1. Technical Field
The present invention relates to an inkjet printer.
2. Background Art
In an inkjet printer, printing is conducted by ejecting dye-type ink such as acid dye, reactive dye, and substantive dye or pigment-type ink containing organic solvent such as solvent ink, onto a surface or both front and back surfaces of a sheet-like medium (recording medium) made of paper, silk, cotton, vinyl chloride, or the like. Especially in the industrial field, in such an inkjet printer, it is important to effectively dry a medium after deposition of ink onto the medium in order to quickly and easily conduct shipment and delivery of the medium after printing.
For example, disclosed in JP-A-2003-022890 is an inkjet printer for drying ink deposited on a medium, by allowing the medium to move through a wave guide into which microwaves are supplied.
Though the inkjet printer disclosed in JP-A-2003-022890 can rapidly dry the ink, the inkjet printer has a disadvantage that it is necessary to make the power of the microwaves supplied to the wave guide strong or slow down the feeding speed of the medium moving through the wave guide so as to lengthen the time of irradiating the medium with microwaves because the power of the microwaves to be absorbed in the ink is not so strong.
According to one aspect of the present invention, an inkjet printer includes an ejector, a wave guide, an electromagnetic wave supplier, and a reflector. The ejector is configured to eject ink toward a medium. Through the wave guide, the medium with the ink ejected by the ejector is inserted. The electromagnetic wave supplier is disposed at a start end of the wave guide to supply electromagnetic waves to the wave guide. The reflector is disposed at a terminal end of the wave guide to reflect the electromagnetic waves supplied by the electromagnetic wave supplier.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. It should be noted that the same or corresponding components in the drawings are marked with the same numerals.
As shown in
The printer unit 20 includes feeding rollers 21 for feeding the medium M, an inkjet head 23 for ejecting ink onto the medium M on the platen 22, a toner section 24 in which ink to be ejected from the inkjet head 23 is stored, and an operation section 25 for allowing the manipulated input of a user.
The wave guide main bodies 31, 32 are formed to have a long shape to dry ink deposited on the medium M by means of microwaves. Therefore, the wave guide main bodies 31, 32 have insert slits 41, 42 formed therein, respectively, for allowing the medium M, having ink ejected from the inkjet head 23, to pass through the wave guide main bodies 31, 32.
The curve section 33 is formed in a U-like shape and is disposed between the wave guide main body 31 and the wave guide main body 32 to connect the wave guide main body 31 and the wave guide main body 32 in a two-stage structure.
The electromagnetic wave supplying section 34 is disposed at a start end of the wave guide 30 and has a magnetron 43 mounted thereon for generating microwaves. The magnetron 43 generates microwaves to supply the microwaves into the wave guide 30 and guides the microwaves to pass in the forward directions D1, D2 inside the wave guide 30. In the following description, the wave length of the microwaves supplied into the wave guide 30 from the magnetron 43 is λ.
The propagation preventing section 35 is disposed between the wave guide main body 31 and the electromagnetic wave supplying section 34 and has an isolator 44 mounted thereon for propagating the microwaves in only one direction. The isolator 44 is composed of a well-known isolator and allows the propagation of microwaves from the electromagnetic wave supplying section 34 to the wave guide main body 31 and prevents the propagation of microwaves from the wave guide main body 31 to the electromagnetic wave supplying section 34.
The matching section 36 is disposed between the propagation preventing section 35 and the wave guide main body 31 and has a microwave matching box 45 mounted thereon. The microwave matching box 45 is composed of a well-known microwave matching box and is used for improving the absorbance efficiency of microwaves relative to the ink deposited on the medium M by reducing the reflected power of the microwaves supplied from the magnetron 43 by means of impedance matching in the matching section 36.
The termination section 37 is disposed at the terminal end of the wave guide main body 32, that is, at the terminal end of the wave guide 30 and is used to conduct termination process of the microwaves supplied into the wave guide 30.
The reflection termination body 51 is composed of a conductor and is in contact with the inner wall of the termination section 37 of the wave guide 30 to retain the reflective plate 52. The reflection termination body 51 includes a contact portion 511 all around of which is in contact with the inner wall of the termination section 37, a front projecting portion 512 which projects from the contact portion 511 toward the wave guide main body 32 (the electromagnetic wave supplying section 34) (to the right in
The contact portion 511 is formed in a rectangular shape in section which is equal to or slightly smaller than the inner wall of the termination section 37 and is slidably retained by the termination section 37.
