This invention pertains to the field of inkjet printing systems, and more particularly to a method for reducing ink bleed artifacts.
Ink jet printers have become a very common way for printing images from a computer. Ink jet printers work by spraying small drops of colorants (ink) onto a receiver to form an image. Typically, ink jet printers use four or more different colors of colorants to produce colored images. Most commonly cyan (C), magenta (M), yellow (Y), and black (K) colorants are used. Different types of ink having different chemical compositions are known in the art. Two common types of ink are dye-based inks and pigment-based inks. Each of these ink types are known to have certain advantages and disadvantages. Dye-based inks are known to produce a wide range of colors, but have poor image durability characteristics, and are subject to fading or damage over time with exposure to light or moisture. The term “gloss” refers to light, which is reflected off of the front surface of the print, and appears when an image is viewed in a near specular orientation. Pigmented inks are known to provide good image durability characteristics, but can suffer from gloss artifacts (any unexpected appearance of gloss) that result in a perceived image quality loss. These gloss artifacts include “differential gloss”, which is an abrupt undesirable change in gloss appearing between two adjacent regions in an image; “chromatic gloss”, which is an undesirable change in the color of the gloss that appears when an image is viewed in a near specular orientation; and “haze”, which refers to a cloudy or smoky appearance to an image resulting from light scattering off of the surface of the print.
Several methods to address the undesirable gloss artifacts described above are known in the art. One technique known in the art is to laminate the print, but this is typically too time-consuming and costly. Another technique is to apply an additional, substantially clear ink to the entire image during or shortly after the printing process. For example, see U.S. Pat. Nos. 6,428,157, and 6,561,644. The application of a full layer of clear ink on top of an area printed with pigmented inks is likely unnecessary to achieve the desired mitigation of gloss artifacts, and is wasteful of ink. Also, indiscriminate application of clear ink leads to a dramatic increase in the total amount of fluid deposited on the page, which is known to cause other negative image quality artifacts. See for example U.S. Pat. No. 6,435,657.
Other techniques known in the art attempt to reduce differential gloss by applying a clear ink in unprinted areas. See for example U.S. Pat. No. 6,857,733, U.S. Pat. No. 6,953,244, and U.S. Pat. No. 6,863,392.
In U.S. Pat. No. 6,877,850, a method of applying clear ink based on the total duty of the colored ink is disclosed. Similarly, U.S. Pat. No. 6,585,363 to Tanaka, et al., discloses a method of applying a clear ink in which the CMYK ink amounts are summed to generate a map of printed pixels. The map is then “thinned” using a masking process to determine which locations will receive the clear ink.
The above mentioned references teach the use of a clear ink for improving some of the aforementioned gloss artifacts, but do not teach methods of controlling the laydown of the clear ink in response to the mixture of colored ink that will be printed. For example, the gloss properties of the different colored inks can be different, thereby requiring different amounts of clear ink to be applied to reduce differential gloss based on the mixture of the colored inks that are printed. Thus, there is a need for a method of computing a clear ink amount to be applied to an image to provide for improved image quality by minimizing gloss related artifacts, while minimizing the total amount of fluid deposited on the page by not printing clear ink where it is unnecessary.
It is an object of the present invention to provide a method for modifying an input digital image having one or more color channels corresponding to one or more color inks and a protective ink channel corresponding to a substantially clear protective ink, each channel having an (x,y) array of pixel values, to form a modified digital image including computing a first value responsive to corresponding pixel values of the one or more color channels; computing a second value responsive to the corresponding pixel value of the protective ink channel; and modifying the corresponding pixel value of the protective ink channel responsive to the first and second values.
This invention has the advantage in that it provides for improved image quality by reducing gloss related artifacts. Another advantage is that the invention provides for controlling the protective ink amount in response to the colored ink amounts.
This invention describes a method for computing a protective ink amount to be printed in addition to a plurality of colored ink amounts to provide for improved image quality as set forth in the objects described above. The protective ink typically provides for improved image quality or durability properties, but has no colorant and is substantially clear. In this invention we use the term “protective ink” generically to mean any substantially clear ink, even if the clear ink has no protective function. The invention is presented hereinafter in the context of an inkjet printer using pigmented inks. However, it should be recognized that this method is applicable to other printing technologies as well.
The gloss artifacts described above arise from the physical properties of the inks interacting with the receiver media, or from certain combinations of the inks interacting in an undesirable way when printed at the same pixel on the page. This is especially true for pigmented inks. Conversely, the gloss artifacts can be substantially improved by forcing certain desirable combinations of ink to be printed on the page or preventing certain undesirable combinations from being printed. For example, it can be that when a cyan ink drop is printed at a given pixel without any other inks, an undesirable chromatic gloss effect is observed. However, the chromatic gloss can be substantially reduced by forcing a drop of protective ink to also be printed when only a cyan ink drop is present. This level of control is provided by the present invention, as will be discussed below.
