This application is the U.S. national phase of International Application No. PCT/IB2012/052414, filed 15 May 2012, which designated the U.S. and claims priority to EP Application No. 11166852.1, filed 20 May 2011, the entire contents of each of which are hereby incorporated by reference.
The present invention generally relates to the wiping of rotatable intaglio printing cylinders of intaglio printing presses. More precisely, the present invention relates to an ink wiping system for an intaglio printing press comprising a rotatable wiping roller assembly designed to wipe excess ink from the surface of a rotatable intaglio printing cylinder of the intaglio printing press. The present invention also relates to an inking wiping system comprising a pressing device designed to exert pressure on a first surface of a displaceable wiping medium whose second surface, opposite the first surface, is positioned to wipe excess ink from the surface of a rotatable intaglio printing cylinder of the intaglio printing press. The present invention further relates to intaglio printing presses comprising such ink wiping systems.
Intaglio printing presses are widely used in security printing for printing security documents, especially banknotes. Prior art intaglio printing presses are for instance disclosed in Swiss Patent No. CH 477 293, European Patent Applications Nos. EP 0 091 709 A1, EP 0 406 157 A1, EP0 415 881 A2, EP 0 563 007 A1, EP 0 873 866 A1, EP 1 602 483 A1, and International Applications Nos. WO 01/54904 A1, WO 03/047862 A1, WO 2004/026580 A1, WO 2005/118294 A1.
The sheets are fed from the sheet feeder 2 onto a feeder table and then onto the impression cylinder 7. The sheets are then carried by the impression cylinder 7 to the printing nip formed by the contact location between the impression cylinder 7 and the plate cylinder 8 where intaglio printing is performed. Once printed, the sheets are transferred from the impression cylinder 7 to a sheet transporting system 11 in order to be delivered to the delivery unit 4. The sheet transporting system 11 conventionally comprises an endless conveying system with a pair of endless chains driving a plurality of spaced-apart gripper bars for holding a leading edge of the sheets (the freshly-printed side of the sheets being oriented downwards on their way to the delivery unit 4), sheets being transferred in succession from the impression cylinder 7 to a corresponding one of the gripper bars.
During their transport to the sheet delivery unit 4, the freshly printed sheets are preferably inspected by an optical inspection system 5. In the illustrated example, the optical inspection system 5 is advantageously disposed along the path of the sheet transporting system 11, right after the printing unit 3. Such an optical inspection system 5 is already known in the art and does not need to be described in detail. Examples of optical inspection systems adapted for use as optical inspection system 5 in the intaglio printing press of
Before delivery, the printed sheets are preferably transported in front of a drying unit 6 disposed after the inspection system 5 along the transport path of the sheet transporting system 11. Drying could possibly be performed prior to the optical inspection of the sheets.
The inking system 9 comprises in this example four inking devices, three of which cooperate with a common ink-collecting cylinder or Orlof cylinder 9.5 (here a two-segment cylinder) that contacts the plate cylinder 8. The fourth inking device is disposed so as to directly contact the surface of the plate cylinder 8. It will be understood that the illustrated inking system 9 is accordingly adapted for both indirect and direct inking of the plate cylinder 8. The inking devices cooperating with the ink-collecting cylinder 9.5 each include an ink duct 9.10, 9.20, 9.30 cooperating in this example with a pair of inking rollers 9.11, 9.21 and 9.31, respectively. Each pair of inking rollers 9.11, 9.21, 9.31 in turn inks a corresponding chablon cylinder (also designated as selective inking cylinder) 9.13, 9,23, 9.33, respectively, which is in contact with the ink-collecting cylinder 9.5. As for the fourth inking device, it includes an ink duct 9.40, an additional inking roller 9.44, a pair of inking rollers 9.41 and a chablon cylinder 9.43, this latter cylinder being in contact with the plate cylinder 8. The additional ink roller 9.44 is necessary in this latter case as the fourth inking device 9.4 is used to directly ink the surface of the plate cylinder 8 which rotates in opposite direction as compared to the ink-collecting cylinder 9.5. As is usual in the art, the surface of the chablon cylinders 9.13, 9.23, 9.33 and 9.43 is structured so as to exhibit raised portions corresponding to the areas of the intaglio printing plates 8a, 8b, 8c intended to receive the inks in the corresponding colours supplied by the respective inking devices.