The front projecting portion 512 has a length about λ/4. The front projecting portion 512 is formed in a rectangular shape in section such that a pair of opposite surfaces are recessed relative to the contact portion 511. Another pair of opposite surfaces which are not recessed are in contact with the inner wall of the termination section 37 so that spaces of λ/4 in length are formed between the recessed opposite surfaces and the inner wall of the termination section 37.
The reflective plate 52 is attached to the end facing the wave body main body 32 (the right-side end in
The reflective surface portion 521 reflects the microwaves delivered to the termination section 37 to deliver the microwaves in the directions opposite to the forward directions D1, D2 inside the wave guide 30. The reflective surface portion 521 is formed in a shape capable of suitably reflecting microwaves, preferably a plane shape perpendicular to the delivering direction (the forward direction D2) of the microwaves or a curved shape to be convex or concave relative to the delivering direction (the forward direction D2) of the microwaves.
Each side portion 522 is formed to have a length of λ/4 and is arranged to be spaced apart from the inner wall of the termination section 37 and the front projecting portion 512. Therefore, a first space A1 of λ/4 in length is formed between the termination section 37 and the side portion 522 and a second space A2 of λ/4 in length is formed between the side portion 522 and the front projecting portion 512, respectively. At the ends of the respective spaces, the first space A1 and the second space A2 communicate with each other.
It is preferable that the reflective plate 52 is made of a metal, especially, SUS (stainless steel), aluminum, or steel plate. Since the reflective plate 52 is made of a metal, the reflective plate 52 is capable of effectively reflecting the microwaves supplied into the wave guide 30.
The rear projecting portion 513 is formed in a rectangular shape in section such that a pair of opposite surfaces are recessed relative to the contact portion 511. Another pair of opposite surfaces which are not recessed are in contact with the inner wall of the termination section 37 so that spaces are formed between the recessed opposite surfaces and the inner wall of the termination section 37. Leaf springs 54 made of metal are attached to the recessed opposite surfaces of the rear projecting portion 513 by screws so that the leaf spring 54 are in elastic contact with the inner wall of the termination section 37. In addition, a rod 55 connected to the slide driving device 53 is attached to the end surface of the rear projecting portion 513 on the terminal end side (the left-side in
The slide driving device 53 drives the reflection termination member 50 to slide in the longitudinal direction of the wave guide 30 by the rod 55. In the slide driving device 53, a rotation driving source such as a motor is built-in. The output shaft of the slide driving device 53 is connected to the rod 55 via a gear or a plurality of gears (not shown) for converting the rotation output of the rotation driving source into sliding force in the longitudinal direction of the wave guide 30. By sliding the rod 55 in the longitudinal direction of the wave guide 30 within a range of λ/2 in length, the reflection termination member 50 is driven to slide in the longitudinal direction of the wave guide 30 within the range of λ/2 in length. The sliding control of the reflection termination member 50 is conducted by using any suitable method. For example, the reflection termination member 50 may be always driven to slide at a predetermined speed and may be driven to slide in a stepwise manner at a predetermined interval.
Hereinafter, the actions of the inkjet printer 1 according to this embodiment will be described.
First, the medium M is fed to the place on the platen 22 by rotating the feeding rollers 21. Then, ink is ejected from the inkjet head 23 to the medium M put on the platen 22, thereby printing an image or the like on the medium M.
After that, the medium M with the ink deposited thereon is inserted into the wave guide main body 31 through the insert slit 41, the medium M after the wave guide main body 31 is inserted into the wave guide main body 32 through the insert slit 42, and microwaves are supplied from the magnetron 43 into the wave guide 30.
As for the microwaves supplied into the wave guide 30, for example, microwaves having irradiation energy of 500 W are radiated to the medium M when the feeding speed of the medium M by the feeding rollers 21 is 12 cm/minute and the radiation width of the microwaves in the wave guide main body 31 and the wave guide main body 32 is 12 cm (6 cm×2). Accordingly, the medium M is irradiated with microwaves of 500 W×60 seconds=30000 J.
