This invention relates to inkjet printheads having wirebond connections to printhead chips. It has been developed primarily to protect wirebonds from corrosion.
The Applicant has previously described methods for encapsulation of wirebonds in inkjet printheads (see, for example, U.S. Pat. No. 8,063,318, the contents of which are incorporated herein by reference). Wirebonds carry data and power to printhead chips and are critical components in an inkjet printhead. If any wirebonds fracture due to thermo-mechanical stress or corrosion, the printhead becomes unusable and must be replaced.
U.S. application Ser. No. 17/399,818 filed Aug. 11, 2021 describes wirebond encapsulation using two different types of encapsulant: a softer polymer core allowing a degree of mechanical flex and a harder polymer shell providing more robust protection against chemical attack.
U.S. Pat. No. 10,442,200, the contents of which are incorporated herein by reference, describes a printhead having a plurality of printhead dies attached to a metal alloy manifold via a metal alloy shim Such printheads have been designed for use with pigment-based inks and, further, enable construction of relatively long printheads, such as A3 pagewide printheads.
The Applicant's studies have found that printheads having an ink manifold formed of metal alloys, such as Invar, exhibit surprising susceptibility to wirebond and/or bond pad failures when compared to printheads having ink manifolds formed of a liquid crystal polymer.
It would therefore be desirable to provide a means for improving the robustness of wirebonds in printheads, particularly printheads having an ink manifold formed of a metal.
In a first aspect, there is provided a printhead assembly comprising:
The printhead assembly of the first aspect advantageously provides cathodic protection of the wirebonds from galvanic corrosion, as will be explained in more detail below.
Preferably, the ink manifold is electrically connectable to a positive terminal of the voltage source and one or more of said wirebonds are electrically connectable to a negative terminal of the voltage source. Typically, the potential at the wirebonds is in the range of −0.1 to −1.5 volts or −0.5 to −1.2 volts.
Preferably, the first and second electrically conductive materials are first and second metals.
Preferably, the second metal has a lower (i.e. more negative) electrode potential than the first metal.
Preferably, the wirebonds are comprised of aluminum.
Preferably, the ink manifold is comprised of an iron alloy.
Preferably, the printhead assembly further comprises a switch, wherein the switch is configured to electrically connect the ink manifold and the wirebonds to the voltage source only when the printhead chips are not receiving power and/or data via the wirebonds.
Preferably, the printhead chips are mounted on the ink manifold via an intervening shim, typically in the form of a sheet or film having ink supply holes defined therein.
Preferably, the shim comprises a metal alloy.
Preferably, the voltage source is a battery or cell, which may be user-replaceable.
As used herein, the term “PCB” is taken to mean a printed circuit board of the type having a non-conductive substrate and one or more conductive tracks carrying electrical signals. The non-conductive substrate may be flexible or rigid. The PCB may comprise additional electronic components (e.g. capacitors, resistors etc.) or, alternatively, the PCB may be absent any additional electronic components and serve only to carry electrical signals via its conductive tracks.
As used herein, the term “ink” is taken to mean any printing fluid, which may be printed from an inkjet printhead. The ink may or may not contain a colorant. Accordingly, the term “ink” may include conventional dye-based or pigment-based inks, infrared inks, fixatives (e.g. pre-coats and finishers), 3D printing fluids (e.g. binder fluids), biological fluids, functional fluids (e.g. sensor inks, solar inks etc.) and the like. Where reference is made to fluids or printing fluids, this is not intended to limit the meaning of “ink” herein.
As used herein, the term “mounted” includes both direct mounting and indirect mounting via an intervening part.
As used herein, the term “metal” is taken to include pure metals, metal alloys, metal composites and metalloids. Where reference is made herein to, for example, metal alloys (e.g. iron alloys), this is not intended to limit the meaning of the term “metal”.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
Referring to
The casing 3 has a first part 3A and a second part 3B positioned at either side of a central locator 4, the first and second casing parts 3A and 3B being biased towards each other and the central locator 4 by means of a spring clip 6 engaged therebetween. The two-part casing 3 in combination with the spring clip 6 enables the casing to expand longitudinally, at least to some extent, to accommodate a degree of longitudinal expansion in a main body 17 of the printhead 1.
The printhead 1 receives power and data signals via opposite rows of electrical contacts 13, which extend along respective sidewalls of the printhead. The electrical contacts 13 are configured to receive power and data signals from complementary contacts of a printer (not shown) or print module and deliver the power and data to printhead chips 70 via respective PCBs 18, as will be explained in more detail below.
As shown in
In the exploded perspective shown in
The main body 17 is a two-part machined structure comprising an elongate ink manifold 25 and a complementary cover plate 27. The ink manifold 25 functions as a carrier substrate having a unitary lower surface for mounting the first and second rows 14 and 16 of printhead chips 70 as well as respective PCBs 18. The manifold 25 and cover plate 27 are formed of a metal alloy material (e.g. Invar) having relatively high stiffness and a relatively low coefficient of thermal expansion. In combination, the manifold 25 and cover plate 27 provide a stiff, rigid structure at the core of the printhead 1 with minimal expansion along its longitudinal axis. As foreshadowed above, the casing 3 is configured so as not to constrain any longitudinal expansion of the main body 17 and thereby minimizes bowing of the printhead during use. Accordingly, the printhead 1 may be provided as an A4-length printhead or an A3-length printhead.
