This invention relates to an ink supply unit for supplying ink to a printing cylinder in a flexographic press, and more particularly relates to an ink supply unit suitable for an open chamber type ink supply unit.
As well known in a flexographic press, increase or decrease of a supply amount of ink to a printing cylinder and roughness or denseness of printing essentially depend on an anilox roll to be used. Thus, it is necessary to exchange an anilox roll and carry out a test-printing for duration in time from a test-printing step to a regular printing step. In the case of exchanging the anilox roll, whether the ink supply unit is an open chamber type or a closed chamber type, it was necessary to remove ink in the chamber every time. This required a time and a troublesome work. In another case, it was necessary to change an order of colors to be printed. This required for washing the anilox roll and an interior of the chamber.
Patent Documents that will be related to the present invention are cited below:
Accordingly, an object of the present invention is to provide an ink supply unit for a flexographic press that can readily exchange an anilox roll or an order of colors to be printed, thereby reducing a time for a test-printing process and enhancing a working efficiency.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
An ink supply unit for a flexographic press in accordance with the present invention comprises: an ink chamber including a pair of upper and lower doctor blades; an anilox roll for supplying ink contained in the ink chamber to a printing cylinder; a pivot frame for holding the ink chamber and the anilox roll at a given position, respectively; and a stationary frame mounted on a bed for being rotatably coupled to an end of the pivot frame.
The anilox roll is detachably mounted on the pivot frame for exchanging the roll. The pivot frame can move between a printing position where the anilox roll is mounted on a stationary frame to engage the printing cylinder and an exchanging position where the anilox roll is spaced away from the stationary frame to disengage the printing cylinder. An ink level of a maximum amount of ink contained in the ink chamber is located near a contact position between the upper doctor blade and the anilox roll when the pivot frame is located at the printing position. The ink level is located below the lower doctor blade when the pivot frame is located at the exchanging position.
Preferably, the stationary frame is slidably mounted on the bed and the stationary frame can move between the printing position where the anilox roll engages the printing cylinder and a displaced position where the anilox roll is spaced away from the printing cylinder. On the other hand, in the case where the ink supply unit is an open chamber type ink supply unit, the ink chamber may be detachably mounted on the pivot frame, or the pivot frame may be detachably mounted on the stationary frame, or the pivot frame and ink chamber may be detachably mounted on the stationary frame and pivot frame respectively.
When exchanging the anilox roll, the pivot frame is moved from the printing position to the pivoted position and the level of the ink contained in the ink chamber is lowered below the lower doctor blade. Consequently, it is possible to surely prevent the ink from being spilt from a space between the doctor blades defined by removing the anilox roll during a process of removing the anilox roll. This requires no process of drawing the ink from the ink chamber, thereby enhancing a working efficiency.
Since the stationary frame is slidably mounted on the bed, it is possible to freely move the pivot frame upward from the printing position to the pivoted position, after the anilox roll is moved away from the printing cylinder. This makes it possible to move the pivot frame from the printing position to the pivoted position, even if a contact point between the anilox roll and the printing cylinder is located below the rotary axle that is a rotary center of the printing cylinder. This means that the ink supply unit of the present invention can be applied to any printing cylinders having different roll diameters. It is also possible to set a pressure that the anilox roll applies to the printing cylinder to be a desired value by adjusting a displacement amount of the pivot frame.
In the case where the ink supply unit is an open chamber type ink supply unit, when the ink in the ink chamber should be exchanged, if desired, the ink chamber is removed from the pivot frame and another ink chamber containing the desired ink is mounted on the pivot frame. It is also possible to enlarge a space for washing the anilox roll. At this time, since the ink is maintained in the ink chamber, as mentioned above, it is possible to prevent the ink from spilling from the ink chamber accidentally.
On the other hand, in the case where the pivot frame is detachably mounted on the stationary frame, it is possible to exchange the ink by removing the pivot frame which mounts the anilox roll and ink chamber from the stationary frame and by substituting an assembly including an anilox roll, an ink chamber, and a pivot frame, that was used in the ink supply unit for desired ink, for the previous ink supply unit.
The features of the present invention believed to be novel and the elements characteristic of the present invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiments of the present invention, reference will be made herein to
Since the anilox roll 4 will directly affect increase or decrease of a supply amount of ink and roughness or denseness of printing, it is necessary to exchange the anilox roll 4, if desired. Thus, a releasable lock lever 51 installs the anilox roll 4 in a bearing of the pivot frame 5 detachably and rotatably. The pivot frame 5 is rotatably coupled to a support arm 71 of the stationary frame 7 and mounted on the stationary frame 7. The pivot frame 5 can rotate between a printing position (
A handle 9 serves to rotate the pivot frame 5 between the printing position and the exchanging position. A position-holding member 10 serves to lock the pivot frame 5 releasably at the printing position. On the other hand, it is preferable to provide a lock means (not shown) for preventing the pivot frame 5 from shifting out of the exchanging position accidentally, when the pivot frame 5 is rotated to the exchanging position.
The ink supply unit of the present invention as constructed above begins to print while the pivot frame 5 is held at the printing position, as shown in
The second embodiment of the ink supply unit has the substantially same construction as that of the first embodiment except that an ink chamber 1′ for containing ink is detachably mounted on the pivot frame 5 and that the pivot frame 5 is detachably mounted on the stationary frame 7. The stationary frame 7 is slidably mounted on the bed 6 so that the stationary frame 7 can be displaced relative to the impression cylinder 8 on the bed 6, as described above in the first embodiment.