Then, the microwaves to be supplied from the magnetron 43 into the wave guide 30 are delivered to the wave guide 31 after the reflected power is reduced by the microwave matching box 45 in the matching section 36. Some of microwaves delivered into the wave guide main body 31 are absorbed into the ink deposited on the medium M inserted through the insert slit 41 so as to dry the ink. Some of the microwaves not used to dry ink in the wave guide main body 31 pass through the wave guide main body 31 and are bent in the curve section 33, and are then delivered to the wave guide body 32. Similarly to the case inside the wave guide main body 31, some of the microwaves delivered to the wave guide main body 32 are absorbed into the ink deposited on the medium M inserted through the insert slit 42 so as to dry the ink. After that, some of the microwaves not used to dry ink even in the wave guide main body 32 pass the wave guide main body 32 and are delivered to the termination section 37 where the microwaves are processed by reflection termination treatment member 50.
Now, the reflection termination treatment of microwaves by the reflection termination member 50 will be described in detail.
Most of microwaves delivered to the termination section 37 are reflected at the reflective surface portion 521 of the reflection plate 52 and are thus returned to the wave guide main body 32. Therefore, in the wave guide 30, standing waves are generated by microwaves heading to the termination section 37 from the electromagnetic wave supplying section 34 and microwaves heading to the electromagnetic wave supplying section 34 from the termination section 37. During this, the slide driving device 53 is activated so that the reflection termination member 50 is reciprocated within the range of λ/2 in length in the longitudinal direction of the wave guide 30. Accordingly, the standing waves generated within the wave guide 30 can be varied in the longitudinal direction of the wave guide 30. Therefore, the power of microwaves are dispersed within the wave guide 30, thereby preventing uneven drying of the ink deposited on the medium M passed through the wave guide 30.
In addition, the slide driving device 53 slides the reflection termination member 50 within the range of λ/2 in length, thereby enabling energy peaks of standing waves of the microwaves to spread over the entire range of the wave guide 30. Therefore, uneven drying of the ink deposited on the medium M passed through the wave guide 30 is further prevented. If the terminal end of the wave guide is shorted, the energy peaks of standing waves are generated at intervals of λ/2. The reflection termination member 50 is moved in the range of λ/2 so that the positions of the energy peaks of the standing waves are also moved in the range of λ/2 in the wave guide according to the movement of the reflection termination member 50. Therefore, the energy levels of microwaves at any positions of the wave guide are averaged and are thus equalized, thereby further preventing uneven drying of the ink deposited on the medium M passed through the wave guide 30.
On the other hand, some of microwaves delivered to the termination section 37 are not reflected at the reflective surface portion 521 and enter into the first space A1 formed between the inner wall of the termination section 37 and the side portion 522 of the reflective plate 52. Then, the microwaves enter into the second space A2 formed between the side portion 522 of the reflective plate 52 and the front projecting portion 512. The first space A1 and the second space A2 are connected to each other along the length of λ/4. Since the end of the second space A2 is shunted to the reflective surface portion 521, the impedance becomes the maximum and the current becomes zero at the connected portion between the first space A1 and the second space A2. The contact area between the contact portion 511 and the inner surface of the termination section 37 may be made of a resin or ceramic having good slidablity, not a metal, thereby preventing electric waves (microwaves) from leaking outside.
At the entrance of the first space A1, the impedance becomes zero. Accordingly, the entrance of the first space A1 is apparent non-existent as viewed from the wave guide, thereby minimizing the energy of radio waves leaking through these spaces.
The microwaves processed by the reflection termination treatment at the termination section 37 are returned from the termination section 37 to the wave guide main body 32. Some of the microwaves delivered to the wave guide main body 32 are absorbed into the ink deposited on the medium M inserted through the insert slit 42 so as to dry the ink. Some of the microwaves not used to dry ink in the wave guide main body 32 pass through the wave guide main body 32 and are bent in the curve section 33, and are then delivered to the wave guide body 31. Some of the microwaves delivered to the wave guide main body 31 are absorbed into the ink deposited on the medium M inserted through the insert slit 41 so as to dry the ink. After that, some of microwaves not used to dry ink even in the wave guide main body 31 pass through the wave guide main body 31 and are delivered to the propagation preventing section 35. The microwaves delivered to the propagation preventing section 35 are prevented from being propagated to the electromagnetic wave supplying section 34 by the isolator 44 attached to the propagation preventing section 35.
