1. Field of the Invention
The present invention relates to an inkjet printing apparatus and a method of discharging a shipping ink and more particularly to an inkjet printing apparatus and a shipping ink discharging method which discharges the shipping ink from a print head filled with that ink.
2. Description of the Related Art
If, during a long period of storage or during shipping, a print head of an inkjet printing apparatus is left not filled with ink, a film of contaminants coming from surrounding environment may be formed over the surface of heaters in the print head. When in use, such a print head is likely to exhibit deteriorated bubble formation characteristics and therefore a degraded print quality. To prevent such a degradation in the bubble formation performance, a technique has been known to fill the print head with a shipping ink which is a printing ink cleared of coloring components and is used during storage and shipping.
When a print head filled with a shipping ink is used in a printing apparatus for a printing purpose, the print head, before starting a printing operation, undergoes a conventional shipping ink discharging process known as an ageing processing technique (e.g., Japanese Patent Laid-Open No. H05-169676 (1993)). The ageing processing technique involves applying heat pulses successively to heaters of the print head to separate and remove an oxide film and impurities deposited on the heaters, then installing the print head in the printing apparatus, discharging the shipping ink from the nozzles and filling the print head with a printing ink from an ink tank for the printing operation.
However, in a line type print head that is used in printing laboratories where large volumes of prints are processed, the use of the above ageing processing technique in discharging the shipping ink may result in significant amount of the shipping ink remaining in the print head. This is because the line type print head has many nozzles and long flow path connecting these nozzles and therefore a correspondingly large volume of shipping ink required to fill them.
Moreover, simply discharging the shipping ink with a bubble formation energy alone, that is, by means of ink ejection through nozzles activation alone, leaves a significant amount of the shipping ink, that was loaded into the flow path in the print head, undischarged, though the shipping ink in the liquid chamber in the print head can be expelled.
Further, in an inkjet printing apparatus that performs an ink circulation operation through the line type print head, if a shipping ink remains in the print head, it may during the ink circulation operation be mixed with a printing ink present in the printing apparatus body. If an ink mixed with the shipping ink is used for printing on a print medium, it may take long before the printed color or hue becomes stabilized.
The present invention has been accomplished to provide an inkjet printing apparatus and a shipping ink discharging method which can minimize an amount of the shipping ink that may remain in a print head after the ink-filled print head has been discharged of the shipping ink.
To achieve this objective, the inkjet printing apparatus of this invention comprises: a print head having arrays of ink ejection nozzles formed therein, the print head being filled with a shipping ink; an ink tank accommodating ink to be supplied to the print head; a first pump installed in an ink supply path to deliver ink from the ink tank to the print head; a second pump installed in an ink recovery path to collect ink not ejected from the print head into the ink tank; a switch valve installed between the print head and the second pump; and a cleaning mechanism movable toward the nozzle arrays to clean the print head; wherein the switch valve is closed and the first pump is operated to discharge the shipping ink from the ink ejection nozzles and the cleaning mechanism is operated to clean the print head, after which the switch valve is opened and the second pump is operated to supply ink from the ink tank to the print head.
In the inkjet printing apparatus of the above construction, the shipping ink filled in a print head is expelled from the head in the following procedure: the interior of the print head is depressurized to suck the shipping ink out of the print head into a drain tank; and then the interior of the print head is pressurized to force out the shipping ink remaining in the print head, after which a nozzle-formed surface of the print head is cleaned by a maintenance operation. This process can minimize the amount of shipping ink remaining in the print head after the print head has been discharged of the ink.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
One embodiment of this invention will be described in detail by referring to the accompanying drawings.
A printing apparatus 1 has a printing unit 3 made up of a plurality of print heads 2 and ejects drops of ink from the print heads 2 onto a print medium 4 to form an image on it. The printing unit 3 comprises four print heads, each accommodating one of four CMYK inks. The present invention is not limited to this configuration. For example, the printing unit 3 may consist of any desired number of print heads so that three color inks or five or more color inks can be used. Furthermore, the printing unit 3 may be constructed of a single print head incorporating a plurality of color ink tanks.