The ink wiping system 10, on the other hand, typically comprises a wiping tank 10.1 (which is movable towards and away from the plate cylinder 8), a wiping roller 10.2 supported on and partly located in the wiping tank and contacting the plate cylinder 8, cleaning means 10.3 for removing wiped ink residues from the surface of the wiping roller 10.2 using a wiping solution that is sprayed or otherwise applied onto the surface of the wiping roller 10.2, and a drying blade 10.4 contacting the surface of the wiping roller 10.2 for removing wiping solution residues from the surface of the wiping roller 10.2. The wiping roller 10.2 can typically be removed from the wiping tank 10.1 during maintenance operations using a crane 12 (see
A particularly suitable solution for an ink wiping system comprising a wiping roller is disclosed in International Application No. WO 2007/116353 A1 (corresponding to EP 1 844 930 A1) which is incorporated herein by reference in its entirety.
The most common solution used for wiping excess ink from the surface of an intaglio printing cylinder is, as discussed hereinabove, to use a wiping roller assembly that rotates in the same direction as the intaglio printing cylinder. Such wiping roller assembly typically consists of a cylinder base made commonly of metal and bearing at least one layer of wiping material, preferably a layer of polymer material such as PVC material. The structure and manufacture of such wiping rollers is for instance disclosed in U.S. Pat. Nos 3,785,286, 3,900,595,4,054,685 and International Applications Nos. WO 2007/031925 A2, WO 2007/031927 A2, WO 2007/034362 A2 which are incorporated herein by reference.
As mentioned above, such wiping roller is supported on and partly located in a wiping tank for rotation against the surface of the intaglio printing cylinder, the surface of the wiping roller being cleaned from wiped ink residues using a wiping solution that is typically sprayed onto the surface of the wiping roller.
With such a known solution, the wiping pressure between the intaglio printing cylinder and the wiping roller is adjusted by playing with the position of the axis of rotation of the wiping roller with respect to the axis of rotation of the intaglio printing cylinder. This is typically achieved by using two adjusting rods or hydraulic cylinders acting on the two ends of the wiping roller, for instance through eccentric bearings. Adjustment mechanisms for adjusting the wiping pressure between a wiping roller and an intaglio printing cylinder are for instance disclosed in European Patent Applications Nos. EP 0 475 890 A1, EP 0 526 398 A1, and U.S. Pat. Nos. 2,987,993, 3,762,319.
These adjustment mechanisms are however not entirely satisfactory as the ability to adjust the wiping pressure along the contact portion between the wiping roller and the intaglio printing cylinder is limited by the fact that one can only play with the position of the axis of rotation of the wiping roller with respect to the intaglio printing cylinder. It is therefore difficult to ensure that the wiping pressure is adequate or substantially uniform over the whole length of the contact portion between the wiping roller and the intaglio printing cylinder. This furthermore leads to a non-uniform wear of the surface of the wiping roller. An improved solution is thus required.
Furthermore, maintenance operations of the known ink wiping systems are time-consuming as the wiping roller is a relatively heavy component to manipulate, which typically necessitates the use of a crane to remove the wiping roller from the wiping tank (as for instance illustrated in
Besides the above ink wiping systems that make use of a wiping roller as wiping medium, it is also known to wipe excess ink from the surface of a rotatable intaglio printing plate by means of scraper blade mechanisms and/or wiping webs, such as paper webs. An ink wiping system for an intaglio printing press using a combination of a scraper blade mechanism and of wiping webs is for instance disclosed in U.S. Pat. No. 4,240,347 (which corresponds to GB 2 065 561). An ink wiping system for an intaglio printing press using only wiping webs is disclosed in U.S. Pat. Nos. 1,927,056 and 3,888,172.
According to the solutions described in U.S. Pat. Nos. 1,927,056, 3,888,172 and 4,240,347, the wiping web which acts as wiping medium is pressed against the surface of the intaglio printing cylinder by means of a pressing pad or shoe that extends parallel to the axis of rotation of the intaglio printing cylinder. As described more particularly in U.S. Pat. No. 4,240,347, the wiping pressure between the wiping web and the intaglio printing cylinder is adjusted by acting on the two ends of the pressing pad or shoe. Such solutions thus exhibit basically the same problems as the known ink wiping systems which make use of wiping rollers, namely a lack of ability to properly control and adjust the wiping pressure between the wiping medium and the intaglio printing cylinder over the whole length of the contact portion between the wiping medium and the intaglio printing cylinder.