According to the inkjet printer 1 of this embodiment, ink is ejected by the inkjet head 23 and is thus deposited on the medium M and the medium M is inserted into the wave guide 30 to which microwaves are supplied by the magnetron 43. By the microwaves, the ink deposited on the medium M is dried. Since the microwaves supplied by the magnetron 43 are reflected by the reflection termination member 50 in the termination section 37 after the propagation through the wave guide 30, the microwaves reflected are again used to dry the ink deposited on the medium M. In the wave guide 30, the ink deposited on the medium M is dried by the microwaves reflected by the reflection termination member 50 in addition to the microwaves supplied directly from the magnetron 43, thereby rapidly drying the ink.
Also according to the inkjet printer 1, the microwaves supplied into the wave guide 30 from the magnetron 43 are reflected by the reflection termination member 50. However, since the propagation preventing section 35 with the isolator 44 attached thereto is disposed between the wave guide main body 31 and the electromagnetic wave supplying section 34, the reflected microwaves are prevented from being propagated to the magnetron 43. Therefore, the magnetron 43 is prevented from being broken by the reflected microwaves.
Hereinafter, the second embodiment will be described in detail.
As shown in
The rotary reflection section 38 is disposed between the wave guide main body 32 and the termination section 37 at the terminal end of the wave guide main body 32. Similarly to the wave guide main bodies 31, 32, the curve section 33, the electromagnetic wave supplying section 34, the propagation preventing section 35, and the termination section 37, the rotary reflection section 38 also has flanges formed at end surfaces thereof. By superposing and connecting these flanges, the electromagnetic wave supplying section 34 and the propagation preventing section 35, the propagation preventing section 35 and the matching section 36, the matching section 36 and the wave guide main body 31, the wave guide main body 31 and the curve section 33, the curve section 33 and the wave guide main body 32, the wave guide main body 32 and the rotary reflection section 38, and the rotary reflection section 38 and the termination section 37 are connected, respectively.
The propeller 61 is disposed within the rotary reflection section 38 to have a predetermined distance from the inner wall of the rotary reflection section 38 and is formed in a plate shape substantially the same as the shape of the internal section of the rotary reflection section 38. The propeller 61 has reflecting surfaces 611 for reflecting microwaves which are formed on the front and rear surfaces thereof. Each reflecting surface 611 is formed into a shape suitably reflecting microwaves, i.e. a plane shape or a convexed or concaved surface shape.
It is preferable that the propeller 61 is made of a metal, especially, SUS (stainless steel), aluminum, or steel plate. Since the propeller 61 is made of a metal, the propeller 61 is capable of effectively reflecting the microwaves supplied into the wave guide 30a.
The motor 62 is placed on the top (the upper surface in
Hereinafter, the actions of the inkjet printer 1a according to this embodiment will be described.
First, the medium M is fed to the place on the platen 22 by rotating the feeding rollers 21. Then, ink is ejected from the inkjet head 23 to the medium M put on the platen 22, thereby printing an image or the like on the medium M.
After that, the medium M with the ink deposited thereon is inserted into the wave guide main body 31 through the insert slit 41, the medium M after the wave guide main body 31 is inserted into the wave guide main body 32 through the insert slit 42, and microwaves are supplied from the magnetron 43 into the wave guide 30a.
As for the microwaves supplied into the wave guide 30a, for example, microwaves having irradiation energy of 500 W are radiated to the medium M when the feeding speed of the medium M by the feeding rollers 21 is 12 cm/minute and the radiation width of the microwaves in the wave guide main body 31 and the wave guide main body 32 is 12 cm (6 cm×2). Accordingly, the medium M is irradiated with microwaves of 500 W×60 seconds=30000 J.
Then, the microwaves to be supplied from the magnetron 43 into the wave guide 30a are delivered to the wave guide 31 after the reflected power is reduced by the microwave matching box 45 in the matching section 36. Some of microwaves delivered into the wave guide main body 31 are absorbed into the ink deposited on the medium M inserted through the insert slit 41 so as to dry the ink. Some of the microwaves not used to dry ink in the wave guide main body 31 pass through the wave guide main body 31 and are bent in the curve section 33, and are then delivered to the wave guide body 32. Similarly to the case inside the wave guide main body 31, some of the microwaves delivered to the wave guide main body 32 are absorbed into the ink deposited on the medium M inserted through the insert slit 42 so as to dry the ink.