An input image is composed of a two dimensional (x,y) array of individual picture elements, or pixels, and can be represented as a function of two spatial coordinates, (x and y), and a color channel coordinate, c. The location of the pixel within the image is represented by the spatial coordinates, and each pixel has a set of corresponding pixel values containing the code value at the pixel location from each of the color channels. Each unique combination of the spatial coordinates defines the location of a pixel within the image, and each pixel possesses a set of input code values representing input colorant amounts for a number of different inks indexed by the color channel coordinate, c. Each input code value representing the amount of ink in a color channel is generally represented by integer numbers on the range {0,255}. A typical set of inks for an inkjet printer includes cyan (C), magenta (M), yellow (Y), black (K) inks, and protective (P) inks, hereinafter referred to as CMYKP inks. The protective ink (P) is simply treated as an additional colorant channel. It should be noted that the present invention will apply to any number of colored inks of any color used in combination with a substantially clear protective ink.
Referring to
Following the raster image processor 10 of
It is important for the following discussion to understand the difference between the protective ink amount that is described by the output code values o(x,y,c) of the raster image processor 10 of
The output code values o(x,y,c) are halftoned by the multitone processor 50 to produce the multitoned image signal h(x,y,c). While the multitone processor 50 will preserve the desired amount of each ink in a local area, it can produce undesirable combinations of inks at a given pixel. This occurs because the multitone processor 50 does not have information about which combinations of inks are undesirable and will result in gloss artifacts, or which combinations of inks are desirable to reduce gloss artifacts. Thus, the multitone processor 50 is also incapable of avoiding undesirable gloss artifacts as described above. The post-multitone protective ink processor 60 serves the function of eliminating the undesirable combinations of inks (or creating desirable combinations of inks) by modifying the protective ink amount according to the control parameters d supplied by the protective ink amount controller 40. The control parameters d contain information on which combinations of inks are undesirable and produce gloss artifacts, and which combinations of inks are desirable to reduce gloss artifacts.
Turning now to
Turning now to
Ri=K+nY+n
2
M+n
3
C
where C, M, Y, and K are the multitoned code values and n is the number of printing levels available. For example, in a binary inkjet printer that can print either 0 or 1 drops of each ink at each pixel, C, M, Y, and K will each be 0 or 1 corresponding to the desired number of drops of each ink, and n will be 2, which is the number of available printing levels (0 or 1). In a multilevel inkjet printer that can print 0, 1, or 2 drops of each ink at each pixel, the values of C, M, Y, and K will be 0, 1, or 2, and n will be 3. Those skilled in the art will recognize that the equation above can be implemented with bit shift operations (also called “shifts”) and addition operations (also called “adds”) according to the following:
Ri=K+(Y<<b)+(M<<2b)+(C<<3b)
where the “<<” operator indicates a bitwise left shift, similar to the bitwise left shift operator in the C programming language, and b is the number of bits used to represent each code value. It should be noted that order or sequence in which the CMYK multitoned code values are shifted and added (i.e., whether C is the least significant or most significant bit values) is not important, as long as it is consistent with the way the row index Ri is interpreted in the subsequent processing. A data table 135 showing the mapping between the CMYK multitoned code values and the row index Ri for a binary inkjet printer system is shown in
Referring again to
As will be obvious to one skilled in the art, different ink chemistries will result in different gloss artifacts. For example, it can turn out for a particular set of inks that the C ink printed alone does not produce an undesirable chromatic gloss, and therefore modified protective ink value stored in table cell 160 of the 2D look-up table of
Now, several embodiments of the present invention as applied to control different gloss artifacts will be described. Consider a set of inks and a receiver media where the gloss of the unprinted receiver media is relatively low and the gloss of M ink printed alone is relatively high. Without correction, this can lead to a gloss artifact called “differential gloss”, wherein adjacent printed regions have different gloss, giving the printed image an unnatural appearance. Assume for this example that the gloss of the protective ink is somewhere between the low gloss of the media and the high gloss of the M ink. Referring to
Another embodiment of the present invention can be used to improve “haze”, which refers to a cloudy or smoky appearance to an image resulting from light scattering off of the surface of the print. Assume for a particular set of inks that the addition of protective ink to all printed colors results in a more uniform surface to the print, which causes less scattering of light and lower haze. Such an improvement could be achieved by utilizing the 2D look-up table 185 shown in
Another embodiment of the present invention can be used to reduce ink usage by the efficient use of the protective ink. It has been found for a particular ink set that the addition of protective ink to certain colors provides for improvement in gloss artifacts, but that the gloss artifacts are largely absent for other colors. In these cases, the protective ink is not required to reduce gloss artifacts, and a savings of ink can be realized by not printing the protective ink where it is not needed. As an example, assume that the Y ink does not produce gloss artifacts, and when Y is printed with other ink colors it serves to reduce the gloss artifacts much the same way the protective ink does. Therefore, any pixel receiving Y ink does not require P ink, but P ink is still required for other colors to reduce gloss artifacts. A 2D look-up table 190 designed to implement this arrangement is shown in
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.