1. Field of the Invention
The present invention relates to an ink tank, and, more specifically, to an ink tank to be employed to an inkjet printing apparatus.
2. Description of the Related Art
Along the advance of image quality of printing in recent years, commonly employed in inkjet printing apparatuses is a method of increasing the number of ink colors used for printing in order to improve the image quality targeting for photographic image quality. A method of providing multiple tanks is widely used in a desktop printing apparatus, the tanks prepared for different colors and being independently detachable. Such a configuration causes an increase in the number of ink tanks, whereby the frequency of tank replacing operations by a user is increased. Moreover, as the ink tanks are provided independently, the wall thickness of each of the ink tanks has a great influence on the size of the printing apparatus.
Accordingly, from the viewpoint of user friendliness and of downsizing printing apparatuses, ink tanks which are configured to integrate ink containers for multiple colors have been proposed.
In order to achieve stable ink supply, an ink tank provided with multiple ink supply ports corresponding to ink containers for multiple colors, needs to be attached so that the respective ink supply ports are securely fixed to a holder of the apparatus. To achieve such secure attachment, proposed is an attachment mechanism including a mounting member called a latch lever as disclosed in Japanese Patent Laid-Open No. 08-058107. Such an attachment mechanism has been applied to many types of ink tanks because the mechanism enables simple attachment and detachment of the ink tanks.
In addition, proposed is a configuration to allow an ink tank to store predetermined information concerning the ink tank such as the colors of inks contained therein, and thereby to fulfill a required function according to the information. Japanese Patent Laid-Open No. 11-291518 discloses a configuration of an ink tank including a board mounted with an information storage element and means for electrically presenting stored information. A printing apparatus is configured to read the information at the time of attaching the ink tank to perform operation control, thereby being able to achieve fine printing outputs at any time. Japanese Patent Laid-Open No. 2006-116786 discloses a configuration to establish both secure connection in an ink supply system and a fine state of connection in an information communication system between an ink tank and a printing apparatus.
The ink tank includes a board 1024, which is provided with a storage element being able to store information and a contact section for communicating the information with the body. Moreover, an ink tank holder section of the body, to which the ink tank is attached, includes a contact unit 1103 provided with a contact pin, which is to be in contact with the contact section provided to the board 1024 of the ink tank. This contact unit 1103 is movable in the y directions as shown in
The ink tank is provided with a fitting section 1101 for position alignment in order to accurately position the contact section for communicating the information. On the other hand, a corresponding engagement section 1102 for position alignment is provided to an attachment section (a holder) of a printing apparatus. The fitting section 1101 provided to the bottom face of the ink tank forms a substantially triangular concave section which is engageable with the engagement section 1102 of the holder.
When the ink tank is attached to the holder, the tip end of the engagement section 1102 firstly touches an end of a slope 1104 of the fitting section 1101 located on the bottom face of the ink tank, as shown in
When mechanical attachment is completed, electric contact sections of both of the constituents, namely, the contact section of the board 1024 of the ink tank and a contact pad included in the contact unit 1103 of the holder provided to the apparatus, come into contact with each other, thereby enabling electric connection.
Here, in terms of a configuration at the connection part between the ink tank and the printing apparatus, a contact section for an ink supply system and a contact section for an information transmission system are separately provided. Moreover, the constituent on the holder's side for the contact section for the information transmission system is rendered movable. This configuration makes it possible to establish a fine state of connection between the ink supply system and the information transmission system.
However, sealing members made of rubber are provided either around ink supply ports or around ink receiving sections on the holder's side to be connected to the ink supply ports. The sealing members are provided in order to suppress ink leakage and ink evaporation, when the ink tank is attached. The ink tank receives a reactive force from the sealing members at the time of attachment, whereby being attached while being sometimes tilted from side to side (in an orthogonal direction to
While these problems apply also to the case of an ink tank configured to contain a single-color ink, the problems are even more critical in the case of an ink tank configured to contain inks of multiple colors. This is because the ink tank configured to contain the inks of multiple colors include multiple ink supply ports disposed on the bottom face of the ink tank, and, accordingly, the reactive force caused by the rubber are increased at the time of attachment. In addition, without careful arrangement of the positions of the multiple ink supply ports, the ink tank may be attached while tilting or rolling from side to side.