After that, some of the microwaves not used to dry ink even in the wave guide main body 32 pass the wave guide main body 32 and are delivered to the rotary reflection section 38. The microwaves delivered to the rotary reflection section 38 are processed by the reflection treatment by the propeller 61 of the propeller mechanism 60. The microwaves passing through the rotary reflection section 38 are delivered to the termination section 37 where the microwaves are processed by the reflection termination treatment by the reflective plate 52 of the reflection termination member 50.
Now, the reflection termination treatment of microwaves by the reflection termination member 50 and the reflection treatment of microwaves by the propeller mechanism 60 will be described in detail.
The propeller 61 is rotated within the rotary reflection section 38 by actuating and rotating the motor 62 of the propeller mechanism 60 while microwaves are supplied from the magnetron 43. Accordingly, some of the microwaves delivered to the rotary reflection section 38 are reflected by the reflecting surface 611 of the propeller 61. Since the propeller 61 is rotated by the actuation of the motor 62, the microwaves are reflected in the direction to which the reflecting surface 611 faces and which is arbitrarily changed according to the rotation angle of the propeller 61.
By the rotation of the propeller 61, the reflection direction of the microwaves reflected by the propeller 61 is changed, thereby restraining the generation of standing waves which are generated by the microwaves from the electromagnetic wave supplying section 34 to the rotary reflection section 38 and the microwaves reflected by the propeller 61 and varying the peak positions of the standing waves within the wave guide 30a.
On the other hand, microwaves which are not reflected by the propeller 61 and are delivered to the termination section 37 are reflected by the reflective surface portion 521 of the reflective plate 52 and are thus returned to the wave guide main body 32. Since the reflection termination member 50 and the magnetron 43 are fixed, standing waves are generated within the wave guide 30a by microwaves proceeding from the electromagnetic wave supplying section 34 to the termination section 37 and microwaves proceeding from the termination section 37 to the electromagnetic wave supplying section 34. However, some of microwaves supplied into the wave guide 30a are reflected by the propeller 61 and are thus not delivered to the termination section 37, thereby reducing the power of standing waves generated by microwaves proceeding from the electromagnetic wave supplying section 34 to the termination section 37 and microwaves proceeding from the termination section 37 to the electromagnetic wave supplying section 34.
Microwaves processed by reflection treatment in the rotary reflection section 38 and microwaves processed by reflection termination treatment in the termination section 37 are returned from the rotary reflection section 38 and the termination section 37 to the wave guide main body 32. Some of microwaves delivered to the wave guide main body 32 are absorbed into the ink deposited on the medium M inserted through the insert slit 42 so as to dry the ink. Some of the microwaves not used to dry ink in the wave guide main body 32 pass through the wave guide main body 32 and are bent in the curve section 33, and are then delivered to the wave guide body 31. Some of the microwaves delivered to the wave guide main body 31 are absorbed into the ink deposited on the medium M inserted through the insert slit 41 so as to dry the ink. After that, some of microwaves not used to dry ink even in the wave guide main body 31 pass through the wave guide main body 31 and are delivered to the propagation preventing section 35. The microwaves delivered to the propagation preventing section 35 are prevented from being propagated to the electromagnetic wave supplying section 34 by the isolator 44 attached to the propagation preventing section 35.
Then, examples of the inkjet printer according to the embodiment of the present invention will be described. In the following description, states of drying in case where ink deposited on the medium M is dried by the wave guide 30a of the inkjet printer la according to the second embodiment have been experienced. Experiment condition is as follows:
Ink deposited on the medium M was dried in the aforementioned conditions by the inkjet printer la. The states of drying according to the rotation angles of the propeller 61 are shown in
As shown in
The states of drying of the ink according to the distance A between the rotation output shaft 63 of the propeller mechanism 60 and the reflective plate 52 of the reflection termination member 50 are shown in
As shown in
It is apparent from
According to the inkjet printer 1a of the second embodiment, ink is ejected by the inkjet head 23 and is thus deposited the medium M and the medium M is inserted into the wave guide 30a to which microwaves are supplied by the magnetron 43. The microwaves supplied by the magnetron 43 are propagated within the wave guide 30a and are then reflected by the propeller 61 in the rotation reflecting portion 38. By the reflected, the ink deposited on the medium M is dried again. Since the direction of the microwaves reflected by the propeller 61 varies by rotation of the propeller 61, standing waves generated by the microwaves supplied by the magnetron 43 and the microwaves reflected by the propeller 61 fluctuate. Accordingly, the positions of peaks of standing waves fluctuate within the wave guide 30a, thereby preventing uneven drying of the ink deposited on the medium M.
