This invention relates to an inkjet printer maintenance arrangement and is particularly applicable to industrial grade printers having an inkjet printhead which extends the full width of sheet media to be printed.
As is well-known, inkjet printers operate by ejecting droplets of ink onto a web or sheet medium. Such printers have printheads that are non-contact heads with ink being transferred during the printing process as minute “flying” ink droplets over a short distance of the order of ½ to 1 millimetre. Modern inkjet printers are generally of the continuous type or the drop-on-demand type. In the continuous type, ink is pumped along conduits from ink reservoirs to nozzles. The ink is subjected to vibration to break the ink stream into droplets, with the droplets being charged so that they can be controllably deflected in an applied electric field. In a thermal drop-on-demand type, a small volume of ink is subjected to rapid heating to form a vapour bubble which expels a corresponding droplet of ink. In piezoelectric drop-on-demand printers, a voltage is applied to change the shape of a piezoelectric material and so generate a pressure pulse in the ink and force a droplet from the nozzle.
Most inkjet printers are designed with scanning printheads. Because of the cost of manufacture, such printheads generally have a small number of nozzles. To print even a small page, the head is moved over the medium and ink droplets are ejected at the appropriate moment to construct the portion of the image being created. As only one band of an image is created in a single scan, the process is quite slow. For industrial grade inkjet printers where printing speeds of the order of 60 pages per minute are sought, inkjet printers have been developed which extend across the full width of sheet media to be printed. Of particular but not exclusive interest in the context of the present invention are thermal drop-on-demand inkjet printheads commercially available under the MEMJET registered trade mark. Such printheads use thermal energy to produce a vapor bubble in ink occupying a channel so as to expel an ink droplet from a nozzle at an exposed end of the channel. The printhead is manufactured as an integrated circuit device to include heating resistors located adjacent to the ink ejection nozzles, the resistors being individually energized by electrical heating pulses in response to an input print signal. For each ink colour or type, a separate ink supply circuit is used having an ink supply container and a peristaltic pump for pumping ink from the container to the printhead. For each ink colour/type, the printhead has an ink inlet port, an ink outlet and a main channel. Ink is drawn from the main channel into branch channels by capillary action to replace ink that is ejected in the course of printing. Printing is enabled by “firing” selected nozzles at the printhead active face. Other than when firing, ink in a nozzle chamber is prevented from escaping from the nozzle and flooding the nozzle plate by maintaining a negative hydrostatic pressure at the printhead. The Memjet printheads have a high nozzle density of the order of 1600 dots per inch (dpi). A series of such integrated circuit devices may be combined to provide a page wide printhead typically having five colour channels. Typically, the preferred Memjet integrated circuit printhead has of the order of 70,000 nozzles. At a paper speed of 12 inches (305 mm) per second, the printhead produces 1600×800 dpi quality, while at a speed of 6 inches (152 mm) per second, the printhead produces 1600×1600 dpi output for high-quality graphics (1-2 picolitres). Ink drop placement is very accurate with ink drops being of the order of 14 microns in diameter. Typically a Memjet IC chip contains 5 ink channels with two rows of nozzles per channel. Preferred Memjet devices have nozzles which are coated with a layer of silicon nitride to provide a smooth, flat surface resisting debris adhesion and so providing for ease of maintenance.
In order to keep an inkjet printhead capable of printing high quality images, certain maintenance procedures are performed during a printing process. Among such procedures is printhead capping which consists of placing a cap over the printhead nozzles when a printing operation is temporarily suspended to ensure that ink at the printhead nozzles does not dry out and cause partial or full blocking of an inkjet nozzle. Another common procedure is printhead cleaning in which ink is ejected though the printhead nozzles to flood the printhead face which is then washed in the ink. In addition, maintenance elements may include a spittoon to receive excess ink that may inadvertently flood the printhead face or may have been deliberately applied to the printhead face in the course of the cleaning process. Conventionally, the maintenance elements are mounted as an assembly, the assembly having an associated drive mechanism to bring appropriate maintenance elements to the print face when required and an ink drain means for draining excess or cleaning ink from the printhead face. Accommodation must be made for such an inkjet maintenance assembly which takes into account the position and operation of the inkjet print engine (of which the inkjet printhead is a primary part) and the inkjet printer sheet media transport mechanism.
A known arrangement of printhead engine and maintenance assembly that is particularly adapted for cut sheets is shown in
An alternative transport equipment for transporting cut sheets to and from an inkjet print station disclosed in U.S. patent application Ser. No. 13/368,280 (Multiple printhead printing apparatus and method of operation) filed Feb. 7, 2012, the contents of which are hereby incorporated by reference in their entirety and made part of the present United States patent application for all purposes. The aforesaid application describes a printing apparatus having a series of inkjet printheads spaced from one another in a transport direction. A continuous belt driven around a roller system is used to feed sheet media successively to the printheads so that a partial image printed by one printhead is overprinted at a subsequent printhead with registration of the partial images. A sheet medium is caused to become electrostatically tacked to the belt by passing the sheet past a charging device. Movement of the belt is tracked by a tracking sub-system and operation of the printheads is coordinated with the tracked belt movement to achieve precise registration of the partial images. The nature of this transport system means that every part of the continuous belt tracks under the printheads during the printing process. Consequently, it is not possible to provide access to maintenance elements located underneath the printhead because access is blocked by the conveyor belt.