The present invention is made in view of the aforementioned problems. It is an object of the present invention to achieve smooth and secure attachment (i.e. to improve the attachment property) of an ink tank and to achieve, between the ink tank and a printing apparatus, secure connection (i.e. to improve the connectivity) of a contact sections for an ink supply system as well as an electric contact section.
To attain the object, in an aspect of the present invention, there is provided an ink tank attachable to and detachable from an attachment section of an ink jet printing apparatus, the attachment section being provided with an ink receiving section, a first fitting section and a second fitting section to be engaged with the ink tank, and an electric contact, the ink tank comprising: a housing; a supply port configured to abut the ink receiving section; a tank-side electric contact being connectable to the electric contact; and a positioning section for the contact between the electric contact and the tank-side electric contact, wherein the supply port abuts, at the abutting center thereof, the ink receiving section, the supply port and the positioning section are provided on the face of the housing opposite to the ink receiving section, and are disposed on the face so that the positioning section and the abutting center of the supply port are located on the respective two sides of a line passing the center in the shorter-width direction of the face provided with the supply port of the ink tank.
In another aspect of the present invention, there is provided an ink tank attachable to and detachable from an attachment section of an ink jet printing apparatus, the attachment section being provided with a plurality of ink receiving sections, a first fitting section and a second fitting section to be engaged with the ink tank, and an electric contact, the ink tank comprising: a housing; a plurality of supply ports configured to abut the plurality of ink receiving sections; a tank-side electric contact being connectable to the electric contact; and a positioning section for the contact between the electric contact and the tank-side electric contact, wherein the plurality of supply ports abut the ink receiving sections respectively at abutting centers, the plurality of supply ports and the positioning section are provided on a face of the housing opposite to the plurality of ink receiving sections, and the positioning section and the abutting center of the supply port located closest to the positioning section among the plurality of the supply ports are disposed on the face so as to be located on the respective two sides of a line passing the center in the shorter-width direction of the face provided with the plurality of the supply ports of the ink tank.
According to the present invention, an ink supply port is disposed on the opposite side to the side where a positioning section for an electric contact is disposed, having a central axis therebetween. When the ink tank is attached to a printing apparatus, the ink tank is tilted toward the side of the positioning section for the electric contact due to a reactive force applied to an ink receiving section provided on the printing apparatus, the reactive force oriented to the opposite direction of the attachment direction and generated at the time of connecting the ink tank. As a result, the positioning section for the electric contact is smoothly engaged with a positioning section of an attachment section corresponding thereto. In this way, it is possible to improve the attachment property of the ink tank and to establish secure connection of the contact section for an ink supply system and the electric contact section.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Hereinbelow, the present invention will be described in detail with reference to the accompanying drawings.
It is to be noted that the term “ink” in this specification is assumed to include a liquid which may be used for formation of images, designs, patterns, and the like, or for a treatment of the printing medium, or for an ink process, by means of application to a printing medium. The ink may include, for example, a liquid to used for coagulation or insolubilization of a pigment in the ink to be applied to the printing medium.
In
The holder unit 50 is mounted on the carriage 102. Moreover, the head unit 30 is attached to the holder unit 50. In this way, an inkjet head is fixed to the printing apparatus body, and the ink tank attachment section 100 is accomplished. The ink tank attachment section 100 may be configured so that the holder unit 50 is attached to the carriage either non-detachably or detachably while the head unit 30 is detachably attached to the holder unit 50.