A general aim of the invention is therefore to provide an improved ink wiping system for an intaglio printing press.
A further aim of the invention is to provide such an ink wiping system which offers a greater ability to control and adjust the wiping pressure over the whole length of the contact portion between the wiping medium and the intaglio printing cylinder.
Still another aim of the invention is to provide such an ink wiping system which facilitates maintenance operations.
Yet another aim of the invention is to provide an improved pressing device for exerting pressure on an inner surface of a displaceable wiping medium whose outer surface is positioned to wipe excess ink from the surface of a rotatable intaglio printing cylinder of an intaglio printing press.
These aims are achieved thanks to the ink wiping systems defined in the claims.
According to a first aspect of the invention, there is accordingly provided an ink wiping system for an intaglio printing press comprising a rotatable wiping roller assembly designed to wipe excess ink from the surface of a rotatable intaglio printing cylinder of the intaglio printing press, the rotatable wiping roller assembly comprising:
In an advantageous embodiment, the wiping pressure between the hollow cylindrical body and the intaglio printing cylinder is adjustable by the pressing device at a plurality of axial positions along the length of the hollow cylindrical body. Optimal pressure control all along the contact portion between the intaglio printing cylinder and the outer surface of the hollow cylindrical body is thus ensured.
According to a second aspect of the invention, there is further provided an ink wiping system for an intaglio printing press comprising a pressing device designed to exert pressure on a first surface of a displaceable wiping medium whose second surface, opposite the first surface, is positioned to wipe excess ink from the surface of a rotatable intaglio printing cylinder of the intaglio printing press, the pressing device extending transversely to a direction of displacement of the wiping medium and being further designed to allow adjustment of a wiping pressure between the wiping medium and the intaglio printing cylinder at a plurality of transverse positions transversely to the direction of displacement of the wiping medium.
In an advantageous embodiment, the pressing device comprises a plurality of pressing units that are distributed transversely to the direction of displacement of the wiping medium to allow adjustment of the wiping pressure between the wiping medium and the intaglio printing cylinder at the plurality of transverse positions transversely to the direction of displacement of the wiping medium.
There is also provided an intaglio printing press comprising such ink wiping systems.
Further advantageous embodiments of the invention form the subject-matter of the dependent claims and are discussed below.
Other features and advantages of the present invention will appear more clearly from reading the following detailed description of embodiments of the invention which are presented solely by way of non-restrictive examples and illustrated by the attached drawings in which:
Within the context of the present invention, the expression “intaglio printing cylinder” designates either a cylinder whose surface is provided with intaglio patterns engraved directly onto the circumference of the cylinder or of a cylinder sleeve, or a plate cylinder carrying on its circumference at least one intaglio printing plate with engraved intaglio patterns (the second solution being now more common in the art). In the following description, the intaglio printing cylinder is a plate cylinder carrying several intaglio printing plates on its circumference.
Further, within the context of the present invention, the expression “wiping medium” designates a medium having a surface (hereinafter the “second surface” or “outer surface”) positioned to wipe excess ink from the surface of a rotatable intaglio printing cylinder of an intaglio printing press and a surface (hereinafter the “first surface” or “inner surface”) onto which a pressing device acts to urge the opposite second surface of the wiping medium against the surface of the intaglio printing cylinder that is to be wiped from excess ink. In a preferred embodiment of the present invention, the wiping medium takes the shape of a hollow cylindrical body, the first and second surfaces of the wiping medium being respectively an inner surface and an outer surface of the hollow cylindrical body. The wiping medium can alternatively take the shape of a wiping web that is unwound from a supply roll and wound around a waste roll.