The print heads 2 are held together by a head holder 5 which can be moved vertically to change the distance between the printing unit 3 and a print surface of the print medium. At a most upstream position in the printing apparatus 1 is located a paper feeding unit (not shown) in which a paper feeding/conveyance mechanism (not shown) including conveyance rollers 7 is installed to feed the print medium 4 to the print heads 2 and, during a printing operation, advance it at a constant speed. The print medium 4 used in the printing apparatus of this invention is not limited to a rolled continuous print medium but may be cut sheets.
On an outlet side of the print head 2 is provided a buffer tank 8 or a first ink storage portion. Downstream of the buffer tank 8 along the passageway is located a subtank 10 or a second ink storage portion. Further down the passageway from the subtank 10 is installed the print head 2. In this way the ink circulation path is formed.
The print head 2 has an in-head path 44 running therethrough and a bypass path 45 not running through but bypassing the head. Between the print head 2 and the buffer tank 8 is installed a first switch valve 42 for selecting between the in-head path 44 and the bypass path 45 and closing the other. A downstream side of the first switch valve 42 is coupled to a first circulation tube 20, in which a first circulation pump 11 is installed. The buffer tank 8 is connected to the subtank 10 through a second circulation tube 21, in which a second circulation pump 12 is installed. The subtank 10 is connected to the print head 2 via a third circulation tube 22, which is coupled with second and third switch valve 39, 41 at both ends thereof. The first and second circulation pumps 11, 12 are of a tube pump type that can produce a positive or negative pressure by squeezing the tube between a pump guide 13 and pump rollers 14 while driving the pump rollers 14 in a forward or backward direction. These circulation pumps use a motor (not shown), such as a stepping motor, to rotatively drive a pump roller holder 15 that rotatively supports the pump rollers 14 therein.
The first and second circulation pumps are driven simultaneously to circulate ink through the ink circulation path between the buffer tank 8, the subtank 10 and the print head 2. The first switch valve 42 selects either the in-head path 44 or the bypass path 45 for ink circulation. Further, a fourth circulation tube 43 is used to connect the subtank 10 to the print head 2, with a third circulation pump 40 installed in the tube 43.
An ink tank 16 is an ink storage portion for the supply of ink to the printing apparatus 1 and is removably installed in the printing apparatus. The ink supply from the ink tank 16 to the printing apparatus 1 is achieved through a supply tube 17, in which is installed a supply pump 18 that delivers ink to the buffer tank 8, the supply pump 18 being of the same tube pump type as the circulation pumps 11, 12.
The buffer tank 8 and the subtank 10 have air vent ports 19a, 19b formed in their top portion, respectively, to vent air bubbles accumulated in the tanks out into the atmosphere at all times. The air vent ports thus prevent ink meniscuses formed in the ink nozzles 38 of the print head 2 from being broken by changes in temperature and atmospheric pressure or by pressure changes in the ink tanks during ink circulation through the print head 2, which would otherwise result in ink bleeding from the nozzles and air bubbles infiltrating into the nozzles.
Further, whether the ink circulation operation is performed or not, the subtank 10 is located at a height where a balance is struck between a pressure in the circulation path and a pressure produced by a hydraulic head difference to prevent possible ink bleeding from or air infiltration into the nozzles 38 of the print head 2 even when the head holder 5 holding the print head 2 moves vertically up or down as during the operation mode shift to a printing state or to a capping state.
The buffer tank 8 and the subtank 10 also have liquid level detectors to control the amount of ink accommodated in each tank. The buffer tank 8 has a float sensor 23 or a first liquid level detector to detect an ink level in it. The float sensor 23 has at its upper and lower portions cylindrical floats BH, BL each incorporating a magnet, with a reed switch (not shown) built into a shaft passing through and supporting the floats BH, BL. Each of the floats BH, BL is displaced in the direction of height according to the volume of ink in the tank to turn on or off the built-in reed switch, the state of which is used to determine the remaining ink volume in the tank. The subtank 10, as with the buffer tank 8, has a float sensor 24 or a second liquid level detector. The float sensor 24 has at its upper and lower portions floats SH, SL. Although the aforementioned construction of the float sensors 23, 24 is used in the following description of the embodiment, the liquid level detectors may be constructed otherwise. For example, they may be of an electrostatic capacitance type that checks a difference in electrostatic capacitance for the presence or absence of a liquid in the tank; an ultrasonic type that detects the liquid level by transmitting an ultrasonic wave to a liquid surface, checking if the wave has bounced back and returned and measuring the time it takes for the wave to return to where it originated; or an optical type that determines the presence or absence of a liquid in the tank, by emitting light from a light emitting device and checking whether the emitted light is totally reflected onto a light receiving device. Furthermore, although in this embodiment two liquid levels are to be detected in each tank, the number of liquid levels to be detected may be three or more or may be changed for each tank. It may also be possible to employ a construction that detects a liquid level linearly. As for the means of detecting the ink volume in a tank, there is no need to stick with a method of detecting the liquid level. For example, the ink volume may be determined by using a means which checks a change in liquid weight as by a weight sensor to detect a change in the liquid volume in the tank.