The head unit 30 includes an inkjet head 31, which has nozzles for ejecting ink arrayed in a direction different from the x direction, or in the y direction, for example. The inkjet head 31 is integrally provided in a position defined as a bottom section of a head holder 32. Multiple nozzle arrays are prepared so as to correspond to the number of ink colors used therein. In this embodiment, the inkjet head 31 is assumed to include the nozzle arrays for the inks corresponding to respective colors of black, cyan, magenta, yellow, and photo black.
A black ink tank 10a for containing a black ink is attached to the head unit 30 on the back side (on the right side viewed from the y direction) indicated with “0” in
Ink receiving pipes 33 corresponding to ink supply ports 14 for the respective colors provided to an ink tank 10 to be described later are formed in a protruding manner on the head unit 30. That is, a single-ink receiving pipe for the black color is formed on an attachment section for the black ink tank 10a while four-ink receiving pipes corresponding to cyan, magenta, yellow, and photo black are formed on an attachment section for the color ink tank 10b. Moreover, the respective ink receiving pipes 33 communicate, through unillustrated ink supply passages, with the nozzles prepared for the inks of the respective colors.
A sealing member 36 made of an elastic material, such as rubber, is attached around each of the ink receiving pipes 33. This sealing member 36 is configured to cover a surrounding area of each of the ink supply ports 14 when the ink tank 10 is attached, thereby retaining a hermetically sealed state of an ink supply system and preventing leakage and evaporation of the ink. A filter 37 for preventing invasion of foreign bodies, including dusts and bubbles, into the ink receiving pipe 33 is disposed to an end face of each of the ink receiving pipes 33.
At the time of an operation to attach the ink tank 10, an attachment guide section 15 of the ink tank 10 is allowed to slide on the partition wall 34. In this way, the ink tank 10 is guided so as not to contact the ink receiving pipes 33. Hence, the partition wall 34 also functions as a breakage prevention guide for the ink receiving pipes 33 at the time of the operation to attach the ink tank 10.
A single second fitting section 51 for fixation at the time of attaching each of the ink tanks 10 is provided on the front side in the y direction of the holder unit 50 (the right side in the drawing) indicated with “R” in
The holder unit 50 includes contact units 53 respectively provided with contact pins 52 to be electrically connected to memory elements of the ink tank 10 to be described later. The contact units 53 are connected to a control unit of the printing apparatus body through unillustrated cables. In the attached state of the ink tank 10, it is possible to communicate data between the control unit of the printing apparatus body and the memory elements of the ink tank through the contact units 53.
Next, a configuration of the ink tank will be described.
The ink tanks 10a and 10b basically have the same internal structure except a difference in the number of colors of the inks to be contained. Hence, the color ink tank 10b will be described here as the example.
The ink tank generally includes a housing 11 having an upper end face formed into an opening and a lid member 12 for occluding the opening of the housing 11. These constituents collectively define ink containers. The lid member 12 includes air communication ports 13 for guiding air into the ink tank, and ribs 19 which are structures for forming buffering spaces for preventing ink leakage out of the air communication ports 13 in the event of an environmental change. First ink retaining members 20 for ink supply and second ink retaining members 21 for impregnating and retaining the yellow, magenta, cyan, and photo black inks and are housed in spaces of the respective ink containers.
The configuration will be described more concretely by using
On the bottom face of the housing 11, the ink supply ports 14 for ink supply are located in positions corresponding to the ink receiving pipes 33 formed on the head unit 30. In spaces between the second ink retaining members 21 and the bottom wall of the ink tank, the first ink retaining members 20 are disposed to closely contact to the second ink retaining members 21 and to occlude the ink supply ports 21 from inside.
While both of the first ink retaining member 20 and the second ink retaining member 21 are configured to impregnate and retain the ink, an ink retaining force (a capillary force) of the first ink retaining member 20 is rendered higher than an ink retaining force of the second ink retaining member 21. In this way, the ink retained in the second ink retaining member 21 is efficiently guided to the first ink retaining member 20, and consumption efficiency of the ink retained in the second ink retaining member 21 is thereby improved.
