Field of the Invention
The present invention relates to an inkjet printing apparatus for printing an image by using a print head capable of ejecting ink and a method for controlling the inkjet printing apparatus.
Description of the Related Art
An inkjet printing apparatus prints an image on a print medium by ejecting ink, which is a printing agent, from a plurality of ejection ports formed on a print head. As for the print head used in the inkjet printing apparatus, there is known a print head in which an ejection energy generation element, such as an electrothermal transducer or an electromechanical transducer, is arranged in a liquid path that is in communication with the ejection ports, and the ejection energy causes ink in the liquid path to be ejected from the ejection ports. Some of the inks used for printing use water as a solvent, and when exposed to the air, the water serving as the solvent evaporates to cause an increase in viscosity (thickening of the ink). If the viscosity of the ink in the print head increases, the ejection of the ink during the printing operation becomes unstable, leading to a decrease in image quality. Accordingly, the currently used inkjet printing apparatus performs ink discharge processing to discharge the thickened ink or the ink containing dust or the like from the print head before printing an image.
Further, the inkjet printing apparatus is provided with a capping portion for covering (capping) an ejection port surface on which the ejection ports of the print head are formed as a configuration of preventing the ink in the print head from thickening during ejection standby in which a printing operation is not performed. However, the capping portion is often shared as an ink accepting member for accepting the thickened ink discharged from the print head due to the limit of the body size of the inkjet printing apparatus. Therefore, a capping portion needs to have a capacity for accepting the discharged ink, and accordingly a predetermined shielded space which is shielded from outside air is formed between the ejection port surface of the print head and the capping portion in a state in which the print head is capped. This causes the ejection ports to be in contact with air in the shielded space even after the capping, and the ink near the ejection ports is occasionally thickened. In addition, after capping the print head and depending on hermeticity of the capping portion, water may gradually evaporate over time to the outside of the capping portion. This may promote the thickening of the ink.
To reduce the thickening of the ink after the capping, Japanese Patent Laid-Open No. 2004-181844 discloses a technique of providing a printing apparatus body and a print head with a humidity sensor to regularly predict a humidity inside a capping portion and performing ejection to the capping portion the number of times corresponding to the predicted humidity.
In the technique disclosed in Japanese Patent Laid-Open No. 2004-181844, however, the ejection continues according to the humidity, and therefore the volume of ink to be discarded increases.
An object of the present invention is to provide an inkjet printing apparatus and a method therefor capable of suppressing a volume of ink ejected to a capping portion and maintaining an ejection performance of a print head in a standby state in which ejection ports of the print head are covered with a capping portion.
To achieve the above object, the present invention has the following configuration.
That is, in a first embodiment of the present invention, there is provided an inkjet printing apparatus capable of performing a printing operation to eject ink from an ejection port provided for a print head to a print medium while covering the ejection port with a capping portion in a standby state in which the printing operation is not performed, the apparatus including: a humidifying unit configured to perform a humidification operation to humidify a space formed between the capping portion and the print head in the standby state; and a control unit configured to cause the humidifying unit to perform the humidification operation on the space in the standby state, wherein the control unit suspends the humidification operation at a predetermined timing after performing the humidification operation multiple times.
According to the present invention, in the standby state in which the ejection ports of the print head are covered with the capping portion, it is possible to suppress a volume of ink ejected to a capping portion and appropriately maintain an ambient humidity of the print head. This allows an ejection performance of the print head to be properly maintained, and accordingly, an excellent image quality can be obtained while an increase in the running cost associated with ink ejection can be suppressed.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Embodiments of the present invention will be described below.
In the present embodiment, as the print head 105 for ejecting ink to labels, a plurality of print heads 105K, 105C, 105M, and 105Y are arranged in the conveying direction upstream of the conveying path. The print heads 105K, 105C, 105M, and 105Y respectively eject black, cyan, magenta, and yellow inks, so that a color image can be printed. The print head 105 is a line head having a long length and a printing width corresponding to a maximum width of the label sheet 101. On lower surfaces of the print heads (ejection port surfaces), a plurality of ejection ports capable of ejecting ink are arranged. An arrangement direction of the plurality of ejection ports on each ejection port surface of the print head is a direction crossing the conveying direction A of labels (a direction perpendicular to the conveying direction A in this example). Incidentally, in the following description, the ejection ports and a portion indicating the liquid path that is in communication with the ejection ports are also referred to as a nozzle.
In the liquid path provided in a manner corresponding to the ejection ports of each of the print heads, there is provided an ejection energy generation element to eject ink supplied from an ink tank 106 from the ejection ports which are openings formed at a front end of the liquid path. Examples of the ejection energy generation element include an electrothermal converting element (heater) and a piezoelectric element. In the print head using the heater, ink in a nozzle is bubbled with heat generated by the heater, and the ink is ejected from the ejection ports with pressure at the time of bubbling.
