The present invention relates to an inkjet recording apparatus that records an image by ejecting ink.
Japanese Patent Application Laid-Open No. H9-76537 discusses an inkjet recording apparatus in which black ink high in printing frequency is supplied from an ink bag to a recording head by a tube and color ink low in printing frequency is supplied from a recording unit detachably mounted on a carriage to the recording head. The recording apparatus can perform recording operation irrespective of presence/absence of a color printing recording unit, and can change control of a carriage driving motor based on presence/absence of an ink cartridge.
In the configuration discussed in Japanese Patent Application Laid-Open No. H9-76537, however, if the recording operation is continued in a state where the color printing recording unit is not mounted, ink mist may adhere to a contact unit that performs electric connection, provided on the carriage. Further, contact failure of the contact unit may occur due to adhesion of the ink mist.
The present invention is directed to an inkjet recording apparatus that can prevent contact failure between a carriage and an ink cartridge.
According to an aspect of the present invention, an inkjet recording apparatus configured to perform recording operation by ejecting ink at least from a first recording head, includes an ink tank configured to contain the ink to be supplied to the first recording head, a tube configured to connect the first recording head and the ink tank, and a carriage including a first mounting portion on which the first recording head is mounted, a second mounting portion on which a second recording head is detachably mounted, and a contact portion electrically connected to the second recording head, and configured to reciprocate. A protection member protecting the contact portion can be detachably mounted on the second mounting portion.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
5B, and 5C are enlarged cross-sectional views each illustrating a detail of a tube holder according to the first exemplary embodiment.
Some exemplary embodiments of the present invention are described below with reference to drawings. The following exemplary embodiments do not limit the present invention, and all of combinations of features described in the exemplary embodiments are not necessarily essential for the present invention. Further, relative arrangement, shapes, etc. of components described in the exemplary embodiments are illustrative, and do not intend to limit the scope of the present invention to the described relative arrangement, shapes, etc.
A sheet feeding cassette 6 that is insertable into and removable from the housing 5 by the user is provided on the front surface of the housing 5. The sheet feeding cassette 6 includes a window 6a that enables the user to visually recognize recording media stacked inside the sheet feeding cassette 6. The window 6a is desirably configured by a transparent member such as glass and plastic.
A scanner unit 2 that performs document reading operation is provided at an upper part of the housing 5 so as to be openable/closable to the housing 5.
The recording apparatus 1 feeds a recording medium stacked in the sheet feeding cassette 6 provided on the front surface of the housing 5 or in a sheet feeding tray 7 provided on a rear surface of the housing 5, by a feeding roller (feeding unit) 41. The recording medium fed by the feeding roller 41 is conveyed onto a platen 42 disposed at a position facing the recording unit 3, by a conveyance roller (conveyance unit) 40. The platen 42 is a member that guides and supports the recording medium recorded by the recording unit 3. The recording medium on which recording by the recording unit 3 has been completed is discharged by a discharge roller onto a sheet discharge tray (discharge unit) 43. The sheet discharge tray 43 is disposed above the sheet feeding cassette 6.
A direction (Y direction illustrated in
The recording unit 3 is mounted on a carriage 31 that reciprocates in a main scanning direction (X direction illustrated in
The recording apparatus 1 includes a recovery unit inside a moving area of the carriage 31 and outside a recording area where the recording operation by the recording unit 3 is performed. The recovery unit performs recovery operation to maintain ejection performance of the recording unit 3, and is disposed at a position facing an ejection port surface on which ejection ports of ink are arranged. The recovery unit includes a cap 21 that seals the ejection port surface, and a wiper 22 that can wipe the ejection port surface. The detailed configuration of the recovery unit is described below.
The ink tank 11 is provided on a left side of the sheet feeding cassette 6 and the sheet discharge tray 43 when the recording apparatus 1 is viewed from the front side. The ink tank 11 according to the present exemplary embodiment contains black ink. The ink tank 11 is connected to the recording unit 3 by a flexible supply tube 8 that configures an ink supply path for supplying the ink to the recording unit 3. In the present exemplary embodiment, the ink tank 11 and the recovery unit are disposed separately from each other in the main scanning direction.