A mechanism for detachably mounting the ink chamber 1′ on the pivot frame 5 is one of features of the second embodiment of the ink supply unit. The mechanism may include a well-known assembly comprising a guide rail and a slider, but it is not limited to the assembly. However, it will be preferable that a mechanism for coupling the ink chamber 1′ and pivot frame 5 to each other when the ink chamber 1′ is mounted on the pivot frame 5, for example, a releasable lock mechanism, serves to hold the pivot frame 5 at a predetermined position. As described above in the first embodiment, the level of a maximum amount of ink contained in the ink chamber 1′ is located near a contact position between the upper doctor blade la and the anilox roll 4, when the pivot frame 5 is located on the printing position (
A mechanism for detachably mounting the pivot frame 5 on the stationary frame 7 is also one of the features of the second embodiment. Any mechanism for detachably and rotatably mounting the pivot frame 5 on the stationary frame 7 may be applied to the second embodiment. In the illustrated embodiment, a pair of opposed parallel flat surfaces 53 are provided on a rotary axle 52 of the pivot frame 5. An engaging groove 72 having the substantially same width as the distance between the flat surfaces 53 is formed in a receiving portion of a support arm 71 of the stationary frame 7 to receive the rotary axle 52 of the pivot frame 5.
In order to attach the pivot frame 5 to the stationary frame 7, the rotary axle 52 is displaced to the bearing portion of the support arm 71 with the flat surfaces 53 of the rotary axle 52 coinciding with the side edges of the engaging groove 72. Then, the pivot frame 5 is rotated to the printing position while rotating the rotary axle 52 in the bearing portion of the support arm 71, thereby coupling the pivot frame 5 to the stationary frame 7. In order to detach the pivot frame 5 from the stationary frame 7, the pivot frame 5 is rotated to the exchanging position so that the flat surfaces 53 of the rotary axle 52 coincide with the side edges of the engaging groove 72. The rotary axle 52 is rotated in the engaging groove 72 to be disconnected from the support arm 71, thereby decoupling the pivot frame 5 from the stationary frame 7. It will be apparent from the above operation that the flat surfaces 53 of the rotary axle 52 coincide with the side edges of the engaging groove 72 when the pivot frame 5 is rotated to the exchanging position. A stopper (not shown) is provided so that the pivot frame 5 stops rotating at the exchanging position.
Although the handles 9 may be provided on the ink chamber 1′ and the pivot frame 5, respectively, it is preferably to provide a single handle 9 only on the ink chamber 1′ so that a single handle can carry out detachment of the ink chamber 1′ and rotation and detachment of the pivot frame 5. An attachment position of the handle 9 on the ink chamber 1′ should be decided so that the ink contained in the ink chamber 1′ is not spilt from the chamber, when an operator grasps the handle 9 by the operator's hand and detaches the ink chamber 1′ from the stationary frame 7 and when the operator detaches the pivot frame 5 on which the ink chamber 1′ and anilox roll 4 are still mounted on the stationary frame 7.
In the second embodiment of the ink supply unit constructed above, the pivot frame 5 is rotated to the exchanging position in a direction shown by an arrow A in the same manner as the first embodiment, and then the anilox roll 4 is exchanged in a direction shown by an arrow B. At this time, it will be preferable to rotate the pivot frame 5, after the ink supply unit is displaced in a direction shown by an arrow C on the bed 6 from a position engaging with the printing cylinder 3 for carrying out a regular printing to a position spaced away from the engaging position. This will avoid interference of printing cylinder 3 against rotation of the pivot frame 5, for example, in the case where an engaging position between the anilox roll 4 and the printing cylinder 3 is located below a height passing the center of the printing cylinder 3 on account of a roll diameter of a printing cylinder 3 to be used. On the other words, since the ink supply unit can be displaced on the bed 6, it is possible to utilize any printing cylinder 3 without taking a roll diameter into consideration. When an operator grasps the handle 9 by the operator's hand and displace the ink chamber 1′ to a given direction shown by an arrow D, the ink chamber 1′ is removed from the pivot frame 5. Similarly, when an operator grasps the handle 9 by the operator's hand and displace the pivot frame 5 to a given direction shown by an arrow E, the pivot frame 5 is removed from the stationary frame 7.
The present invention can be applied to a rotary press utilizing the similar ink supply unit, such as a letterpress printing machine, a planographic printing machine, or an intaglio-printing machine.
The entire disclosure of Japanese Patent Application No. 2004-111924 filed on Apr. 6, 2004 including the specification, claims, drawings and summary is incorporated herein by reference in its entirety.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications, and variations as falling within the true scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-111924 | Apr 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4481883 | Savart et al. | Nov 1984 | A |
5848570 | Koppelkamm et al. | Dec 1998 | A |
5983797 | Secor | Nov 1999 | A |
6076462 | Schafer et al. | Jun 2000 | A |
6557465 | Baum | May 2003 | B2 |
6862988 | Dylia et al. | Mar 2005 | B2 |
20040187718 | Ross et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
9-201952 | Aug 1997 | JP |
10-296961 | Nov 1998 | JP |
10-296962 | Nov 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050223923 A1 | Oct 2005 | US |