According to this embodiment of the invention, a wiping roller assembly 102 is rotatably mounted on and partly located in a wiping tank 101 and comprises a rotatable hollow cylindrical body 110 whose outer surface 110a is positioned to wipe the surface of the intaglio printing cylinder 80. The wiping tank 101 is placed underneath the wiping roller assembly 102 for recuperating the wiping solution that has previously been sprayed by at least one spraying unit (not shown) against the surface of the wiping roller assembly 102. In order to efficiently remove the ink residues and the sprayed wiping solution present on the outer surface 110a of the hollow cylindrical body 110, the ink wiping system 100 further comprises cleaning means 103 for removing ink residues from the surface of the wiping roller assembly 102. Such cleaning means are known in the art, for instance from International Application No. WO 2007/116353 A1. Downstream with respect to the direction of rotation of the wiping roller assembly 102, a scraping blade 104, also known as a “drying blade”, is arranged to contact the surface of the wiping roller assembly 102 and remove residual wiping solution and any potential ink residues still present on the outer surface 110a. Elements 103 and 104 are also shown in perspective view in
The rotatable hollow cylindrical body 110 has a first end 111, a second end 112 and an outer surface 110a. The second end 112 is also referred to as the driving end as explained below. An elongated central beam 131 is provided in the central hollow portion of the cylindrical body 110 and extends on both sides beyond the first and second ends 111 and 112 (see also
The central beam 131 is supported by a supporting mechanism 200 provided with two arms, a first arm 201 cooperating with the extremity of the central beam 131 proximate to the first end 111 of the cylindrical body 110 and a second arm 202 which is coupled rotatably to the second end 112 of the hollow cylindrical body 110. An elongated support beam 203 extending longitudinally, substantially parallel to the cylindrical body 110, supports both arms 201 and 202. In the illustrated example, two supporting feet 204 are provided on each side of the support beam 203 in order to anchor the supporting mechanism 200 to a suitable portion of the intaglio printing press and enable rotational support of the support beam 203 and associated supporting arms 201 and 202.
Turning back to
The ink wiping system 100 is further provided with a device 160, mounted on an axial extension of the central beam 131, next to the first end 111 of the hollow cylindrical body 110, to ensure an axial reciprocation of the wiping roller assembly 102 along its axis of rotation. Such device 160 can in particular be designed to act as a cam follower cooperating with a cam mechanism (not shown), as is known in the art. Reciprocation of the wiping roller assembly 102 along its axis of rotation is advantageous in that in ensures better wiping uniformity.
A tripod drive head 170, better shown in
In this particular example, driving of the hollow cylindrical body 110 into rotation is ensured by way of an Oldham coupler arrangement 150 which is coupled to the driving end 112 of the hollow cylindrical body 110. More precisely, as illustrated in
Turning now to
According to this preferred embodiment, the wiping pressure can be adjusted by the pressing device at a plurality of axial positions along the length of the hollow cylindrical body. In this particular example, the pressing device 130 advantageously comprises six pressing units 132 that are distributed axially along the inside of the hollow cylindrical body 110 and allow adjustment of the wiping pressure between the hollow cylindrical body 110 and the intaglio printing cylinder 80 at six corresponding axial positions along the length of the hollow cylindrical body 110.
Each pressing unit 132 preferably comprises a position-adjustable pressing member 135 designed to exert pressure on the inner surface 110b of the hollow cylindrical body 110 and an actuator 140, such as a pneumatic piston, designed to allow adjustment of a radial position of the pressing member 135 inside the hollow cylindrical body 110. As shown, the actuators 140 are provided in this example on the central beam 131.
More precisely, as schematically illustrated in
Each pressing member 135 preferably comprises a rotatable pressure ring 136 positioned for rolling contact with an inner section of the inner surface 110b of the hollow cylindrical body 110 and a roller bearing 137 having an outer cage secured to the inside of the rotatable pressure ring 136, the actuator being arranged inside an inner cage of the roller bearing 137 to adjust a radial position of the rotatable pressure ring 136 and of the roller bearing 137 inside the hollow cylindrical body 110.
In the illustrated example, each pressing unit 132 further comprises a guide member 138 interposed between the inner cage of the roller bearing 137 and the actuator 140 to allow radial translation of the rotatable pressure ring 136 and the roller bearing 137 under the action of the actuator 140. More precisely, as shown in
As further shown in
One will thus understand that wiping pressure can be adjusted and controlled by means of each pressing unit 132 which exerts a corresponding pressure level onto a relevant section of the inner surface of the hollow cylindrical body 110 as depicted by the broad arrows in
According to this preferred embodiment, shock absorbers or dampers 145 are further provided on the central beam 131, in opposite relationship with respect to corresponding actuators 140. Each shock absorber or damper 145 is interposed between the central beam 131 and a corresponding section of the guide member 138, opposite to the location where the actuator 140 acts on the guide member 138. These shock absorbers or dampers 145 are preferably provided in order to dissipate kinetic energy. This is particularly useful in the context of an intaglio printing press comprising a plate cylinder carrying one or more intaglio printing plates as the wiping system has to cope with the presence of corresponding cylinder pits that are provided in such a case on the plate cylinder. In essence, the shock absorbers or dampers are designed to prevent the wiping roller assembly 102 from “falling” into the cylinder pits of the intaglio printing cylinder 80. The shock absorbers or dampers 145 can advantageously be designed as hydraulic damping pistons. In such a case, as shown in
International Applications Nos. WO 2007/031925 A2, WO 2007/031927 A2 and WO 2007/034362 A2, all incorporated herein by reference, describe methods and apparatuses that could be used to apply the layers of wiping material 116 onto the cylindrical base 115.