By the rotation of the propeller 61 about the shaft perpendicular to the delivering direction D2 of the microwaves in the wave guide 30a, the microwaves supplied into the wave guide 30a are effectively reflected. In addition, the propeller mechanism 60 can be easily attached to the rotary reflection section 38 in the wave guide 30a.
Since microwaves not reflected by the propeller 61 are processed by reflection termination treatment of the reflection termination member 50 disposed on the terminal end side of the rotary reflection section 38, microwaves supplied by the magnetron 43 are securely reflected, thereby further rapidly drying the ink deposited on the medium M.
Since the propeller 61 is formed in a plane shape substantially equal to the shape of the internal section of the rotary reflection section 38, the microwaves delivered to the rotary reflection section 38 are effectively reflected.
The distance A between the reflective plate 52 of the reflection termination member 50 and the propeller 61 is (n/2)·λg, thereby preventing uneven drying of the ink deposited on the medium M.
In this case, the reflection termination member 50 is slid by the slide driving device 53 to change the distance A between the reflective plate 52 and the propeller 61, thereby changing the positions of peaks of the standing waves generated in the wave guide 30a. Accordingly, the power of the microwaves are dispersed inside the wave guide, thereby further preventing uneven drying of the ink deposited on the medium passed through the wave guide.
Though microwaves supplied from the magnetron 43 into the wave guide 30a are reflected by the propeller 61, the reflected microwaves are prevented from being propagated to the magnetron 43 because the propagation preventing section 35 with the isolator 44 is disposed between the magnetron 43 and the propeller 61. Therefore, the magnetron 43 is prevented from being broken due to the reflected microwaves.
Since the propeller 61 is made of a metal, it is possible to effectively reflecting the microwaves supplied to the wave guide 30a.
Though the embodiments of the present invention have been described in the above, the scope of the present invention is not limited to the aforementioned embodiments. For example, though the wave guide having the two-stage structure is used in any of the aforementioned embodiments, the wave guide may have a one-stage structure or a three-stage structure or more.
Though the reflection termination body 51 and the reflective plate 52 are discrete components as the reflection termination member 50, the reflection termination member 50 may be an integral component and may be composed of a larger number of components. The second space A2 formed in the reflection termination member 50 is formed by cutting the reflection termination body 51 itself. Though the first space A1 and the second space A2 are formed on two surfaces of the wave guide 30 in the aforementioned embodiment, these may be formed on one surface, three surfaces, or four surfaces.
Though the sliding width of the reflection termination member 50 is in a range of λ/2 in any of the aforementioned embodiments, the sliding width may be shorter than λ/2 or longer than λ/2.
Though the plate-like propeller 61 having blades extending in two directions opposite to each other from the rotation output shaft 63 as the center axis is used in the aforementioned second embodiment, the shape of the propeller may be any shape capable of rotating in the rotary reflection section 38. For example, as shown in
Though the propeller 61 is rotated about the shaft extending in the direction perpendicular to the delivering direction D2 of microwaves in the aforementioned second embodiment, the reflecting surface 611 of the propeller 61 may be rotated in any direction within the rotary reflection section 38.
Though the wave guide 30a has the reflection termination member 50 in the aforementioned second embodiment, the wave guide 30a does not necessarily have the reflection termination member 50. In this case, for example, the reflection termination member 50 may be provided with a shunting plate or a termination member capable of absorbing microwaves to terminate.
Though the reflection termination member 50 is provided in the aforementioned second embodiment, the reflection termination member 50 is not necessarily provided and the propeller mechanism 60 is attached to the termination section 37. Also in this case, microwaves supplied into the wave guide 30a are reflected by the propeller 61, thereby obtaining the same works and effects as mentioned above.
Though the reflection termination member 50 is slidable in any of the aforementioned embodiments, the reflection termination member 50 may be fixed in the wave guide. In this case, a means for sliding the propeller 61 in the longitudinal direction of the wave guide may be provided for the purpose of changing the distance A between the reflection termination member 50 and the propeller 61 in the second embodiment.
