1. Field of the Invention
The present invention relates to a cleaning technique for an inkjet recording head.
2. Description of the Related Art
In a recording head including a nozzle face at which nozzles for discharging ink are provided, paper powder and dust floating in the air (hereinafter, referred to as dust) may adhere on the nozzle face. When such dust adheres, an accuracy of ink droplet impact positions is deteriorated, a condition in which ink droplets do not properly impacted may occur, and an undesired line may be generated in an image. To solve such a problem, a general printer includes a cleaning mechanism for wiping dust off a nozzle face with a wiper made of a flexible material.
Japanese Patent Application Laid-Open No. 3-99857 discusses an example of a printer including a cleaning mechanism. This device performs wiping while pressurizing ink to be supplied to the recording head and overflowing the ink from the nozzle during a cleaning operation. Thus, a wiping effect is improved by preventing dust being pushed into the nozzle by the wiper while wiping. The pressurization is stopped when the wiper moves to an end position, and the ink overflowed on the nozzle face is drawn into the nozzle by a negative pressure in the recording head. Then, a meniscus shape of the ink is formed due to a surface tension of the ink.
According to the device discussed in Japanese Patent Application Laid-Open No. 3-99857, since a large amount of ink is overflowed during wiping, a large amount of ink is gathered by wiping. Further, ink leaks from the nozzle immediately after the wiper passes through. Thus, the gathered ink may flow from both ends of the wiper and mix with the ink overflowed after the wiper is moved.
Accordingly, the dust included in the gathered ink may move back to the nozzle together with the ink. If the large amount of ink on the nozzle face is drawn into the nozzle by a negative pressure when the pressurization is stopped, the dust may be drawn into the nozzle with the ink, and may adhere on the discharge port again. This causes a cleaning failure (see
Further, the device discussed in Japanese Patent Application Laid-Open No. 3-99857 keeps pressurizing until the wiping ends, there is a problem that a large amount of ink is consumed every time cleaning is executed.
The present invention is directed to an inkjet recording apparatus capable of effectively removing dust, which cannot be wiped away by a conventional wiping.
According to an aspect of the present invention, a recording apparatus includes a recording head including a nozzle face at which a nozzle for discharging ink is formed, a supply system including a supply path for supplying ink to the nozzle, a wiping mechanism configured to contact a wiper to the nozzle face, move the wiper and the nozzle face relatively, and execute cleaning of the nozzle face, and a control unit configured to control the supply system and the wiping mechanism, wherein the control unit controls the supply system and the wiping mechanism in a cleaning operation, at the following the steps of: a first step of pressurizing ink in the supply path and overflowing the ink from the nozzle; a second step of stopping the pressurization after the first step; a third step of executing wiping, after the second step, in a condition in which the pressurization is stopped and a negative pressure is not applied to the ink at the nozzle; and a fourth step, after the third step, of applying a negative pressure to the ink at the nozzle and generating a meniscus.
Further features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
Various exemplary embodiments, features, and aspects of the invention will be described in detail below with reference to the drawings.
Note that the components described in the exemplary embodiments are just examples and the range of the present invention should not be limited to the examples. Hereinafter, an exemplary embodiment of an inkjet type printer will be described as an example of a recording apparatus. In this specification, the “recording apparatus” is not limited to an apparatus dedicated to a printing function, and includes a multifunction peripheral that includes a printing function and other functions therein, a production device for forming a pattern on a substrate, and the like.
The supply tube 15 is made of a flexible material and can be deformed by pressure as described below. A pressure pump 16 for supplying ink from the ink tank 13 to the recording head 12 is provided at a part of the path of the supply tube 15. An opening/closing valve 18 for opening and closing the path is provided at the recovery path.
The recording head 12 includes six line heads corresponding to six color inks, for example. The number of colors is not limited to six, and may be one or a number other than six. The line heads of the respective colors may be a single seamless nozzle tip or divided nozzle tips, which are arranged in a line or a staggered pattern. In purpose of simplification of explanation, a supply system of only one color will be described in the present exemplary embodiment, however, the similar supply system is provided for each color ink in an actual apparatus.
A wiping mechanism includes a wiper 21 and a wiper holder 22. In the wiping mechanism, the wiper 21 is made contact with a nozzle face of the recording head 12, and the positional relation between the wiper 21 and the recording head 12 is changed in a direction relatively parallel to the nozzle face to perform a nozzle face cleaning operation.
The wiper 21 is held by the wiper holder 22. The wiper holder 22 can move in a direction parallel to the nozzle face (in a longitudinal direction of the nozzle face on which a plurality of nozzles are arranged) at least in the length of the nozzles arranged in the longitudinal direction. Further, the wiper holder 22 moves in a direction intersecting the nozzle face to shift between a position where an end of the mounted wiper 21 contacts with the nozzle face and a position where the end of the wiper 21 is away from the nozzle face.
Members in the supply system will be described in more detail. The recording head 12 includes a supply port 14, to which the supply tube 15 is connected, and a recovery port 19, to which the recovery tube 17 is connected. Inside the recording head 12, there is a liquid chamber for storing a predetermined amount of ink as described below. The supply tube 15 and recovery tube 17 are connected to the ink tank 13 for storing ink, and an air communication port 20 is provided at a top face of the ink tank 13.