The inner surface of the cylindrical base 115 forms the inner surface 110b of the hollow cylindrical body 110, while the outer surface of the upper layer of wiping material 116 forms the outer surface 110a of the hollow cylindrical body 110. During operation, this upper layer is in contact with the surface of the intaglio-printing cylinder 80 to wipe excess ink from the surface of the intaglio-printing cylinder 80.
The cylindrical base 115 is preferably formed and/or constructed to exhibit a high resistance to torsion. Fiber-reinforced composite materials, such as carbon fiber, are preferred materials in the context of this invention.
As already mentioned hereinabove, and schematically illustrated in
The Oldham coupler arrangement 150 comprises the input coupler 151 and an intermediate coupler 152 having substantially the shape of a ring which cooperates with the rotatable supporting ring 127 of the second cylinder bearing 125. The rotatable supporting ring 127 is designed to act as output coupler of the Oldham coupler arrangement 150. The input coupler 151 is shaped as a wheel with groove sections 151a for cooperation with corresponding tongue sections 152a provided on a first side of the intermediate coupler 152. Similarly, the rotatable supporting ring 127, acting as output coupler, is provided with groove sections 127b for cooperation with corresponding tongue sections 152b provided on a second side of the intermediate coupler 152. The tongue sections 152a, 152b are provided at right angles with respect to one another.
Rotational movement is transmitted to the hollow cylindrical body 110 by way of driving cogs 127a provided on the rotatable supporting ring 127, which driving cogs 127a cooperate with corresponding driving slots 113 provided at the second end of the hollow cylindrical body 110, namely at the corresponding end of the cylindrical base 115.
As shown in
As illustrated by
Various modifications and/or improvements may be made to the above-described embodiments without departing from the scope of the invention as defined by the annexed claims. For instance, the illustrated embodiment is provided with six pressing units 132. Variants involving a greater or lower number of pressing units can be envisaged.
In addition, while an Oldham coupler arrangement was discussed hereinabove, other coupler arrangements could be envisaged, such as a Cardan joint or like universal joint.
Furthermore, while this has not specifically been discussed above, pivoting of the wiping roller assembly 102 between the working position and the maintenance position can be carried by a suitable drive, such as an electric motor.
It is further to be appreciated that, while
It is further to be appreciated that the above-discussed pressing device can also be used to exert pressure on a first side of a displaceable wiping medium, such as a wiping web, whose second surface, opposite the first surface, is positioned to wipe excess ink from the surface of a rotatable intaglio printing cylinder of an intaglio printing press. Use of the pressing device together with a hollow cylindrical body as discussed above is however preferred.
