank toward said printing mechanism, said ink-supply outlet engaging a portion of said ink absorbing member at least in the region of said ink absorbing member facing said ink-supply outlet; the mean pore size of said ink absorbing member in the region in the vicinity thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member other than in the region of said ink absorbing member in the vicinity of said ink-supply outlet.
  • 37. A dot matrix printer comprising:an ink-supply tank having a first wall and a second wall extending in a direction substantially perpendicular to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member formed of a porous material mounted within said ink-supply tank; and a printing mechanism for applying ink from said ink absorbing member to effect dot matrix printing, said ink-supply tank being formed with an ink-supply outlet positioned to receive ink from said ink absorbing member and constructed to transmit ink through said first wall for delivery to said printing mechanism, said ink-supply outlet being positioned on said first wall at a position between the midpoint of said length of said first wall and said second wall, the mean pore size of said ink absorbing member in the region in the vicinity thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member in the region of said ink absorbing member other than in the vicinity of said ink-supply outlet.
  • 38. The dot matrix printer of claim 37, said ink supply outlet occupying substantially less than the entire area of said first wall.
  • 39. The dot matrix printer of claim 38, said ink supply outlet occupying only a minor portion of the entire area of said first wall.
  • 40. The dot matrix printer of claim 37, wherein at least the portion of said ink supply outlet adjacent said ink absorbing member is essentially free of said porous material.
  • 41. The dot matrix printer of claim 37, wherein said ink absorbing member is formed of a unitary piece of porous material.
  • 42. The dot matrix printer of claim 41, wherein said unitary piece of porous material substantially fills the ink-supply tank.
  • 43. The dot matrix printer of claim 41, wherein said unitary piece of porous material carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 44. The dot matrix printer of claim 37, wherein said ink absorbing member is formed of at least two pieces of porous material, each of said pieces of porous material abutting another of said pieces of porous material along respective surfaces thereof for the transfer of ink therebetween.
  • 45. The dot matrix printer of claim 44, wherein said ink absorbing member substantially fills the ink-supply tank.
  • 46. The dot matrix printer of claim 44, wherein said ink absorbing member carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 47. The dot matrix printer of claim 46, wherein said second wall of said ink-supply tank essentially defines one side of said ink-supply tank.
  • 48. The dot matrix printer of claim 44, wherein at least two of said pieces of porous material are of different average pore size, the average pore size of the piece of porous material closest to said ink supply outlet being of the smallest of the average pore sizes of the pieces of porous material.
  • 49. The dot matrix printer of claim 37, wherein said ink-supply tank includes a further wall facing said ink supply outlet, said ink absorbing member carrying substantially all of the ink in said ink-supply tank when said ink-supply tank being filled to the designed capacity of the ink-supply tank, said ink-supply tank including an inner wall surface having projections to provide a space between said ink absorbing member and said inner wall surface.
  • 50. The dot matrix printer of claim 49, wherein said further wall of said ink-supply tank facing said ink-supply outlet is a cover bearing on said ink absorbing member when assembled to said ink-supply tank to at least in part apply a comprehensive force to effect compression of said ink absorbing member, at least a portion of said projections extending from the inner wall surface of said cover.
  • 51. The dot matrix printer of claim 49, and including means for providing ambient air to the space between said ink absorbing member and said inner wall surface of said ink-supply tank.
  • 52. The dot matrix printer of claim 37, and including ink impregnated in the ink absorbing member under a pressure sufficiently low to substantially eliminate air bubbles in the ink absorbing member.
  • 53. The dot matrix printer of claim 37, wherein said ink-supply outlet is shaped and dimensioned to conduct ink from said ink absorbing member to the exterior of said ink tank.
  • 54. The dot matrix printer of claim 37, wherein at least a portion of said ink supply outlet is free of porous material.
  • 55. An ink-supply tank for a dot matrix printer, comprising:an ink-supply tank having a first wall and a second wall extending in a direction substantially perpendicular to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member formed of a porous material mounted within said ink-supply tank; said ink-supply tank being formed with an ink-supply outlet positioned to receive ink from said ink absorbing member and constructed to transmit ink from said ink supply tank through said first wall for delivery to the dot matrix printer, said ink-supply outlet being positioned at a position between the midpoint of said length of said first wall and said second wall, the mean pore size of said ink absorbing member in the vicinity of the region thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member in the region of said ink absorbing member other than in the vicinity of said ink-supply outlet.