According to one aspect of the invention, there is provided apparatus comprising a printhead mounted on a first carriage, a printhead maintenance assembly including first and second maintenance elements, the printhead maintenance assembly mounted on a second carriage, a transport assembly operable to move sheet media past the printhead in a transport direction along a transport path for printing thereon by the printhead, a first reciprocal drive to drive the first carriage between a first position in which the printhead is positioned for printing onto sheet media in the transport path, and a second position in which a space is established between the printhead and the transport path, a second reciprocal drive for driving the second carriage to effect a first phase movement of the second carriage between a third position in which the maintenance assembly is parked at a position allowing printing of transported sheet media by the printhead and a fourth position in which the maintenance assembly occupies the space and the first maintenance element is positioned for performing a maintenance operation on the printhead, and a second phase movement of the second carriage between the fourth position and a fifth position in which the first maintenance element is displaced from its operating position relative to the printhead and the second maintenance element is located in an operating position relative to the printhead, the second reciprocal drive being a belt drive, the belt drive for reciprocally driving the second carriage in a first direction, the belt connected to a motion transfer device to convert a predetermined movement of the belt to movement of the second carriage in a direction transverse to the first direction.
For simplicity and clarity of illustration, elements illustrated in the following figures are not drawn to common scale. For example, the dimensions of some of the elements are exaggerated relative to other elements for clarity. Advantages, features and characteristics of the present invention, as well as methods, operation and functions of related elements of structure, and the combinations of parts and economies of manufacture, will become apparent upon consideration of the following description and claims with reference to the accompanying drawings, all of which form a part of the specification, wherein like reference numerals designate corresponding parts in the various figures, and wherein:
a is a perspective view of an inkjet print engine, an inkjet printhead maintenance assembly and a sheet media transport mechanism according to one embodiment of the invention.
b is a perspective view corresponding to
c is a view corresponding to
a is perspective view of an inkjet print engine, an inkjet printhead maintenance assembly and a sheet media transport mechanism according to another embodiment of the invention.
b is a perspective view corresponding to
c is a view corresponding to
a is perspective view of an inkjet print engine, an inkjet printhead maintenance assembly and a sheet media transport mechanism according to a further embodiment of the invention.
b is a perspective view corresponding to
c is a view corresponding to
d is a view corresponding to
a is perspective view of an inkjet print engine, an inkjet printhead maintenance assembly and a sheet media transport mechanism according to a variation of the embodiment of the invention illustrated in
b is a perspective view corresponding to
c is a view corresponding to
Referring in detail to
a shows the print engine 10 and the maintenance assembly 12 as they are positioned during a printing cycle. The print engine is located with a printhead active face 16 facing the upper face of the sheet media conveyor belt 14. The maintenance assembly 12 is located essentially in line with the printhead 10 but laterally offset to one side of the belt 14. Both the print engine 10 and the maintenance assembly 12 have a width equal to the width of the transport belt 14. Consequently, the printhead 10 can print the full width of sheet media as they are transported under the print engine 10 during a print cycle. In addition, the maintenance assembly 12, which has maintenance elements presented upwardly, can be operated to service the complete printhead 10 when it is brought against the printhead face 16. In this arrangement, an active face 16 of the printhead faces downwardly and maintenance assembly elements shown generally at 18 are presented upwardly.
b shows the print engine 10 and the maintenance assembly 12 at a subsequent stage when the printing process has been suspended to allow printhead maintenance to take place. The print engine 10 is raised from the belt 14 to open up a space between the print engine 10 and the belt 14.
A variation on the
A further variation of the
While the embodiments of
Referring in detail to
A printhead 36 forming part of the print engine 10 is shown in the printing position in
The printhead extends between inlet and outlet manifold connectors 28 located at respective ends of the printhead. The manifold connectors 28 operate to transfer different coloured inks from a series of supply tubes (not shown) to a matrix of channels in the printhead by means of which the inks are delivered to the printhead nozzles. Each of the connectors 28 has a series of stub tubes 29 for the respective inks. To prepare for printing, the printhead 10 is lowered into a pre-lock position and the ink supply tubes having a corresponding manifold connector 28 at their ends are lodged in a guide 32. Operation of the locking handle 30 acts to join the ink supply tubes to the manifold connectors to establish fluid paths for the inks.