Number | Date | Country | Kind |
---|---|---|---|
11166852 | May 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/052414 | 5/15/2012 | WO | 00 | 2/19/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/160476 | 11/29/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1927056 | Aitchison | Sep 1933 | A |
2987993 | Giori | Jun 1961 | A |
3656431 | Giori | Apr 1972 | A |
3762319 | Gazzola et al. | Oct 1973 | A |
3785286 | Giori | Jan 1974 | A |
3888172 | D'Amato et al. | Jun 1975 | A |
3900595 | Giori | Aug 1975 | A |
4054685 | Giori | Oct 1977 | A |
4224095 | Giori | Sep 1980 | A |
4240347 | Hazelton et al. | Dec 1980 | A |
4291446 | Marchioro | Sep 1981 | A |
4358993 | Spillmann et al. | Nov 1982 | A |
4516496 | Giori | May 1985 | A |
4605366 | Lehmann et al. | Aug 1986 | A |
4676157 | Ichikawa et al. | Jun 1987 | A |
4685182 | Lübke | Aug 1987 | A |
5062359 | Giori | Nov 1991 | A |
5062360 | Germann et al. | Nov 1991 | A |
5094163 | Lehmann et al. | Mar 1992 | A |
5152220 | Lindner et al. | Oct 1992 | A |
5197174 | Lehmann | Mar 1993 | A |
5240666 | Schnyder et al. | Aug 1993 | A |
5255601 | Blass et al. | Oct 1993 | A |
5282417 | Germann | Feb 1994 | A |
5290223 | Lehmann | Mar 1994 | A |
5345864 | Machguth et al. | Sep 1994 | A |
5372068 | Lehmann et al. | Dec 1994 | A |
5393290 | Lehmann et al. | Feb 1995 | A |
5527422 | Lehmann et al. | Jun 1996 | A |
5711223 | Taylor | Jan 1998 | A |
5765480 | Toyoda | Jun 1998 | A |
5899145 | Schaede | May 1999 | A |
6050187 | Kuhn et al. | Apr 2000 | A |
6111261 | Bolza-Schunemann et al. | Aug 2000 | A |
6176482 | Reinhard et al. | Jan 2001 | B1 |
6341556 | Endo | Jan 2002 | B1 |
6779445 | Schaede | Aug 2004 | B2 |
7011020 | Dunninger et al. | Mar 2006 | B2 |
7913641 | Dupertuis et al. | Mar 2011 | B2 |
8231125 | Hendle et al. | Jul 2012 | B2 |
8302558 | Ripamonti et al. | Nov 2012 | B2 |
8516960 | Bollettin et al. | Aug 2013 | B2 |
20030010233 | Schaede | Jan 2003 | A1 |
20040079250 | Lorig et al. | Apr 2004 | A1 |
20040237816 | Dunninger et al. | Dec 2004 | A1 |
20050056169 | Hashimoto et al. | Mar 2005 | A1 |
20050061177 | Salvestro et al. | Mar 2005 | A1 |
20050127595 | Hendle et al. | Jun 2005 | A1 |
20060144265 | Dunninger et al. | Jul 2006 | A1 |
20070181016 | Schaede | Aug 2007 | A1 |
20080216683 | Dupertuis et al. | Sep 2008 | A1 |
20080245246 | Dupertuis et al. | Oct 2008 | A1 |
20080268168 | Ripamonti et al. | Oct 2008 | A1 |
20090023567 | Johner et al. | Jan 2009 | A1 |
20090096156 | Hendle et al. | Apr 2009 | A1 |
20090183644 | Bollettin et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
477 293 | Oct 1969 | CH |
28 48 021 | Mar 1980 | DE |
0 091 709 | Oct 1983 | EP |
0 203 279 | Dec 1986 | EP |
0 406 157 | Jan 1991 | EP |
0 415 881 | Mar 1991 | EP |
0 439 822 | Aug 1991 | EP |
0 475 890 | Mar 1992 | EP |
0 526 398 | Feb 1993 | EP |
0 563 007 | Sep 1993 | EP |
0 873 866 | Oct 1998 | EP |
0 881 072 | Dec 1998 | EP |
1 602 483 | Dec 2005 | EP |
1 844 930 | Oct 2007 | EP |
2 065 561 | Jul 1981 | GB |
118869 | Aug 1969 | IN |
09193337 | Jul 1997 | JP |
WO 9736813 | Oct 1997 | WO |
WO 9737329 | Oct 1997 | WO |
WO 0154904 | Aug 2001 | WO |
WO 03047862 | Jun 2003 | WO |
WO 03070465 | Aug 2003 | WO |
WO 2004026580 | Apr 2004 | WO |
WO 2005118294 | Dec 2005 | WO |
WO 2007031925 | Mar 2007 | WO |
WO 2007031927 | Mar 2007 | WO |
WO 2007034362 | Mar 2007 | WO |
WO 2007116353 | Oct 2007 | WO |
Entry |
---|
International Search Report for PCT/IB2012/052414, mailed Jul. 10, 2012. |
Written Opinion for PCT/IB2012/052414,. Mailed Jul. 10, 2012. |
Number | Date | Country | |
---|---|---|---|
20140196620 A1 | Jul 2014 | US |