There is a difference in height between a bottom face of the ink tank 13 and the nozzle face of the recording head 12. For example, there is a head difference of 150 mm. Such a head difference generates a balanced state of a negative pressure at the recording head 12 and a meniscus force at the nozzle, and this prevents a leakage of ink from the nozzle and an excessive ink flow from the nozzle during recording.
The pressure pump 16 is a so-called tube pump, in which a pressure roller 23 rotates to pressurize the supply tube 15 to pressurize inside the supply tube 15.
One or more of the rollers of the pressure roller 23 contact with the supply tube 15, and press to concave the flexible tube. Then, when the pressure roller 23 rotates in a clockwise direction as illustrated in the
The one or more rollers squeeze the supply tube 15, and press the ink in the tube in the direction indicated by the arrow to generate an ink flow. In this manner, pressure is applied to the supply tube 15 between the pressure pump 16 and recording head 12.
More specifically, the pressure roller 23 functions not only as a pressure pump but also as an opening/closing valve of the flow path. The pressure roller 23 can switch between the closed valve state (
The filter 14A is provided inside the supply port 14, and ink supplied from the supply tube 15 is introduced in to the liquid chamber 11 after dust included therein is filtered by the filter 14A. The recovery tube 17 is connected to the recovery port 19. The filter 19A is provided inside the recovery port 19, and ink in the liquid chamber 11 is discharged from the recovery tube 17 after filtered by the filter 19A.
An energy generating element for discharging ink droplets is provided at the respective nozzles 122. In the present exemplary embodiment, the energy generating element is a heat generating element. In addition to this, other types of inkjet methods can be used, such as a method using a piezo element, a method using an electrostatic element, and a method using a microelectromechanical system (MEMS) element.
A bus 203 transmits data or a control command. The CPU 200, ROM 201, RAM 202, and bus 203 mainly constitute a controller. A control command from the CPU 200 is transmitted to the pressure pump 16, opening/closing valve 18, recording head 12, wiper holder 22, sheet conveyance mechanism 30, and the like via the bus 203, and the respective components operate according to the command. The sheet conveyance mechanism 30 is a mechanism including a conveyance roller and the like to convey a sheet, on which printing is performed by the recording head 12, at a constant speed.
The ROM 201 of the controller stores a control program for selectively executing operations in a printing mode and a cleaning mode. In the printing mode, the controller controls to discharge ink from the recording head 12 to form an image on a sheet while conveying the sheet to the recording head 12 by the sheet conveyance mechanism 30.
A sequence of a cleaning operation when the cleaning mode is selected will be described.
In an initial state when an operation in the cleaning mode starts, there is dust 124 adhered at the discharge ports 123 or the nozzle face of the recording head 12 as illustrated in
Here, in step S1 of
In step S3, the pressure pump 16 starts to apply pressure to ink. The pressure roller 23 starts to rotate as illustrated in
In step S4, the rotation of the pressure pump 16 is stopped to stop pressurizing. The pressure roller 23 becomes in the state illustrated in
In step S5, the wiper 21 is moved by the wiper holder 22 to perform a wiping operation on the nozzle face of the recording head 12. Since the dust 124 exists in the overflowed ink or on the surface of the ink at a boundary with the air, the dust 124 can be easily wiped off together with the overflowed ink.
As illustrated in
After that, in step S6, the opening/closing valve 18 is switched from a closed state to an opened state. Then, in step S7, the pressure roller 23 of the pressure pump 16 is separated away from the supply tube 15, and becomes in a state illustrated in
In addition, only one of the pressure pump 16 and the opening/closing valve 18 may be opened. In this manner, since at least one of (preferably, both of) the valves of the supply path and recovery path is released, a negative pressure is applied to the nozzles of the recording head 12 and a negative meniscus is generated due to a surface tension of the ink as illustrated in
One of characteristics of the present exemplary embodiment is that pressurization is stopped and a negative pressure is not applied to the ink at the nozzles during a wiping operation since pressurization stops before the wiping operation in step S4. With this configuration, ink does not overflow from the nozzles immediately after the wiper 21 passes therethrough. This solves the above problem described referring to
Further, another characteristic of the present exemplary embodiment is that a part of ink droplet drips due to gravity before wiping, and a part of dust also falls with the ink as illustrated in
As illustrated in
This is because the both of the valves in the supply side and recovery side are closed. In this case, even though the pressure P is a positive pressure, the pressure pump 16 is not performing pressuring operation, so that a positive meniscus is formed due to the surface tension of the ink at the discharge ports of the nozzles immediately after the wiper passes therethrough and the ink will not overflow from the discharge ports.
At a time (g) after wiping ends, since at least one of the valves in the supply side and the recovery side is opened, the pressure P finally becomes blow zero and a negative meniscus is formed at the discharge ports of the nozzles due to the negative pressure. When a meniscus is formed, dust will not drawn into the discharge ports together with ink since the amount of ink drawn into the discharge ports is not large, differently from the conventional example of
As a second exemplary embodiment, a method capable of performing a cleaning operation of the recording head with a small amount of waste ink will be described.
Next, as illustrated in
The present exemplary embodiment omits the processes of
According to the exemplary embodiments of the present invention, dust that cannot be sufficiently wiped off by a conventional wiping method can be effectively removed.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures, and functions.
This application claims priority from Japanese Patent Application No. 2009-149064 filed Jun. 23, 2009, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2009-149064 | Jun 2009 | JP | national |