  • 56. The ink-supply tank of claim 55, wherein at least the portion of said ink supply outlet adjacent said ink absorbing material is free of ink absorbing material.
  • 57. The ink-supply tank of claim 56, wherein said ink supply outlet occupies substantially less than the entire area of said first wall.
  • 58. The ink-supply tank of claim 57, said ink supply outlet occupying only a minor portion of the entire area of said first wall.
  • 59. The ink-supply tank of claim 56, wherein said ink absorbing member is formed of a unitary piece of porous material.
  • 60. The ink-supply tank of claim 59, wherein said unitary piece of porous material substantially fills the ink-supply tank.
  • 61. The ink-supply tank of claim 59, wherein said unitary piece of porous material carries substantially all of the ink that said ink-supply tank was designed to hold.
  • 62. The ink-supply tank of claim 55, wherein said ink absorbing member is formed of at least two pieces of porous material, each of said pieces of porous material abutting another of said pieces of porous material along respective surfaces thereof for the transfer of ink therebetween.
  • 63. The ink-supply tank of claim 62, wherein said ink absorbing member substantially fills the ink-supply tank.
  • 64. The ink-supply tank of claim 62, wherein said ink absorbing member carries substantially all of the ink that said ink supply tank was designed to hold.
  • 65. The ink-supply tank of claim 64, wherein said second wall of said ink-supply tank essentially defines one side of said ink-supply tank.
  • 66. The ink-supply tank of claim 62, wherein at least two of said pieces of porous material are of different average pore size, the average pore size of the piece of porous material engaged by said ink-supply outlet being of the smallest of the average pore sizes of the pieces of porous material.
  • 67. The ink-supply tank of claim 55, wherein said ink-supply tank includes a further wall facing said ink-supply outlet, said ink absorbing member carrying substantially all of the ink in said ink-supply tank when said ink-supply tank being filled to the designed capacity of the ink-supply tank, said ink-supply tank including an inner wall surface having projections to provide a space between said ink absorbing member and said wall surface.
  • 68. The ink-supply tank of claim 67, wherein said further wall of said ink-supply tank facing said elongated member is a cover bearing on said ink absorbing member when assembled to said ink-supply tank to at least in part apply a compressive force to effect compression of said ink absorbing member, at least a portion of said projections extending from the inner wall surface of said cover.
  • 69. The ink-supply tank of claim 67, and including ink impregnated in the ink absorbing member under a pressure sufficiently low to substantially eliminate air bubbles in the ink absorbing member.
  • 70. The ink-supply tank of claim 67, and including means for providing ambient air to the space between said ink absorbing member and the inner wall surface of said ink-supply tank.
  • 71. The ink-supply tank of claim 55 wherein said ink-supply outlet is shaped and dimensioned to conduct ink from said ink absorbing member to the exterior of said ink tank.
  • 72. The ink-supply tank of claim 55, wherein an ink supply port is formed within said ink-supply outlet, said ink-supply port defining at least said ink supply outlet, a portion of said ink supply outlet being free of porous material.
  • 73. A method for supplying ink for a dot matrix printer comprising:providing an ink supply tank formed with a first wall and a second wall extending substantially in a perpendicular direction to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; providing an ink absorbing member mounted within said ink-supply tank; providing an ink-supply outlet in said first wall of said ink-supply tank positioned to receive ink from said ink absorbing member for delivery to a dot matrix printer and further positioned between the midpoint of said length of said first wall and said second wall, said ink absorbing member having a mean pore size in the vicinity of the region of said ink absorbing member facing said ink-supply outlet which is smaller than the mean pore size of said ink absorbing member other than in the vicinity of the region of said ink-absorbing member facing said ink-supply outlet; and withdrawing said ink from said ink-supply tank through said ink-supply outlet for delivery to said dot matrix printer.
  • 74. An ink supply system for a dot matrix printer having a printing mechanism comprising:an ink-supply tank having a first wall and a second wall extending substantially in a perpendicular direction to said first wall, said first wall having a length as viewed in a direction therealong extending from said second wall; an ink absorbing member mounted within said ink-supply tank; and said ink-supply tank being formed with an ink-supply outlet positioned to receive ink from said ink absorbing member and constructed to transmit ink through said first wall for delivery to said printing mechanism, said ink-supply outlet being formed in said first wall of said ink-supply tank at a position between the midpoint of said length of said first wall and said second wall, the mean pore size of said ink absorbing member in the vicinity of the region thereof facing said ink-supply outlet being smaller than the mean pore size of said ink absorbing member other than in the vicinity of the region of said ink absorbing member facing said ink-supply outlet.