In the ink tank of this embodiment, ink capacities are set as described below in light of usage frequencies of the respective colors of inks:
magenta ink capacity=yellow ink capacity>cyan ink capacity>photo black ink capacity
In
In this embodiment, the ink retaining members 20 and 21 are formed by use of fiber assemblies that are made of polyolefin-based thermoplastic resin. In addition, the housing 11 and the lid member 12 are also made of a polyolefin-based thermoplastic resin material similar to the ink retaining members. Therefore, it is possible to improve recycling efficiency and reuse efficiency and thereby to offer the environment-friendly ink tank.
A latch lever 16 includes the second engagement section 23 which is formed into a protrusion so as to correspond to the second fitting section 51 for ink tank fixation provided on the holder unit 50. Moreover, first engagement section 22 formed into protrusions so as to correspond to first fitting sections 35 for ink tank fixation are provided on an opposite face with the latch lever 16.
In this embodiment, the first engagement sections 22 are provided to two positions on the face on the back side in the direction of inserting the ink tank, which is the side indicated as “L” of the tank shown in
Hereinbelow, further description will be made with reference to the ink tanks shown in
A bevel is formed in the regions beside a base of the latch lever 16 within a corner area where the bottom face of the ink tank 10 meets the front face thereof. Moreover, a board 24, which is provided with an information storage medium and a contact pad (not shown) that constitutes a contact for achieving electric connection with a contact pin provided on the holder unit, is attached to this bevel. Furthermore, a board attachment positioning section 25 is located on the bottom face of the ink tank close to the position for fitting the board 24.
When the ink tank 10 is attached to the inkjet printing apparatus, contents stored in the information storage medium can be provided to the inkjet printing apparatus. The stored contents may be information to be provided for achieving necessary management in relation to the ink tank including expiration dates of the ink, amount of ink inside the ink tank, and colors of the inks, for example. By using the information, it is possible to prompt a user to replace the ink tank by notifying the expiration date to a user and thereby to forestall printing errors due to discoloration or thickening of the ink. Moreover, by detecting correct attachment of the ink tank through a success or a failure of information communication, it is possible to prevent printing errors attributed to incomplete attachment of the ink tank.
The information storage medium may apply various aspects including a magnetic medium, a magneto-optical medium, an electric storage medium, a mechanical switch such as a dual in-line package (DIP) switch, and the like as long as such a medium can offer the information by means of mechanical contact with a contact section on the inkjet printing apparatus. For example, it is possible to apply a flash memory or to apply a write-at-once type magnetic medium. Alternatively, it is possible to apply an electrically erasable programmable read-only memory (EEPROM) when it is desirable that the printing apparatus be able to add, modify or delete information. The information may includes information on ink residual amounts or ink consumption amounts based on measurement of image data.
Next, the aforementioned operation to attach the ink tank to the printing apparatus body will be described.
In this state, when an upper face of the ink tank 10 is pressed in a direction indicated with an arrow P in
In the last stage of the attachment operation, as shown in
In the process of the attachment operation, the guide section 15, shown in
Next, a structure for positioning the board at the time of attaching the ink tank will be described below by using
When attaching the ink tank, a reactive force associated with touch of the board 24 of the ink tank on the contact unit 53 of the holder unit 50 occurs. If the reactive force is transmitted to the attachment section of the ink tank, there is a risk of deviation of a position to attach the ink tank or a position to attach the inkjet head to the body. Accordingly, in this embodiment, the contact unit 53 is provided separately from the holder unit so as not to transmit the reactive force, which is incurred by touch of the contact unit 53 on the board 24, to the positioning engagement sections and the like. To be more precise, the board attachment positioning section 25 formed as the protrusion provided near the board 24 of the ink tank 10 is engaged with a positioning section on the contact unit 53 so as to determine a layout between the board and the contact unit independently of positioning a point of attachment of the ink tank itself.