Next, the basic construction of the ink discharge path in this embodiment will be described. The cleaning unit 6 has a cap 25 which, when the printing apparatus is not in a printing operation, hermetically seals the ink nozzles 38 to prevent possible ink ejection failures. The cap 25 is connected to a drain tank 27, a waste ink collector removably installed in the printing apparatus 1, which forms a part of the ink discharge path. Since what the drain tank 27 collects is waste inks, no problem arises if different color inks mix together and therefore only one common drain tank needs to be provided for all color inks. But if space allows, a plurality of drain tanks may be used, one for each color.
A coupling portion between the printing apparatus 1 and the drain tank 27 has a valve mechanism (not shown). With the drain tank 27 installed in the printing apparatus 1, the valve mechanism (not shown) is open, allowing the cap 25 to communicate with the drain tank 27. When the drain tank 27 is taken out of the printing apparatus 1, the valve mechanism (not shown) is closed, hermetically sealing the coupling portion of the drain tank 27 to prevent ink leakage. The cap 25 and the drain tank 27 are interconnected through a discharge tube 29, in which a discharge pump 30, of a tube pump type similar to the circulation pumps 11, 12 and the supply pump 18, is installed. In this construction of the ink discharge path, waste ink expelled from a plurality of ink nozzles 38 of the print head 2 (as during a cleaning ejection performed between printing operations) is received in the cap 25. The waste ink in the cap 25 is then discharged into the drain tank 27 by driving the discharge pump 30 with a drive source not shown. The drain tank 27 is provided with a float sensor 31 or a third liquid level detector, as in the buffer tank 8 and subtank 10. The float sensor 31 has floats DH, DL at the upper and lower portions thereof. Like other float sensors 23, 24, this liquid level detector 31 is not limited to this construction.
The cleaning mechanism 9 has a wiper unit 146 for wiping ink and dirt off a nozzle-formed surface of the print head 2, a moving mechanism for moving the wiper unit 146 in a wiping direction (second direction) and a frame 147 that supports the wiper unit 146 and the moving mechanism in their place. The wiper unit 146 is one movable unit formed with blades and suction ports. The moving mechanism is powered by a drive source to move the wiper unit 146 in the second direction as it is guided and supported on two shafts 145. The drive source has a drive motor 141 and reduction gears 142, 143 to rotate a drive shaft 137. The wiper unit 146 removes ink and dirt from the nozzle-formed surface of the print head 2 by a combination of the blades and the suction ports. Outside a wiping area of the frame 147 is provided a trigger lever 127 that switches the direction of blades 121.
In
The two suction ports 111 are coupled through the suction port holder 112 to tubes 115 that are connected with a negative pressure generation device, such as a suction pump. The negative pressure generation device, when activated, produces a negative pressure in the suction ports 111 that sucks out ink or dirt from the nozzles. The blades 121 are held in a blade holder 122. The blade holder 122 is rotatably supported at both ends thereof that are separated along its first-direction rotary axis. The height of top edges of the blades 121 can be changed between a wiping position and a retracted position by a height selector mechanism. The suction port holder 112 and the blade holder 122 are mounted on a common support body of the wiper unit 146.
During the suction mode, the blades 121 are moved to the retracted position, as shown in
During the wiping mode, on the other hand, the blades 121 are moved to the wiping position, as shown in
As described above, the cleaning mechanism has two modes—suction mode and wiping mode—and can selectively perform one of the modes, using the same wiper unit 146. For example, if it is decided that there are no faulty nozzles that fail to eject ink properly, the wiping mode is selected, which allows the nozzle-formed surface of the print head to be cleaned without consuming ink from the nozzles at all. If it is decided that there are some improperly ejecting nozzles, the suction mode is selected, in which the suction ports 111 suck ink and dirt from the nozzles and the nozzle-formed surface, allowing the nozzles to be cleaned while minimizing the ink consumption from the nozzles.