Priority Claims (5)
Number Date Country Kind
58-191529 Oct 1983 JP
58-224892 Nov 1983 JP
59-102841 May 1984 JP
59-102842 May 1984 JP
59-102843 May 1984 JP
Parent Case Info

This is a continuation of application Ser. No. 08/465,630 now U.S. Pat. No. 5,622,439, filed on Jun. 5, 1995, entitled INK-SUPPLY TANK FOR A DOT MATRIX PRINTER (as amended), which is a continuation of application Ser. No. 08/405,280 now U.S. Pat. No. 5,560,720, filed Mar. 14, 1995, which is a continuation of application Ser. No. 08/150,676 now U.S. Pat. No. 5,421,658, filed Nov. 10, 1993, which is a continuation of application Ser. No. 07/962,959, filed Oct. 16, 1992, which issued as U.S. Pat. No. 5,328,279, which is a continuation of application Ser. No. 07/612,010, filed on Nov. 9, 1990, which issued as U.S. Pat. No. 5,156,471, which is a continuation of application Ser. No. 07/401,539, filed on Aug. 31, 1989, which issued as U.S. Pat. No. 4,969,759, which is a continuation of application Ser. No. 07/161,216, filed on Feb. 17, 1988, now abandoned, which is a continuation of application Ser. No. 07/035,251, filed on Mar. 23, 1987, now abandoned, which is a continuation of application Ser. No. 06/873,871, filed on Jun. 12, 1986, now abandoned, which is a continuation of application Ser. No. 06/659,816, filed on Oct. 11, 1984, now abandoned.

US Referenced Citations (103)
Number Name Date Kind
608887 Melven Aug 1898
1321785 Bronner Nov 1919
1569470 Falder Jan 1926
2072853 Baxter Mar 1937
2114583 Adams Apr 1938
2585647 Gordon Feb 1952
2653609 Smith Sep 1953
2688307 Nichols et al. Sep 1954
2747543 Navikas May 1956
2906423 Sandhage Sep 1959
3018756 Kilham Jan 1962
3088615 Mumford et al. May 1963
3094124 Birtwell Jun 1963
3097597 Visser Jul 1963
3101667 Siegel Aug 1963
3353239 Heijnis Nov 1967
3363686 Gilehrist Jan 1968
3441950 Miller Apr 1969
3491685 Tramposch Jan 1970
3599566 Fish Aug 1971
3631691 Wilheim et al. Jan 1972
3797281 Norton Mar 1974
3797390 Marozzi et al. Mar 1974
3823409 Carrell Jul 1974
3863686 Klein Feb 1975
3881445 Nothiger May 1975
3895133 Fleisig et al. Jul 1975
3928521 Haren et al. Dec 1975
3934255 Taylor Jan 1976
3967286 Andersson et al. Jun 1976
3974534 Yelton et al. Aug 1976
3976216 Lambert Aug 1976
4017871 Hubbard Apr 1977
4053901 Skafvenstedt et al. Oct 1977
4084165 Skafvenstedt et al. Apr 1978
4095237 Amberntsson et al. Jun 1978
4100853 Clancy et al. Jul 1978
4112151 Cooke Sep 1978
4162501 Mitchell et al. Jul 1979
4163500 Gunne et al. Aug 1979
4183030 Kaieda et al. Jan 1980
4183031 Kyster et al. Jan 1980
4194846 Zerillo Mar 1980
4226911 Haren Oct 1980
4272773 Halasz Jun 1981
4279519 Shiurila Jul 1981
4306245 Kasugayama et al. Dec 1981
4329698 Smith May 1982
4336767 Wada Jun 1982
4340895 Kikuchi Jul 1982
4353654 Shiurila Oct 1982
4368478 Koto Jan 1983
4400102 Shiurila et al. Aug 1983
4403874 Payne et al. Sep 1983