In an upper part of the printing apparatus 100, there is provided the ink tank 106 (106K, 106C, 106M, and 106Y) for supplying inks to the print head 105 (105K, 105C, 105M, and 105Y). In a lower part of the print head 105, there is provided a capping mechanism 107 (a capping portion) having a capping member capable of covering the ejection ports of the print head 105 and the ejection port surface on which the ejection ports are formed in a state cut off from outside air. The print head 105 and the capping mechanism 107 are relatively movable in a horizontal direction in
The printing apparatus 100 is connected to an external computer (host device) 108, and an image can be printed based on print data received from the computer 108.
A control operation performed by the control system configured in the above manner will be described.
After analyzing the received commands, the CPU 201 expands the print data on each color component of the print data into an image memory 206 in a bitmap format. The CPU 201 also controls a capping motor 209 for driving the capping mechanism 107, a head motor 210 for moving the print head 105 in a vertical direction, and a blade motor 218 for operating a blade 109 via an input/output circuit (I/O) 207 and a motor driving part 208. The head motor 210 allows the print head 105 to move among a capping position (standby position) at which the ejection port surface comes in contact with the capping member, a print position at which an image is printed, and an evacuation position at which the ejection port surface is separated upwardly from the capping member.
In printing an image, the conveying roller 102 is driven by the conveying motor 103 to convey the label sheet 101 at a constant speed. To determine a print timing of an image on each label of the label sheet 101 conveyed at a constant speed, a front end of the label is detected by the label sensor 104. A detection signal of the label sensor 104 is inputted via an input/output circuit (I/O) 211. In synchronism with a signal outputted from an encoder 110 according to the conveyance of the label sheet 101 by the conveying motor 103, the CPU 201 sequentially reads out the print data on each color from the image memory 206. Furthermore, the CPU 201 transfers the read print data to the corresponding print head 105 via a print head control circuit 212. Accordingly, the print head 105 ejects ink based on the print data to print an image on the label. Note that a roll motor 111 is used to rewind the label sheet.
A pump motor 213 for driving a pump, which will be described later, is controlled via the input/output circuit (I/O) 207 and the motor driving part 208. An operation panel 214 is connected to an input/output circuit (I/O) 215. An ambient temperature and an ambient humidity of the printing apparatus 100 are detected by a temperature and humidity sensor 216. After A/D converted by an A/D converter 217, the detection signal is inputted to the CPU 201. Further, the CPU 201 is connected to a valve 304, a valve 305, a valve 307, and a valve 308 and controls them.
To fill the print head 105 with ink, the valves 307 and 308 are closed and the valve 304 is opened, and the pump motor 213 is driven to operate the tube pump 311, so that the internal pressure of the print head 105 falls below the internal pressure of the ink tank 106. Accordingly, the print head 105 is filled with ink via the connection member 301.
In a case where the ink in the print head 105 is used by the printing operation, the internal pressure of the print head 105 decreases. In a case where the internal pressure of the print head 105 falls below the internal pressure of the ink tank 106, the ink is supplied from the ink tank 106 to the print head 105 through the connection member 301. Basically, the ink flow path system shown in
The recovery operations performed in the present embodiment include the above-described recovery ejection and suction recovery and a wipe recovery for wiping out dust or ink adhering to the ejection port surface of the print head 105 with use of a wiping blade. These operations may be used in combination.
In the case of performing the suction recovery, first, the capping member 107a is brought in contact with the ejection port surface 105a of the print head 105 to have a capping state, and the tube pump 311 is operated in a direction in which the internal pressure of the buffer tank 303 is reduced in a state in which all of the valves are closed. Then, the valve 307 is opened at the time when the pressure in the buffer tank 303 reaches a predetermined pressure that is lower than the internal pressure of the print head 105. Accordingly, the shielded space CS formed between the capping member and the ejection port surface 105a of the print head 105 is communicated with the buffer tank 303, and the ink in the buffer tank 303 is sucked into the capping member 107a with a low pressure of the shielded space CS. Then, the thickened ink, the ink containing dust in the liquid path, or the like is discharged into the capping member 107. As a result, the ink in the print head 105 is replaced with a new ink suitable for ejection, and a favorable ejection condition can be obtained.
The wipe recovery is performed in a manner that the ink which has adhered to the ejection port surface 105a of the print head 105 as a result of the above-described suction recovery operation or the like is wiped out with a blade 109 that is in contact with the ejection port surface 105a and reciprocates by the blade motor 218. After this wipe recovery, ink is ejected to the capping member 105a to control a meniscus of the ink in the ejection ports. When a cumulative volume of ink ejected to the capping member 107a reaches a predetermined volume, the ejection port surface 105a of the print head 105 is separated from the capping member 107a, and in a state in which the valve 304 and the valve 308 are closed and the valve 307 is opened, the tube pump 311 is operated. Accordingly, the ink accumulated in the capping member 105a is discarded to the waste ink tank 310.