Next, we will explain a preparatory procedure to be performed in the embodiment before the print head is replaced.
When the preparatory procedure prior to the print head replacement is started, the second switch valve 39 is opened (step S1). Then, the first switch valve 42 is operated to select and open the bypass path 45 and the third switch valve 41 is closed (step S2). In this state, the first circulation pump 11 is operated to move ink from the in-head path 44, the bypass path 45 and the first circulation tube 20 into the buffer tank 8 (step S3). These steps, when finished, brake ink meniscuses in the ink nozzles 38, bringing the ink nozzles 38 into communication with atmosphere. After the operation of the first circulation pump 11 is finished, the wiper unit 146 is operated in the suction mode (step S4). In this operation the suction ports 111 of the wiper unit suck out ink from the nozzle liquid chamber and ink adhering to the nozzle-formed surface of the print head. Next, the first switch valve 42 and the third switch valve 41 are closed (step S5). With these steps taken, ink can be prevented from leaking from the nozzles when the print head 2 is removed during the print head replacement work. Further, this preparatory procedure can also prevent the ink in the circulation path from leaking, due to hydraulic head difference, from a joint not shown that opens to an atmosphere when the print head is removed. This enhances the ease with which the print head can be replaced.
With the aforementioned preparatory procedure for the print head replacement complete, a user takes out the used print head 2 from the printing apparatus 1 and installs in its place a new print head 2 filled with a shipping ink.
Next, a process of discharging a shipping ink after the replacement of the print head 2 in the embodiment will be explained.
First, a check is made as to whether the print head 2 newly mounted in the print head 1 is a new one, by referencing ID information of a print head unit (step S21). If the print head 2 is determined not to be a new one, the shipping ink is already expelled from the print head 2. So, an operation to discharge the print head of the shipping ink is skipped, ending the shipping ink discharging operation. If, on the other hand, the print head 2 is determined to be a new one, the first switch valve 42 is closed and the third switch valve 41 is opened (step S22). In this state, the discharge pump 30 is started to bring the cap 25 into and hold it in a suction state (step S23). Next, the second switch valve 39 is closed (step S24) and the third circulation pump 40 is operated to force a printing ink from the subtank 10 through the fourth circulation tube 43 into the print head 2, pressurizing the interior of the print head 2, which in turn forces the shipping ink out of the ink nozzles 38 (step S25). At this time, the shipping ink discharged from the ink nozzles 38 falls into the depressurized cap 25, from which it is delivered by the discharge pump 30 to the drain tank 27. After the third circulation pump 40 is stopped, the discharge pump 30 is kept in operation until the ink remaining in the cap 25 is fully discharged, after which the discharge pump 30 is stopped (step S26). Then, the wiper unit 146 is operated in the suction mode to cause the suction ports 111 to suck out the remaining shipping ink from the nozzle liquid chamber and from the nozzle-formed surface of the print head (step S27). As a final step, the wiper unit 146 is operated in the wiping mode to cause the blades 121 to wipe the nozzle-formed surface to clear it of ink and dirt (step S28).
Next, after the shipping ink has been discharged from the print head in the embodiment, a process of filling the print head 2 with a printing ink will be described.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2011-231276 filed Oct. 21, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2011-231276 | Oct 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5980021 | Nagoshi et al. | Nov 1999 | A |
6149261 | Kuwabara et al. | Nov 2000 | A |
6302516 | Brooks et al. | Oct 2001 | B1 |
6491365 | Sonobe | Dec 2002 | B2 |
6719400 | Inui et al. | Apr 2004 | B2 |
8061805 | Suzuki et al. | Nov 2011 | B2 |
20040137159 | Nakamura et al. | Jul 2004 | A1 |
20100033531 | Suzuki et al. | Feb 2010 | A1 |
20100321425 | Kanke et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1214012 | Apr 1999 | CN |
1498688 | May 2004 | CN |
1025997 | Aug 2000 | EP |
05-169676 | Sep 1993 | JP |
2009049135 | Apr 2009 | WO |
Entry |
---|
May 5, 2014 Chinese Office Action in Chinese Patent Application No. 201210404580.1. |
Number | Date | Country | |
---|---|---|---|
20130100205 A1 | Apr 2013 | US |