4413267 Hein Nov 1983
4419677 Kasugayama et al. Dec 1983
4419678 Kasugayama et al. Dec 1983
4436439 Koto Mar 1984
4441422 Dreeben Apr 1984
4447820 Terasawa May 1984
4456393 Gomi et al. Jun 1984
4458257 Lane, III Jul 1984
4463362 Thomas Jul 1984
4482069 Stadler Nov 1984
4484827 Price, Jr. Nov 1984
4500222 Clading-Boel Feb 1985
4506277 Terasawa Mar 1985
4510510 Terawawa Apr 1985
4511906 Hara Apr 1985
4513297 Okamura Apr 1985
4545694 Ninomiya et al. Oct 1985
4553865 Ikeda et al. Nov 1985
4589000 Koto et al. May 1986
4590495 Okamura May 1986
4630758 Mutoh Dec 1986
4631558 Hara Dec 1986
4677448 Mizusawa et al. Jun 1987
4695824 Tazaki Sep 1987
4719479 Kyoguku Jan 1988
4757331 Mizusawa Jul 1988
4771295 Baker et al. Sep 1988
4794409 Cowger et al. Dec 1988
4855762 Suzuki Aug 1989
4968998 Allen Nov 1990
4969759 Suzuki et al. Nov 1990
5056433 Murphy et al. Oct 1991
5119115 Buat et al. Jun 1992
5156470 Suzuki et al. Oct 1992
5156471 Suzuki et al. Oct 1992
5156472 Suzuki et al. Oct 1992
5156473 Suzuki et al. Oct 1992
5158377 Suzuki et al. Oct 1992
5174665 Suzuki et al. Dec 1992
5221148 Suzuki et al. Jun 1993
5328279 Suzuki et al. Jul 1994
5421658 Suzuki et al. Jun 1995
5448401 Mochizuki et al. Sep 1995
5477963 Mochizuki et al. Dec 1995
5509140 Koitabashi et al. Apr 1996
5510820 Aulick et al. Apr 1996
5552816 Oda et al. Sep 1996
5560720 Suzuki et al. Oct 1996
5622439 Suzuki et al. Apr 1997
Foreign Referenced Citations (34)
Number Date Country
2546835 Apr 1977 DE
27 28 283 Oct 1982 DE
33 16 298 Nov 1983 DE
0 567 308 A2 Apr 1993 EP
0 580 433 A1 Jul 1993 EP
562733 Sep 1993 EP
0 633 138 A2 Jul 1994 EP
0 640 484 A2 Aug 1994 EP
2229320 Dec 1974 FR
5043 Apr 1899 GB
50-99436 Aug 1975 JP
42874 Mar 1980 JP
55-42875 Mar 1980 JP
55-65560 May 1980 JP
55-166267 Dec 1980 JP
56-118868 Sep 1981 JP
57-12688 Jan 1982 JP
57-63285 Apr 1982 JP
57-84867 May 1982 JP
185168 Nov 1982 JP
89377 May 1983 JP
58-142861 Aug 1983 JP
188670 Nov 1983 JP
58-199159 Nov 1983 JP
58-166464 Nov 1983 JP
59-21955 Feb 1984 JP
59-26342 Feb 1984 JP
59-41539 Mar 1984 JP
59-59340 Apr 1984 JP
59-68985 May 1984 JP
54-8951 Sep 1984 JP
63-37954 Feb 1988 JP
6-255122 Sep 1994 JP
9323109 Nov 1993 WO
Non-Patent Literature Citations (1)
Entry
Erturk et al, Ink Retention in a Color Thermal Inkjet Pen, Hewlett-Packard Journal, Aug. 1988, pp. 41-44.
Continuations (10)
Number Date Country
Parent 08/465630 Jun 1995 US
Child 08/787722 US
Parent 08/405280 Mar 1995 US
Child 08/465630 US
Parent 08/150676 Nov 1993 US
Child 08/405280 US
Parent 07/962959 Oct 1992 US
Child 08/150676 US
Parent 07/612010 Nov 1990 US
Child 07/962959 US
Parent 07/401539 Aug 1989 US
Child 07/612010 US
Parent 07/161216 Feb 1988 US
Child 07/401539 US
Parent 07/035251 Mar 1987 US
Child 07/161216 US
Parent 06/873871 Jun 1986 US
Child 07/035251 US
Parent 06/659816 Oct 1984 US
Child 06/873871 US