An injection portion 14 for injection of the ink is provided on an upper surface of the ink tank 11, and is sealable by the tank cap 13. The tank cap 13 includes a cap portion 13a to seal the injection portion 14, and a lever portion 13b that supports the cap portion 13a and is operable by the user. The lever portion 13b is turnably supported to a main body of the recording apparatus 1. The user can inject the ink by removing the cap portion 13a from the injection portion 14 while turning the lever portion 13b in a direction S2 illustrated in
The tube guide plate 81 fixes the portion of the supply tube 8 that does not move with the movement of the recording unit 3, and supports and guides the portion of the supply tube 8 that moves with the movement of the recording unit 3. The tube guide plate 81 fixes the supply tube 8 to a lower part of the recording apparatus 1, thereby preventing the user from easily touching the supply tube 8. This prevents the user from pulling the supply tube 8 and causing the supply tube to be disconnected from the recording unit 3 which would then prevent the ink inside the supply tube 8 from scattering.
At a portion of the supply tube 8 that may abut on the housing 5 and the tube guide plate 81 when the portion of the supply tube 8 moves with the movement of the carriage 31, the tube guide sheet 82 is provided to reduce abrasion of the supply tube 8. One end of the tube guide sheet 82 is fixed to the tube guide plate 81, and the other end is fixed to the recording unit 3. The tube guide sheet 82 also can move together with the supply tube 8 along with reciprocation of the recording unit 3.
Further, the supply tube 8 is held by the tube holders 84 at a plurality of positions.
Subsequently, the detailed configuration of the recording unit 3 will be described with reference to
More specifically, when the user turns the first headset cover 32 from the exposure position to the covering position, the black recording head 100 is positioned to the carriage 31. Further, when the user presses a pressing part 32c of the first headset cover 32, the joint connection of the black recording head 100 and the supply tube 8 by the joint 34 is completed. As a result, the ink can be supplied from the ink tank 11 to the black recording head 100. Note that the black recording head 100 may be provided integrally with an ink tank that can contain the ink supplied from the supply tube 8.
On the other hand, the color recording head 101 is an ink cartridge in which the recording head and the ink tank are integrated, and is optionally detachable from the carriage 31 in the recording apparatus 1.
The first fixing part 32a holds the supply tube 8 disposed along the X direction by the tube guide sheet 82, etc. illustrated in
When the first fixing part 32a and the second fixing part 32b hold and fix the supply tube 8 in the two different directions, force is hardly applied in the Y direction in which the supply tube 8 is connected to the joint 34 even when the user pulls the supply tube 8 in the X direction. This makes it possible to prevent the supply tube 8 from being disconnected from the joint 34. As described above, the supply tube 8 is connected to the joint 34 after the supply tube 8 is fixed in the direction different from the connection direction with the joint 34, which prevents the supply tube 8 from being disconnected from the joint 34.
Further, as described with reference to
Typically, when the recording unit 3 is not performing the recording operation, the recording unit 3 stands by at the home position. Accordingly, even in a case where the recording unit 3 stands by at the home position for a long time, providing the inclined part 81a on the tube guide plate 81 makes it possible to suppress creep deformation of the supply tube 8.
A configuration relating to replacement of the black recording head 100 will be described with reference to
At the first replacement position, both of the first headset cover 32 and the second headset cover 33 are exposed from the opening 50a of the frame 50. Therefore, both of the first headset cover 32 and the second headset cover 33 are operable by the user. When the user turns the first headset cover 32 to the open state while the recording unit 3 is located at the first replacement position, the supply tube 8 connected to the first headset cover 32 also moves. At this time, since the notch 50b is provided in the frame 50, the supply tube 8 moving with the first headset cover 32 and the frame 50 do not abut on each other as illustrated in
A configuration relating to replacement of the color recording head 101 will be described with reference to
The second replacement position of the recording unit 3 is a position closer to the recovery unit than the first replacement position in the X direction. At the second replacement position, the entire second headset cover 33 for replacing the color recording head 101 is exposed from the opening 50a of the frame 50, and the second headset cover 33 is operable by the user. In contrast, the first headset cover 32 for replacing the black recording head 100 is partially covered with the opening 50a and the notch 50b. Therefore, the first headset cover 32 is not operable by the user.
As described above, at the second replacement position, the first headset cover 32 is covered with the frame 50 so as to prevent replacement of the black recording head 100. This makes it possible to prevent the first headset cover 32 from being erroneously operated by the user. Further, when the recording unit 3 is located at the second replacement position, the connection portion of the supply tube 8 and the first headset cover 32 is also covered with the frame 50. This makes it possible to prevent the user from accessing the supply tube 8.