A mechanism (hereinafter referred to as a board positioning mechanism) to achieve the above-described configuration will be described more in detail.
First, as shown in
On the other hand, the board-contact positioning section 54 provided on the holder unit on the printing apparatus body is formed of a base member 54 which includes a concave section which is configured to be engaged with the convex section of the board attachment positioning section 25, and the contact unit 53 is integrally provided on this base member 55. The board-contact positioning section 54 and the base member 55 are supported movably in a horizontal direction relative to the holder unit 50, and an unillustrated flexible cable for electrically connecting the printing apparatus body to the contact unit is mounted thereon. Here, the board-contact positioning section 54 may be urged toward a position shown in
As shown in
Accordingly, the board 24 provided on the bottom face of the tank gradually approaches the contact pins 52. Then, as shown in
Next, layouts of the ink supply ports and the board attachment positioning section of the ink tank constituting a characteristic feature of this embodiment will be described in detail.
A supply port for the contained black ink is provided on the bottom face of the black ink tank 10a. An abutting center when the ink receiving pipe 33 abuts this supply port 14 is designated by reference numeral 63, and is indicated as an intersection of broken lines in the drawing. As apparent from
Then, the abutting center of the ink supply port 14 is located near the back side in the direction of inserting the tank compared to the board attachment positioning section 25. At the same time, the abutting center is disposed on the opposite side of the board attachment positioning section 25, having a center line 61 in the width direction of the ink tank therebetween. Specifically, the abutting center of the ink tank 14 is located on the right side, and the board attachment positioning section 25 is located on the left side of the drawing, while having the center line 61 in-between. By applying this layout, the ink supply port 14 receives the reactive force from the ink receiving pipe 33 and the sealing member 36 around the ink receiving 33 prior to the contact between the board 24 and the contact unit 53 at the time of the operation to attach the ink tank. Accordingly, the ink tank 10a is tilted to the left side relative to the center line 61 in
An advantage of the operation to attach the ink tank involving such a tilt will be described below in detail.
As apparent from
By continuing the operation to attach the ink tank further from this state, the ink supply port located on the bottom face of the ink tank starts abutting the ink receiving pipe and the sealing member as shown in
In this way, as the ink tank 10a is caused to incline in the course of the attachment operation, the board attachment positioning section 25 located on the tilted side approaches the board-contact positioning section 54. Accordingly, it is possible to allow the positioning sections for electric connection to contact each other promptly, and thereby, possible to achieve more stable attachment.
Moreover, in this embodiment, the latch lever 16 including the second engagement section 23 is disposed on the opposite side of the board attachment positioning section 25 while having the center line 61 in-between. According to this configuration, in the process of the operation to attach the ink tank, the engagement between the positioning sections 24 and 52 for electric connection, which are located on the back side compared to the second engagement section 23 in the engagement direction, occurs before the second engagement section 23 is engaged with the second fitting section 51, as shown in
In this embodiment, the board attachment positioning section 25 is disposed in the space between the ink supply port 14 and the board 24 on the bottom face of the ink tank 10a. In this way, even if the ink spills out of the ink supply port 14 during the operation to attach the ink tank or the like, it is possible to utilize the board attachment positioning section 25 as a barrier and thereby to prevent adhesion of the ink to the board 24.