The printhead 36, although not illustrated in detail, is a thermal drop-on-demand inkjet printhead manufactured as an integrated circuit device to include heating resistors located adjacent the ink ejection nozzles, the resistors being individually energized by electrical heating pulses in response to an input print signal. For each ink colour or type, a separate ink supply circuit is used having an ink supply container and a peristaltic pump for pumping ink from the container to the printhead. For each ink, the printhead has an inlet port, an ink outlet and a main channel. Ink is drawn from the main channel into branch channels by capillary action to replace ejected ink. Printing is enabled by “firing” selected nozzles at the printhead active face. Ink in the nozzle chamber is prevented from escaping from the nozzle and flooding the nozzle plate by maintaining a negative hydrostatic pressure at the printhead. As shown in
As illustrated in
The printhead 36 is mounted in a support structure which includes a carriage 59 for moving the printhead 36 up and down between a lowered position for printing (
In the raised printhead position (
The maintenance assembly 12 has three primary components: a capper 11, a cleaner 13 and a spittoon 17, these components being mounted on a maintenance tray 53.
The capper 11 has the form of an elongate trough, with a wall of the trough terminating at a gasket 19. The capper 11 is deployed to cover nozzle orifices at the printhead active face 16 following a preset period after printing ceases. In the capped position, the nozzles are not exposed to the atmosphere which could otherwise lead to rapid drying of ink retained in the nozzles. This might in turn lead to partially or fully blocked nozzles and consequently inferior print quality. With the capper 11 in place against the printhead active face, drying air currents are prevented from circulating in the region of the nozzles.
The cleaner 13 comprises a flexible cellular foam cleaning roller 42 mounted on a drive shaft and a parallel idler steel roller mounted against the roller 42 so that it protrudes into the surface of roller 42 so as to cause localized deforming of the flexible cellular foam. The foam and steel rollers are used in a cleaning sequence as follows. Ink is first pumped through the nozzles of the printhead 36 to flood its active face 16. The foam roller 42 is then rotated against the printhead active face to cause the foam roller to pick up flooded ink. The turning of the foam roller 42 against the steel roller initially acts to distribute the ink throughout the foam roller. As the foam roller 42 continues to turn the ink-saturated foam slides across the printhead active surface to wash it. Further rotation of the foam roller 42 against the steel roller 55 after the supply of washing ink to it has stopped acts to clean the foam roller by squeezing the ink contained within it out of the roller so that it drops into the spittoon 17.
As previously indicated, the maintenance assembly 12 and its operation are particularly, but not exclusively, applicable to a printing apparatus and operation as described in copending U.S. patent application Ser. No. 13/368,280 and as illustrated in
When the apparatus of
The belt is attached by clamping blocks 46 to a motion transfer mechanism including plates 54 and 55. The blocks 46 are attached directly to the plate 55 which is reciprocally driven by the belt 52 in direction B transverse to the direction of travel of the sheet media. The plate 55 is mounted to motion transfer plate 54 by pins 58 projecting from plate 55 engaging in diagonally extending slots 56 formed in plate 54. The pins 58 are retained in the slots 56 but are free to slide along them. The plate 54 is fixed to the maintenance tray 53. The mounting arrangement is used to impart a compound motion to the tray 53 comprising reciprocal motion in direction B to transfer the maintenance tray 53 between the printing position of
From the printing position of
At the capping position,
At the cleaning position,
As indicated previously, and with reference to
An alternative embodiment is shown in
Also mounted to the support structure is a maintenance assembly 76 having a capper, a cleaner and a spittoon. The maintenance assembly 76 is mounted at the end of a linkage 79 which is pivotally mounted at bearing pivot 84 to a maintenance assembly driving arm 78 which is itself mounted to the support structure at pivot point 82. The driving arm 78 is driven about pivot 82 to effect corresponding translational movement and pivoting of the linkage 79 about bearing pivot 84 which causes the maintenance assembly to move reciprocally along path C depending on which way the driving arm 78 is driven.
In use, when a maintenance operation is to be performed, printing is stopped and by operation of driving arm 86, the print engine is pivoted about pivot point 74. This leaves a space under the printhead 70. The driving arm 78 is then actuated to drive the maintenance assembly 76 in direction C under the printhead 70 for capping (
Other variations and modifications will be apparent to those skilled in the art. Although the embodiments of the invention described and illustrated have particular application to non-scanning printheads such as are commercially available under the MEMJET registered trade mark, it will be appreciated that other non-scanning and scanning printheads could advantageously be used with the invention. The embodiments of the invention described and illustrated are not intended to be limiting. The principles of the invention contemplate many alternatives having advantages and properties evident in the exemplary embodiments.
The present U.S. Utility patent application claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/642,412, entitled “INKJET PRINTER MAINTENANCE ARRANGEMENT AND METHOD,” filed May 3, 2012.
Number | Name | Date | Kind |
---|---|---|---|
4045802 | Fukazawa et al. | Aug 1977 | A |
5040000 | Yokoi | Aug 1991 | A |
5548310 | Binnert et al. | Aug 1996 | A |
20060119649 | Berry et al. | Jun 2006 | A1 |
20090237443 | Miramanda et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
0589604 | Mar 1994 | EP |
1238807 | Sep 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20130293633 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61642412 | May 2012 | US |