As described in the present exemplary embodiment, the first recording head to which the ink is supplied from the ink tank 11 by the supply tube 8 is disposed on the side close to the recovery unit in the recording unit 3. In contrast, the second recording head that is integrated with the ink tank and is higher in replacement frequency than the first recording head is disposed on the side far from the recovery unit in the recording unit 3. Further, the supply tube 8 includes the bent part 8a that bends upward on the side provided with the recovery unit in the X direction, and is connected to the recording unit 3 (first headset cover) above the tube guide plate 81. Moreover, the tube guide plate 81 guiding the supply tube 8 includes the inclined part 81a that is inclined downward toward the side provided with the recovery unit in the X direction.
The above-described configuration makes it possible to suppress deformation of the supply tube 8 while preventing the user from carelessly touching the supply tube 8.
The recording apparatus 1 in the state where the color recording head 101 is mounted has been described above. As illustrated in
A carriage motor 204 that drives the carriage 31 is controlled by a carriage motor driver 208. The feeding roller 41 and the conveyance roller 40 are driven by a feeding/conveyance motor 205. The feeding/conveyance motor 205 is controlled by a feeding/conveyance motor driver 209. The discharge roller (not illustrated) is driven by the feeding/conveyance motor 205 in synchronization with the conveyance roller 40.
The host computer 214 includes a printer driver 2141 that collects recorded images and recorded information such as recorded image quality and communicates with the recording apparatus 1 when execution of the recording operation is instructed by the user. The MPU 201 exchanges the recorded images, etc. with the host computer 214 via an interface (I/F) unit 213. A sensor controller 215 is a controller that controls operation of various kinds of sensors 216. For example, the sensors 216 are detection units that can detect electric connection between the carriage 31 and the recording head.
Subsequently, referring back to
The wiper 22 that is provided adjacent to the cap 21 includes a color wiper 22a that wipes the ejection port surface of the color recording head 101, and a black wiper 22b that wipes the ejection port surface of the black recording head 100. The wiper 22 performs wiping operation to wipe the ink adhered to the ejection port surface of the recording head by moving along the Y direction while abutting on the ejection port surface of the recording head. Further, the color wiper 22a and the black wiper 22b integrally move in the Y direction by the same driving source.
The contact protector 72 includes a substrate 72a that can abut on a connector (contact portion) 31a of the carriage 31. When the contact protector 72 is mounted on the carriage 31, the connector 31a and the substrate 72a abut on each other to establish electric connection, and the connector 31a is shielded by the substrate 72a. As a result, even when the ink mist is scattered due to the recording operation by the black recording head 100, it is possible to prevent the ink from adhering to the connector 31a to cause connection failure.
The contact protector 72 further includes a cap shielding part 72b that can shield the color cap 21a.
In a case where non-mounting is detected (NO in step S161), the MPU 201 notifies the user of “cartridge non-mounting error” in step S162, and disables the recording operation by the recording unit 3. The “cartridge non-mounting error” may be notified by being displayed, for example, on a display panel of the operation unit 4 or on a screen of the host computer 214 via the printer driver 2141. Alternatively, a notification unit that performs notification by sound, etc. may be used.
In contrast, in a case where mounting is detected in step S161 (YES in step S161), the MPU 201 determines in step S163 which of the contact protector 72 and the color recording head 101 has been mounted. In a case where the contact protector 72 has been mounted (YES in step S163), the MPU 201 determines in step S164 whether a color printing instruction is present.
In a case where the color printing instruction is present (YES in step S164), the MPU 201 notifies “color cartridge non-mounting error” in step S165. The error notification in this case is also notified by being displayed on the display panel of the operation unit 4, on the screen of the host computer 214, or by sound. This can prompt the user to change the instruction to a monochrome printing instruction or to mount the color cartridge.
Alternatively, in step S166, the MPU 201 may function as a conversion unit to convert the image data to monochrome image data, and the monochrome printing may be performed by the black recording head 100. This improves usability by eliminating the necessity of reinput of the printing instruction by the user.
In contrast, in a case where mounting of the color recording head 101 is detected in step S163 (NO in step S163), it is determined in step S167 whether the color printing instruction is present. In a case of the color printing instruction (YES in step S167), the color printing is performed in step S168. In contrast, in a case of a monochrome printing instruction in step S167 (NO in step S167), the processing proceeds to step S169, and monochrome printing is performed.
