1. Field of the Invention
The embodiments of the present invention relate generally to inkjet printing mechanisms, and in particular to squeegees for wiping excess ink off inkjet printheads.
2. Background of the Invention
Inkjet printheads eject controlled sprays of ink onto a page while printing. Each such printhead has very small nozzles through which drops of various colored ink are fired. To print a typical image, the printhead is moved back and forth across a page, while ejecting patterns of ink drops. Conventional printheads use piezo-electric and thermal printhead technology. For instance, thermal ink ejection mechanisms are shown in U.S. Pat. No. 5,278,584 issued to Brian J. Keefe et al on Jan. 11, 1994 and U.S. Pat. No. 4,683,481, issued to Samuel A. Johnson on Jul. 28, 1987.
A wiper assembly mechanism is typically mounted within the housing of the printing mechanism to clean and protect the printhead. The printhead can be moved over the assembly for maintenance, specifically for wiping off ink residues and any paper dust or other debris that have collected on the printhead.
A wiping sequence generally includes a forward and a backward wiping stroke. In the forward stroke, a wiper blade of the wiper assembly moves from its home position and across the printhead to scrape off ink residues from the printhead. After the forward stroke, the wiper blade moves back to its home position in the backward stroke and wipes the printhead a second time.
In the forward stroke, most ink residues on the printhead are wiped off, and such wets one side of the wiper blade. On the backward stroke, a dry wiping of the printhead occurs if no other fluids are used to moisten the wiper blade. Dry wiping of the printhead can damage the nozzles on the printhead and the wiper blade itself. What is needed is a squeegee and method that reduce or prevent such printhead wear and damage.
Briefly, a squeegee embodiment of the present invention includes a set of wiper blades that bend over easier to one side than the other. The wiper blades are arranged in conjunction with an inkjet printhead so that the direction that requires the higher force is the one used when the printhead is wet with excess ink. The easy-to-bend direction is used for the backstroke when the printhead is driest.
An advantage of embodiments of the present invention is a squeegee is provided for an inkjet printhead to clean off excess ink.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which description illustrates by way of example the principles of the invention.
The typical inkjet printer 100 includes a chassis 102 surrounded by a housing or casing enclosure 104. Sheets of paper are typically fed through a print zone 106 for printing as they pass by an inkjet and carriage assembly. Printer 100 includes an inkjet cartridge 108, a thermal printhead 110, a servicing region 112, a sliding carriage guide rod 114, a scanning axis 116, and a printer controller 118 that receives print-job instructions from a host computer. The sliding carriage guide rod 114 mounted on chassis 102 allows an inkjet carriage 120 to slide back and forth across the print zone 106. The scanning axis 116 is defined by the guide rod 114. Carriage-position information feedback can be provided to the printer controller 118 by an optical encoder reader mounted to the carriage 120. Such typically reads an encoder strip that extends along the path of carriage travel.
The carriage 120 moves across the guide rod 114 to the servicing region 112 inside the casing 104. Wipers and drain basins within the servicing region 112 are used to keep the inkjet cartridge clean and disposes of excess ink that is wiped off.
After arriving inside the print zone 106, each sheet of paper is printed with ink squirted from the inkjet cartridge 108. Such cartridge 108 is sometimes called a “pen” by artisans. The inkjet cartridge 108 includes a supply of ink, a printhead 110 with an orifice plate, and a plurality of nozzles. The printhead 110 illustrated in
The outer surface of the orifice plate of the printhead 110 preferably lies in a common printhead plane. In one embodiment, such printhead plane extends substantially horizontally.
Here, only some of the pen servicing functions are discussed, e.g., wiping of the printhead 110. The wiping can be performed by a wiper assembly incorporated in a service station like that illustrated in U.S. Pat. No. 6,132,026, issued to Bret K. Taylor et al on Oct. 17, 2000. Alternatively, the wiper assembly can be mounted independently on the chassis.
The wiper assembly 200 is mounted in the servicing region beneath the printhead in a position for wiping. It includes a pair of wiper blades 202 and 203, e.g., made of ethylene-propylene-diene-monomer (EPDM). Each wiper blade 202 and 203 acts as a squeegee to wipe excess ink off a printhead. Each wiper blade extends vertically up to the printhead plane from a platform 204.
A wiping of the printhead occurs when a rack 206 connected to the platform 204 moves along a slot defined within a base frame 208 of the wiper assembly. The rack 206 is driven back and forth along the slot by a wiper gear which meshes with the rack gear 210. The wiper gear is turned by a motor in the printer through a gear train. Both the slot and the rack 206 lie parallel to the nozzles of the printhead 110. Such is substantially parallel to the media advancement direction 212, in which the media sheet is advanced through the print zone 106 (
A pair of frames 214 and 215 are respectively located at two sides of the base 208. They project up from and along the rack 206. A pair of guide track slots 216 and 217 are defined by tops of frames 218 and 219, and the bottom edges of frames 220 and 221. On the other hand, the platform 204 has two projections 222 at two respective sides for fitting into the slots 216, 217. In this way, the platform 204 is restricted to slide along the slots during the wiping process.
Rack 206 has a support 224, which extends upward and is mounted on the rack 206 at an end away from the rack gear 210. A pivot arm 226 at an end of the platform 204 fits into a pivot slot 228 at an end of the support such that the platform 204 is mounted to the support 224. In this way, when the rack 206 slides back and forth along the slot (not shown), the platform 204 moves accordingly as driven by the support 224.
Each wiper blade 202 and 203 has a slit 234 on one of its side walls 230, 232. Each slit 234 extends substantially parallel to the printhead plane in a widthwise direction as shown in FIG. 2. Slit 234 on an elastic wiper blade causes the stiffness of the wiper blade to be different during the front and back strokes of the wiping action. The change in wiper blade stiffness puts less pressure on the printhead when the previous stroke has already dried it.
In one embodiment, the forward stroke is defined as being the first squeegee stroke across the printhead. The backward stroke returns it to the home position.
In the forward stroke represented in
In the backward stroke represented in
In one embodiment of the present invention, each slit 306 runs the full end-to-end width of its respective wiper blades 302. The depth of each slit is about three-fifths of the thickness of its respective wiper blade. The spacing between each slit 306 and the platform is about four-sevenths of the height of its respective wiper blade. Such depths and spacings control the amount of the wiping force that will be applied on the printhead during the backward stroke. The geometry and placement of the slits and the material of the wiper itself can be used to adjust such backstroke wiping force.
In the forward stroke of
In the backward stroke represented in
Alternatives can be made. For example, the buttresses 408 and 409 can be made of flexible materials. Each buttress mainly functions to increase the effective stiffness of its respective wiper blades during the forward stroke by applying an additional force on the wiper blade.
Number | Name | Date | Kind |
---|---|---|---|
4683481 | Johnson | Jul 1987 | A |
5278584 | Keefe | Jan 1994 | A |
6132026 | Taylor | Oct 2000 | A |
6527362 | Hood et al. | Mar 2003 | B2 |
6679579 | Tee et al. | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
04037555 | Feb 1992 | JP |
06023999 | Feb 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040212657 A1 | Oct 2004 | US |