Next, the color ink tank 10b will be described in detail with reference to
As apparent from
The ink supply ports 14 are two-dimensionally arranged as follows. First, as apparent from the drawing, the abutting centers of the respective ink supply ports 14 are arranged so as not to be on the same line orthogonal to the y direction. To be more precise, in terms of the y direction, the abutting center 26 of the photo black ink supply port is located in the backmost position. Then, the abutting center 29 of the cyan ink supply port is located in front of the abutting center 26, and the abutting center 27 of the magenta ink supply port is located in front of the abutting center 29. Finally, the abutting center 28 of the yellow ink supply port is located in the position closest to the front face. In the x direction (the width direction of the ink tank) orthogonal to the y direction, there is a row BM defined by the abutting centers 26 and 27 of the photo black and magenta ink supply ports. Similarly, there is another row CY defined by the abutting centers 28 and 29 for the cyan and yellow ink supply ports. These two rows, BM and CY, are located so as to have the center line 61 in the width direction of the ink tank therebetween.
By arranging the ink supply ports so as to disperse the abutting centers 26 to 29 in this way, the photo black, cyan, magenta, and yellow ink supply ports are connected to the corresponding ink receiving pipes in this order when the ink tank is rotated and attached. In addition, the ink tank receives the reactive forces from the ink receiving pipes in the order of the ink supply port 26 located on the left side of the center line 61, the ink supply port 29 located in the direction of the right side of the ink supply port 26, the ink supply port 27 located on the left side of the center line 61, and the ink supply port 28 located in the direction of the right side of the ink supply port 27.
Hence, it is possible to avoid reception of the reactive forces to the ink receiving pipes as attaching forces at one time upon connection. This configuration makes it possible to disperse the reactive forces. Moreover, it is possible to achieve stable attachment while suppressing excessive inclination of the tank at the time of attachment.
In this embodiment, concerning relations between the abutting center 26 of the photo black ink supply port located on the backmost side in the direction of attaching the tank and the abutting center 29 of the cyan ink supply port, and between the abutting center 29 and the abutting center 27 of the magenta ink supply port, layout intervals are increased in this order. Specifically, as shown in
The ink tank is rotated when it is attached. Accordingly, as an ink supply port is closer to the engagement section located on the back side in the direction of inserting the ink tank, i.e. to a rotating center at the time of attachment, it is possible to reduce an operating force at the time of attaching the ink tank due to the principle of leverage. For this reason, the interval between the ink supply ports located near the rotation center is decreased while the interval between the ink supply ports on the front face side, or as farther away from the rotation center, is increased. By laying out the supply ports as described above, it is possible to reduce the operation force to be applied by the user, and to reduce fluctuation in the operating force in the positions of the respective supply ports.
However, since the ink supply ports are dispersed on the left side and the right side relative to the center line 61 in the width direction of the ink tank, it is conceivable that the inclination of the ink tank be increased at the time of the attachment operation along the increase in the intervals between the abutting centers. For this reason, it is desirable to reduce the interval between the ink supply ports on the front face side, i.e. the region located in the most distant position from the rotation center, in light of suppression of rattles from side to side when completing attachment of the tank so as to achieve attachment of the tank reliably.
To be more precise, in this embodiment, the interval between the abutting center 27 of the magenta ink supply port and the abutting center 28 of the yellow ink supply port is set narrower than the rest of the intervals between the abutting centers of other ink supply ports. In other words, assuming that the interval between the abutting center 27 of the magenta ink supply port and the abutting center 28 of the yellow ink supply port is defined as c, the values a, b, and c satisfy a relation of c<a<b as shown in
In addition, the abutting center 28 of the ink supply port locating closest to the front side of the ink tank among the included ink supply ports (which is the yellow ink supply port in this embodiment) is located more backward in the direction of attachment of the ink tank than the board attachment positioning section 25. Further, the abutting center 28 of this yellow ink supply port is disposed on the opposite side of the board attachment positioning section 25 while having the center line 61 therebetween. At the time of the operation to attach the ink tank, immediately before the board 24 and the contact unit 53 come in contact to each other, the ink tank 10b is tilted toward the side where the abutting center is not located (the left side in
Moreover, as similar to the black tank 10a, the color ink tank 10b also includes the latch lever 16, which is provided with the second engagement section 23, located on the opposite side of the board attachment positioning section 25 while having the center line 61 therebetween. As a consequence, in the case of the color ink tank 10b as well, the second engagement section 23 is tilted so as to approach the second fitting section 51. In this way, the attachment property of the ink tank can be improved.