Referring to
A pair of longitudinal PCBs 18 flank the first row 14 and second row 16 of printhead chips 70 at opposite sides thereof, each PCB being bonded to the lower surface 52 of the manifold 25. Each PCB 18 comprises a rigid substrate (e.g. FR-4 substrate) for mounting of various electronics components and has one edge butting against a step 74 defined in the lower surface 52 of the manifold 25. Each PCB 18 extends laterally outwards beyond sidewalls 41 of the manifold 25. A shield plate 20 is bonded to a lower surface of each PCB 18 and surrounds the first and second rows 14 and 16 of printhead chips 70 as well as a central longitudinal region between the first and second rows. The protruding portions of each PCB 18 and the shield plate 20 define opposite wings 75 of the printhead 1, while a uniformly planar lower surface of the shield plate 20 is configured for engagement with a perimeter capper (not shown) surrounding both rows of printhead chips.
Still referring to
Referring now to
The wirebonds are protected by an encapsulant package 79, which extends between the proximal edge of each PCB 18 containing the contact pads 77 and a proximal edge of the printhead chips 70 containing the bond pads 73. The encapsulant package 79 is formulated to provide robust protection of the wirebonds, particularly with respect to chemical attack from high pH inks, which typically contain aggressive cosolvents and surfactants.
The encapsulant package 79, which is designed to protect the wirebond 90, as well as the bonds pads 73 and contact pads 77, comprises three components: (1) a bead of dam encapsulant 95 extending longitudinally along the row of bond pads 73 and the row of contact pads 77, and forming an endless perimeter dam via transverse interconnecting portions at each longitudinal end thereof; (2) a first fill encapsulant 96 having a relatively low modulus of elasticity disposed within the perimeter of dam encapsulant 95 on the lower surface the ink manifold 25 and an exposed portion of the shim 66; and (3) a second fill encapsulant 97 having a relatively higher modulus of elasticity disposed on the first fill encapsulant 96 within the perimeter of dam encapsulant. The dam encapsulant 95 encapsulates the first and second end portions 91 and 92 of the wirebond 90 as well as the bond pads 73 and contact pads 77, while the first and second fill encapsulants 96 and 97 together encapsulate the intermediate section 93 of the wirebond.
Although the encapsulant package 97 is designed to provide robust resistance to ink, it has been found by the present Applicant through rigorous testing, that wirebonds 90 were subject to corrosion when the printhead 1 was soaked in ink for extended periods. Furthermore, it was found that a small amount of ink was absorbed by the encapsulant material (e.g. up to about 5% uptake by weight) during ink soak testing.
Without wishing to be bound by theory, it is understood by the present Applicant that this small degree of ink uptake in the encapsulant material provides an electrolytic pathway between the wirebonds 90, which are typically comprised of aluminum or an alloy thereof, and the ink manifold 25, which is comprised of an iron-nickel alloy (e.g. Invar) in the printhead 1. With the wirebonds 90 and the ink manifold 25 being formed from metals having differing electrode potentials, this electrolytic pathway is understood to provide a galvanic corrosion mechanism. Further evidence of an accelerated galvanic corrosion mechanism in the printhead 1 can be inferred by a comparison with printheads having an LCP ink manifold, such as those described in U.S. Pat. No. 9,950,527. In those printheads having an LCP manifold, wirebonds were relatively resistant to corrosion during similar ink soak tests, even when the encapsulant material had a similar degree of ink uptake.
Having identified the problem of accelerated galvanic corrosion in certain printheads via an unexpected electrolytic pathway through the encapsulant material, the Applicant sought to address this problem using cathodic protection of the wirebonds. Accordingly, and referring to
A switch 103 is provided for controlling the cathodic protection when required. For example, during normal printing when the wirebonds 90 carry power and/or data to the printhead chips 70, the switch is open so that current from the cell 101 does not interfere with sensitive electrical signaling from the PCB 18 to the printhead chips 70. However, for the majority of time (e.g. during printhead idle periods), the switch 103 is closed to provide impressed current cathodic protection of the wirebonds 90. The switch 103 is typically open and closed automatically by mechanisms well known to those skilled in the art. For example, the switch 103 may be a solenoid switch actuated via a printer controller (not shown).
Experimentally, it was found that impressed current cathodic protection provided excellent protection of wirebonds from corrosion during ink soak tests. With an Invar coupon held in proximity to aluminum wirebonds and separated via an ink electrolyte, a potential of about −0.8V at the aluminum wirebonds relative to the Invar coupon was found to be optimal for protection of the wirebonds from corrosion. A higher (more positive) potential did not fully protect the wirebonds, while a lower (more negative) potential caused dark deposits on the Invar coupon as well as significant wirebond corrosion (possibly due to reversing the polarity of galvanic corrosion or forcing a different corrosion mechanism). It will be appreciated by those skilled in the art that an optimized potential of the cell 101 may be determined empirically for a given printhead assembly 100.
Accordingly, the present invention provides a relatively simple means for protection of wirebonds susceptible to an unexpected galvanic corrosion mechanism. Furthermore, the use of impressed current cathodic protection, as opposed to alternative cathodic protection measures, ensures reduced corrosion in a controllable manner with minimal residues and with only a minor modification to existing printhead assemblies.
It will, of course, be appreciated that the present invention has been described by way of example only and that modifications of detail may be made within the scope of the invention, which is defined in the accompanying claims.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/131,719, entitled INKJET PRINTHEAD ASSEMBLY WITH WIREBOND PROTECTION, filed on Dec. 29, 2020, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5177500 | Ng | Jan 1993 | A |
6439680 | Mochizuki | Aug 2002 | B1 |
20100220147 | Silverbrook | Sep 2010 | A1 |
20180222199 | Thelander | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20220203686 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63131719 | Dec 2020 | US |