This invention relates generally to inkjet printing, and more particularly, to fixer fluid application to inkjet print media.
An inkjet printing mechanism is a type of non-impact printing device which forms characters, symbols, graphics or other images by controllably spraying drops of ink using an inkjet printhead. Inkjet printing mechanisms may be employed in a variety of devices, such as printers, plotters, scanners, facsimile machines, copiers, and the like. An inkjet printhead includes chambers which receive ink. Associated with each chamber is a nozzle forming an ejection outlet for the ink. During printing, ink drops are expelled from selective nozzles in a controlled pattern. The ink drops dry on the media sheet shortly after deposition to form a desired image (e.g., text, chart, graphic or other image).
Inks used in inkjet printing mechanisms may be composed of water-soluble organic solvents, surfactants, and colorants in a predominantly aqueous fluid. When a recording is made on plain paper, the deposited colorants retain some mobility, which can manifest as bleed, poor edge acuity, feathering or inferior density/chroma. These features adversely impact text and image quality. It is desirable to reduce these adverse impacts.
In an inkjet fixer fluid applicator, fixer fluid is received onto a first surface. Contact is formed between the first surface and a transfer roller. Fixer fluid is transferred from the first surface to the transfer roller. The fixer fluid is transferred from the transfer roller to an inkjet print medium. The transfer roller and the first surface are separated.
The inkjet printer 20 includes a frame or chassis 22 surrounded by a housing, casing or enclosure 24, such as of a plastic material. Sheets of print media 23 are fed through a print-zone 25 by a media handling system 26. The print media 23 may be any type of suitable sheet material, supplied in individual sheets or fed from a roll, such as paper, card-stock, transparencies, photographic paper, fabric, mylar, and the like. For convenience, the illustrated embodiment is described using a media sheet of paper as the print medium. The media handling system 26 has a feed tray 28 for storing media sheets before printing. A series of conventional drive rollers driven by a stepper motor and drive gear assembly may be used to move the media sheet from the input supply tray 28, through the print-zone 25, and after printing, onto a pair of extended output drying wing members 30, shown in a retracted or rest position in FIG. 1. The wings 30 momentarily hold a newly printed sheet above any previously printed sheets still drying in an output tray portion 32. The wings 30 then retract to the sides to drop the newly printed sheet into the output tray 32. The media handling system 26 may include a series of adjustment mechanisms for accommodating different sizes of print media, including letter, legal, A-4, envelopes, etc., such as a sliding length adjustment lever 34, a sliding width adjustment lever 36, and an envelope feed port 38.
The printer 20 also has a printer controller 40, which may be embodied by a microprocessor, that receives instructions from a host device, such as a computer (not shown). The printer controller 40 may also operate in response to user inputs provided through a key pad 42 located on the exterior of the casing 24. A monitor (not shown) coupled to the computer host may be used to display visual information to an operator, such as the printer status or a particular program being run on the host computer.
A carriage guide rod 44 is supported by the chassis 22 to slidably support an off-axis inkjet pen carriage system 45 for travel back and forth across the print-zone 25 along a scanning axis 46. The carriage 45 is also propelled along guide rod 44 into a servicing region, as indicated generally by arrow 48, located within the interior of the housing 24. A conventional carriage drive gear and DC (direct current) motor assembly (not shown) may be coupled to drive an endless belt (not shown), which may be secured in a conventional manner to the carriage 45. Control signals from the printer controller 40 signal the DC motor to incrementally advance the carriage 45 along guide rod 44. To provide carriage positional feedback information to printer controller 40, an encoder strip (not shown) may extend along the length of the print-zone 25 and over the service station area 48, with a conventional optical encoder reader 53 being mounted on the back surface of printhead carriage 45 to read positional information provided by the encoder strip.
Still referring to
The illustrated pens 50-56 each include reservoirs for storing a supply of ink. A system where the main ink supply is stored locally within the pen for a replaceable inkjet cartridge system is referred to as an “on-axis” system. A system which stores the main ink supply at a stationary location remote from the print-zone scanning axis is called an “off-axis” system.