Furthermore, the color ink tank 10b also includes the board attachment positioning section 25 which is disposed in a position between the ink supply ports 14 and the board 24 on the bottom face of the ink tank 10b. In this way, even if the ink spills out of the ink supply ports 14 during the operation to attach the ink tank or the like, it is possible to utilize the board attachment positioning section 25 as a barrier and thereby to prevent adhesion of the ink to the board 24.
It is to be noted that the present invention is not limited only to the above-described embodiment, and the invention may apply various modifications.
In a case where an ink tank is attached to the holder unit 50, the ink tank of the first embodiment is configured to insert the first engagement sections 22 provided on the back side of the tank into the first fitting sections 35 of the holder and then to perform a rotating operation around the first engagement sections 22. The holder unit 50 is provided with a guide plate 111 for regulating the direction of insertion so that the back side provided with the first engagement sections is inserted in the first place when attaching the ink tank. The reason for providing the plate is to lead the user to put the first engagement sections provided on the back side of the ink tank below the plate and then to push the latch lever after inserting the back side of the ink tank. Nevertheless, as shown in
Besides the above, the present invention is applicable to various modifications of ink tanks.
For example, the above-described embodiment employs the latch lever in order to attach the ink tank. However, the present invention is effectively applicable to other aspects configured to rotate and attach the ink tank. Accordingly, it is not always necessary to employ the latch lever.
Meanwhile, the embodiment has described the ink tank using the ink absorbers made of the fiber assemblies in order to impregnate and retain the ink and to generate a preferable negative pressure that balances with meniscus retaining forces of the nozzles. However, the ink absorbers are not limited only the fiber assemblies. Meanwhile, it is also possible to separate the ink container into a container chamber including the above-described ink absorber and a container chamber configured to store the ink directly. Moreover, instead of using the ink absorber as negative pressure generating means, it is possible to fill the ink directly into a bag-like member made of an elastic material such as rubber designed to generate tension in a direction of expanding a volume, and to apply a negative pressure to the ink inside by use of the tension generated by this bag-like member. Further, it is also possible to form at least part of an ink containing space by use of an elastic member, then to put only the ink into the space, and to generate a negative pressure by applying a spring force to the elastic member.
Moreover, the embodiments have described the black ink tank for containing the black ink and the color ink tank for containing the yellow ink, the magenta ink, the cyan ink, and the photo black ink. However, the color tones (the colors and densities) of the inks used therein as well as the number of the ink tanks are not limited to this configuration.
Furthermore, the arrangement of the positions of the ink containers for the respective colors of inks as well as ink capacities thereof are not limited to the above-described arrangement or capacities. Particularly, the arrangement of the ink supply ports may be determined irrespective of the ink capacities and the dimensions and shapes of the containers. For example, it is possible to arrange the ink supply ports as described in the present invention even in the case of using the ink containers all having the same capacities and the same dimensions for the above-mentioned four colors.
In addition, the embodiments have described the aspect in which the ink engagement section is separated into the head unit having the inkjet head and the holder unit formed on the body. However, it is possible to render the ink tank detachable by involving only the head unit. Alternatively, it is also possible to fix the head unit to the printing apparatus.
The embodiments of the present invention have described the configuration including the information storage element for storing the information concerning the ink tank. However, the information storage element is not always necessary as long as the ink tank is configured to achieve electric connection with the printing apparatus. For example, it is possible to provide the ink tank with means for notifying an ink residual amount (such as a light emitter) and a contact used for supplying an electric signal to the ink tank for driving the means by control from the printing apparatus.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-227176, filed Aug. 23, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-227176 | Aug 2006 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11841537 | Aug 2007 | US |
Child | 13197663 | US |