According to the inkjet printer of the embodiment of the present invention, after ink is ejected by the ejecting means and is thus deposited on a medium, the medium is inserted through the wave guide into which electromagnetic waves are supplied by the electromagnetic wave supplying means. Therefore, the ink deposited on the medium is dried by the electromagnetic waves. Since the electromagnetic waves supplied by the electromagnetic wave supplying means are reflected by the reflector at the termination section after being propagated through the wave guide, the ink deposited on the medium is dried again with the reflected electromagnetic waves. In this manner, inside the wave guide, the ink deposited on the medium is dried with electromagnetic waves reflected by the reflector in addition to the electromagnetic waves directly supplied from the electromagnetic wave supplying means, thereby rapidly drying the ink.
In this case, it is preferable that the reflector is a reflection termination member for conducting reflection termination treatment of the electromagnetic waves supplied by the electromagnetic supplying means. Since the electromagnetic waves supplied by the electromagnetic wave supplying means are processed by the reflection termination treatment, most of electromagnetic waves delivered to the termination section are returned to the wave guide, thereby further effectively drying the ink.
It is preferable that the inkjet printer of the embodiment of the present invention further includes a propagation preventing means which is disposed between the electromagnetic wave supplying means and the reflection termination member to prevent the electromagnetic waves reflected by the reflection termination member from being propagated. According to the inkjet printer of the embodiment of the present invention, the electromagnetic waves supplied into the wave guide from the electromagnetic wave supplying means are reflected by the reflection termination member, but the reflected electromagnetic waves are prevented from being propagated to the electromagnetic wave supplying means because the propagation preventing means is disposed between the electromagnetic wave supplying means and the reflection termination member. Therefore, the electromagnetic wave supplying means is prevented from being broken due to the reflected electromagnetic waves.
Further, it is preferable that the reflection termination member is made of a metal. According to this inkjet printer of the embodiment of the present invention, the electromagnetic waves supplied into the wave guide are effectively reflected because the reflection termination member is made of a metal.
It is preferable that a first space is formed between an inner wall of the wave guide and the reflection termination member to have a certain length from an end of the reflection termination member on the electromagnetic wave supplying means side, wherein the certain length is ¼ of the wave length of the electromagnetic waves supplied into the wave guide. Since the first space is formed between the inner wall of the wave guide and the reflection termination member, the electromagnetic waves propagated to the termination section of the wave guide enter into the first space. Since the first space is formed to have a length of ¼ of the wave length of the electromagnetic waves supplied to the wave guide, the electromagnetic waves entering into the first space and the electromagnetic waves reflected at the terminal end of the first space create a phase shifting of ½ of the wave length of the electromagnetic waves so as to attenuate each other. Therefore, the electromagnetic waves supplied to the wave guide are prevented from penetrating the reflection termination member, thereby preventing electromagnetic waves from leaking from the wave guide.
Further, it is preferable that the reflection termination member has a second space which is formed to have a certain length from the terminal end of the first space, wherein the certain length is ¼ of the wave length of the electromagnetic waves supplied into said wave guide. According to the inkjet printer of the embodiment of the present invention, though the reflection termination member and the inner wall of the wave guide collide with each other at the end of the first space so as to produce a large contact resistance, the second space having a length of ¼ of the wave length of the electromagnetic waves supplied into the wave guide is formed from the terminal end of the first space so as to reduce impedance at the terminal end of the wave guide, thereby minimizing affect of contact resistance between the reflection termination member and the wave guide.
It is preferable that the inkjet printer of the embodiment of the present invention includes a sliding means for sliding the reflection termination member in the longitudinal direction of the wave guide. According to the inkjet printer of the embodiment of the present invention, though standing waves are generated in the wave guide because the electromagnetic waves supplied into the wave guide are reflected by the reflection termination member, the reflection termination member is slid in the longitudinal direction of the wave guide by the sliding means, thereby varying the standing waves, generated in the wave guide, in the longitudinal direction of the wave guide. Therefore, the power of electromagnetic waves is dispersed within the wave guide, thereby preventing unevenness of drying of ink deposited on the medium passed through the wave guide.
It is preferable that the sliding means slides the reflection termination member within a range of ½ of the wave length of the electromagnetic waves supplied to the wave guide. According to the inkjet printer of the embodiment of the present invention, the reflection termination member is slid within a range of ½ of wave length, thereby moving the peaks of standing waves of electromagnetic waves over the entire area of the wave guide. Therefore, unevenness of ink deposited on the medium passed through the wave guide is further prevented.