Each pen 50-56 includes a printhead 70, 72, 74, 76, respectively. The printheads 70, 72, 74 and 76 each have an orifice plate (not shown) with a plurality of nozzles (not shown) formed therethrough in a manner well known to those skilled in the art. The nozzles of each printhead 70-76 may be formed in at least one, and often two linear arrays along the orifice plate. Thus, the term “linear” as used herein may be interpreted as “nearly linear” or substantially linear, and may include nozzle arrangements slightly offset from one another, for example, in a zigzag arrangement. Each linear array may be aligned in a longitudinal direction perpendicular to the scanning axis 46, with the length of each array determining the maximum image swath for a single pass of the printhead. The illustrated printheads 70-76 may be thermal inkjet printheads, although other types of printheads may be used, such as piezoelectric printheads. The thermal printheads 70-76 may include a plurality of resistors which are associated with the nozzles. Upon energizing a selected resistor, a bubble of gas is formed which ejects a droplet of ink from the nozzle and onto a sheet of paper in the print-zone 25 under the nozzle. The printhead resistors are selectively energized in response to firing command control signals delivered by a multi-conductor strip 78 extending from the controller 40 to the printhead carriage 45.
Referring to
Referring to
In some embodiments the fixer fluid 84 includes a cationic liquid composition such as a polyallylamine which is underprinted to anionic inkjet dyes to react with the dyes. In another embodiment in which the fixer fluid 84 is used to underprint a polymer dispersed pigment, the fixer fluid 84 includes any of the following for destabilizing the pigment dispersions: polymer latex; silica, alumina, and/or titanium oxide particles; polymer resins; buffer solutions; and inorganic salts. By destabilizing the pigment dispersion the pigment substantially precipitates at the surface of the print medium 23. For water-based inkjet dyes, the fixer fluid 84 contains ligand-complexed metal ions, and in some instances a polymeric viscosity modifier, such as ethylene oxide.
Referring again to
In operation, a transfer roller 94 contacts the surface 88 receiving fixer fluid 84, as shown in FIG. 4. The transfer roller 94 transfers the fixer fluid to a print medium 23 which is pressed to the transfer roller 94 by a pinch roller 96, as shown in FIG. 5. Thereafter, the print media 23 receives inkjet ink from one or more inkjet pens 50-56 (see FIG. 1). During a print job, multiple print media 23 may be fed over the transfer roller 94 receiving the fixer fluid. Each print medium 23, in turn, then receives inkjet ink. In an alternative embodiment, the fixer fluid 84 is applied just after each print medium 23 receives inkjet ink.
While idle, the transfer roller 94 is positioned out of contact with the surface 88 to minimize the transfer of fixer fluid 84 onto the pinch roller 96. As shown in
In the embodiment illustrated in
Referring to
Referring again to
While the above is discussed in terms of preferred and alternative embodiments, the invention is not intended to be so limited. For example, although the dispensing surface 88 is shown and described as being part of a roller 86, in alternative embodiments, the surface 88 may be a web driven by a plurality of rollers. In each embodiment the dispensing surface receives fixer fluid, either directly by extending below a level of fixer fluid 84 in the fixer fluid source 82, or indirectly by receiving fixer fluid 84 from a brush or other source which extends below the fixer fluid 84 level.
Number | Name | Date | Kind |
---|---|---|---|
5252989 | Kawakami et al. | Oct 1993 | A |
5821972 | Mey et al. | Oct 1998 | A |
5889544 | Mey et al. | Mar 1999 | A |
5937258 | Acquaviva et al. | Aug 1999 | A |
6011947 | Acquaviva et al. | Jan 2000 | A |
6195526 | Lee et al. | Feb 2001 | B1 |
6205312 | Kim | Mar 2001 | B1 |
6293668 | Kubby et al. | Sep 2001 | B1 |
6412935 | Doumaux | Jul 2002 | B1 |
6443568 | Askeland et al. | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040135860 A1 | Jul 2004 | US |