Next, with reference to the flowchart of
In a standby state in which the printing operation is not performed, the print head 105 is capped by the capping member 107a of the capping mechanism 107. This capping is performed after the last printing operation ends (S1). If the capping is performed, the CPU 201 obtains the cumulative number of ejections of ink droplets corresponding to a volume of ink accumulated in the capping member 107a (the cumulative number of ejection operations) and obtains an ambient temperature and an ambient humidity of the printing apparatus detected by the temperature humidity sensor 216 (S2, S3). The CPU 201 also obtains a coefficient corresponding to a time in which capping is not performed during the last printing operation (cap open time) based on the table shown in
The cumulative number of ejections corresponding to the volume of ink accumulated in the capping member 107a (see
The recovery ejection amount (the number of ejections) and the humidification ejection amount (the number of humidification ejections) can be controlled by changing their respective ejection frequencies, and also by changing the recovery ejection operation time and the humidification ejection operation time. That is, to increase the ejection amount, the ejection frequency may be increased or the ejection time may be increased. It is also possible to control the ejection amount by changing both of the ejection frequency and the operation time. In addition, the cumulative ejection amount (the cumulative number of ejections) is configured to be reset by discarding the ink accumulated in the capping member 107a into the waste ink tank 310 with use of the tube pump.
In the present embodiment, by using the temperature humidity coefficient shown in
Na=temperature humidity coefficient (N)×cumulative ejection coefficient (e1)×1 ejection.
Note that Formula 1 is applied when N>10. When N=10, Na=0 is set irrespective of the cumulative number of preliminary ejections.
Now, in a case where the ambient temperature is 23° C. and the ambient humidity is 20% as the ejection conditions after the capping, a temperature humidity coefficient N as obtained from the table of
By using the temperature humidity coefficient shown in
T=720/{(temperature humidity coefficient (N)−10)×cumulative ejection coefficient (e1)}×1 second.
Note that Formula 2 of
Therefore, the humidification interval T set under the above-described ejection conditions is T=720/{(90−10)×0.5}×1 second=18 seconds. Incidentally, in the present embodiment, for each humidification ejection, one ejection (ink ejection) is performed from each nozzle of the print head 105. The one ejection (one-time humidification ejection) from each nozzle is performed every interval of T. However, the present invention is not limited to this, and depending on the apparatus, the number of one-time humidification ejections (depending on the volume of the capping member 107a, for example) may be set to two or more.
Referring back to
On the other hand, in a system in which only the recovery ejection is performed to the capping member 107a immediately before the printing, the humidity in the shielded space CS does not increase sufficiently. Therefore, to refresh the ink in the nozzle, it is required to eject a large volume of ink at the time of recovery ejection as shown in
Further, in a case where it is determined that there is no printing instruction in S7 of
In a second embodiment, the same inkjet printing apparatus as that used the first embodiment is used. Therefore, the explanation of the same portion will be omitted. The portion different from the first embodiment will be described.
With reference to the flowchart of
In a case where it is determined that there is no printing instruction in S7 of
The present invention can also be applied to an inkjet printing system provided with a plurality of devices (such as a host computer, an interface device, a reader, and a printer) and an apparatus provided with one device (such as a copying machine or a facsimile machine). The present invention may be configured as a printing system including an inkjet printing apparatus using a plurality of print heads capable of ejecting different inks and a host device capable of providing image data for the printing apparatus.
In addition, a storage medium may store a program code of software realizing the functions described in the above embodiments. In this case, it is possible to provide the program code stored in the storage medium for the printing system or the printing apparatus, and a computer (or a CPU or MPU) in the printing system or the printing apparatus reads and executes the program code stored in the storage medium. The object of the present invention can be achieved by such configurations. In this case, the program code itself read from the storage medium realizes the functions described in the above embodiments, and the storage medium having the program code stored therein forms the present invention. In a case where the present invention is applied to such a storage medium, the storage medium stores a program code corresponding to the above-described flowchart.
As the storage medium for providing a program code, it is possible to use a floppy disk (registered trademark), a hard disk, an optical disk, a magneto-optic disk, a CD-ROM, a CD-R, a BD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like. The computer executes the read program code, so that the functions described in the above embodiments can be realized. Furthermore, based on an instruction of the program code, an OS (operating system) operating on the computer or the like performs part or all of the actual processing, so that the processing can realize the functions described in the above embodiments.
In addition, the information such as the program code read from the storage medium may be loaded into a memory provided for a function expansion board inserted into the computer or a function expansion unit connected to the computer. In this case, based on an instruction of the loaded program code, a CPU or the like provided for the function expansion board or the function expansion unit performs part or all of the actual information processing, so that the processing can realize the functions described in the above embodiments.
Furthermore, the present invention is not limited to a full line-type printing apparatus like the one described in the above embodiments. It is also possible to apply the present invention to a so-called serial-type printing apparatus which performs printing operation by moving a print head in a direction crossing a conveying direction of a print medium.
The above embodiments show the examples of using the print head as a humidifying unit. However, the humidifying unit of the present invention is not limited to this, and it is also possible to humidify, during standby, the inside of the capping member by supplying a liquid from a liquid providing unit other than the print head to the shielded space formed between the ejection port surface of the print head and the capping member.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-195870, filed Sep. 20, 2013, No. 2013-195872, filed Sep. 20, 2013 which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-195870 | Sep 2013 | JP | national |
2013-195872 | Sep 2013 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 14488748 | Sep 2014 | US |
Child | 15227912 | US |