It is preferable that the reflector is a rotary reflector which reflects the electromagnetic waves supplied by the electromagnetic wave supplying means while rotating. Since the electromagnetic waves supplied by the electromagnetic wave supplying means are reflected by the rotary reflector at the termination section after being propagating inside the wave guide, ink deposited on the medium is dried again by the reflected electromagnetic waves. Since the reflection direction of electromagnetic waves reflected by the rotary reflector is changed because the rotary reflector is rotated, standing waves generated by the electromagnetic waves supplied by the electromagnetic supplying means and the electromagnetic waves reflected by the rotary reflector are varied. Therefore, peak positions of the standing waves are varied within the wave guide, thereby preventing unevenness of drying of ink deposited on the medium.
In this case, the rotary reflector is preferably rotated about a shaft perpendicular to the delivering direction of the electromagnetic waves. According to the inkjet printer of the embodiment of the present invention, the rotary reflector is rotated about the shaft perpendicular to the delivering direction of the electromagnetic waves, thereby effectively reflecting the electromagnetic waves supplied into the wave guide and allowing easy attachment of the rotary reflector to the wave guide.
It is preferable that the reflection termination member is disposed on the terminal end side of the rotary reflector in the wave guide. According to the inkjet printer, the electromagnetic waves not reflected by the rotary reflector and passed are processed by reflection termination treatment by the reflection termination member disposed at the termination side of the rotary reflector, thereby securely reflecting electromagnetic waves supplied by the electromagnetic wave supplying means and rapidly drying the ink deposited on the medium.
It is preferable that the rotary reflector is formed in a plate shape substantially the same as the shape of the internal section of the wave guide. According to the inkjet printer of the embodiment of the present invention, the rotary reflector is formed in a plate shape substantially the same as the shape of the internal section of the wave guide, thereby effectively reflecting electromagnetic waves supplied to the wave guide.
It is preferable that the distance between the reflector and the rotary reflector is (n/2)·λg wherein “λg” is the wave length of the electromagnetic waves supplied to the wave guide and “n” is an integer number equal to or more than 1. According to the inkjet printer of the embodiment of the present invention, the distance between the reflector and the rotary reflector is (n/2)·λg, thereby further effectively preventing unevenness of drying of ink deposited on the medium.
It is preferable that the inkjet printer of the embodiment of the present invention further includes a distance changing means for changing the distance between the reflector and the rotary reflector. According to the inkjet printer of the embodiment of the present invention, the distance between the reflector and the rotary reflector is changed, thereby changing the peak positions of standing waves generated in the wave guide. Therefore, the power of electromagnetic waves is dispersed within the wave guide, thereby preventing unevenness of drying of ink deposited on the medium passed through the wave guide.
It is preferable that the propagation preventing means is disposed between the electromagnetic wave supplying means and the rotary reflector. According to the inkjet printer of the embodiment of the present invention, the electromagnetic waves supplied into the wave guide from the electromagnetic wave supplying means are reflected by the rotary reflector, but the reflected electromagnetic waves are prevented from being propagated to the electromagnetic wave supplying means because the propagation preventing means is disposed between the electromagnetic wave supplying means and the rotary reflector. Therefore, the electromagnetic wave supplying means is prevented from being broken due to the reflected electromagnetic waves.
It is preferable that the rotary reflector is made of a metal. According to the inkjet printer of the embodiment of the present invention, the rotary reflector is made of a metal, thereby effectively reflecting the electromagnetic waves supplied to the wave guide.
In an inkjet printer using a wave guide, according to the embodiment of the present invention, it is capable of more rapidly drying ink deposited on a medium.
The embodiment of the present invention is applicable to an inkjet printer in which images and the like are formed by ejecting ink onto a medium. Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2008-260723 | Oct 2008 | JP | national |
2008-260808 | Oct 2008 | JP | national |
The present application is a continuation application of International Application No. PCT/JP2009/067351, filed Oct. 5, 2009, which claims priority to Japanese Patent Application No. 2008-260723, filed Oct. 7, 2008, and Japanese Patent Application No. 2008-260808, filed Oct. 7, 2008. The contents of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3617953 | Kingma et al. | Nov 1971 | A |
5631685 | Gooray et al. | May 1997 | A |
Number | Date | Country |
---|---|---|
60-240094 | Nov 1985 | JP |
07-314661 | Dec 1995 | JP |
2003-022890 | Jan 2003 | JP |
2008-183718 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20100302318 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/067351 | Oct 2009 | US |
Child | 12791868 | US |