As described above, in a case where it is determined in step S162 that neither the color recording head 101 nor the contact protector 72 have been mounted, the recording apparatus 1 cannot perform the recording operation. This prevents the recording operation from being performed while the connector 31a of the carriage 31 is exposed, and reduces electric contact failure caused by adhesion of the ink. Alternatively, after the error is notified in step S162, the user may select error cancellation to perform the recording operation in a state where neither the color recording head 101 nor the contact protector 72 are mounted.
As described with reference to
Next, the shape of the contact protector 72 and the shape of the color recording head 101 will be described in detail with reference to
The contact protector 72 includes a plurality of positioning parts for positioning the contact protector 72 to the carriage 31. More specifically, the contact protector 72 includes a first positioning part 72c provided on an upper surface, a second positioning part 72d and a third positioning part 72e provided at a lower part, a fourth positioning part 72f provided on a side surface, and a fifth positioning part 72g provided on the lower part.
The first positioning part 72c is provided so as to abut on the second headset cover 33, and receives urging force by an urging member of the second headset cover 33. The first positioning part 72c is urged in a direction in which the contact protector 72 is positioned to the carriage 31. The second positioning part 72d positions the contact protector 72 to the carriage 31 in the X direction.
Further, the third positioning part 72e and the fourth positioning part 72f position the contact protector 72 to the carriage 31 in the Y direction. Further, the fifth positioning part 72g positions the contact protector 72 to the carriage 31 in the Z direction.
The color recording head 101 also includes a plurality of positioning parts that positions the color recording head 101 to the carriage 31, as with the contact protector 72. More specifically, the color recording head 101 includes a sixth positioning part 101c provided on an upper surface, a seventh positioning part 101d and an eighth positioning part 101e provided at a lower part, a ninth positioning part 101f provided on a side surface, and a tenth positioning part 101g provided at the lower part.
The sixth positioning part 101c corresponds to the first positioning part 72c of the contact protector 72, and the seventh positioning part 101d and the eighth positioning part 101e respectively correspond to the second positioning part 72d and the third positioning part 72e. Likewise, the ninth positioning part 101f corresponds to the fourth positioning part 72f, and the tenth positioning part 101g corresponds to the fifth positioning part 72g.
As described above, when the positioning of the contact protector 72 and the positioning of the color recording head 101 to the carriage 31 are made common, the user operation to mount the contact protector 72 to the carriage 31 and the user operation to mount the color recording head 101 to the carriage 31 are also made common, which improves usability.
Further, a weight of the contact protector 72 is within a range from a weight of the color recording head 101 when the ink tank of the color recording head is filled up with the ink to a weight of the color recording head 101 when no ink is present in the ink tank. Therefore, when either of the contact protector 72 and the color recording head 101 is mounted on the carriage 31, the weight of the carriage 31 is within a prescribed range. This eliminates necessity to change the driving control of the carriage 31.
In the above-described exemplary embodiment, the combination of one tube-supply-type recording head and one ink-cartridge-type recording head has been described as an example. The exemplary embodiment is applicable to a combination in which the number of tube-supply-type recording heads or the number of ink-cartridge-type recording heads is two or more, and similar effects are achievable.
The supply tube 8 connected to the ink tank 11 is laid in a direction (upstream in X direction) separating from the recovery unit in the main scanning direction, and is then folded back and is laid toward the opposite direction (downstream in X direction). Further, as with the first exemplary embodiment, the supply tube 8 is bent upward in the X direction on the side provided with the recovery unit in the main scanning direction, and is connected to the recording unit 3. As described above, in the exemplary embodiment, the position to dispose the ink tank 11 is not limited.
Further, the configuration including the injection portion 14 to inject the ink into the ink tank 11 has been described, however, the configuration is not limited thereto. The ink tank 11 is applicable to a cartridge that is detachable from the recording apparatus 1.
According to the exemplary embodiments, it is possible to provide the inkjet recording apparatus that can prevent contact failure between the carriage and the ink cartridge.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications No. 2019-072549, filed Apr. 5, 2019, and No. 2019-072550, filed Apr. 5, 2019, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-072549 | Apr 2019 | JP | national |
JP2019-072550 | Apr 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5367328 | Erickson | Nov 1994 | A |
5638097 | Takayanagi | Jun 1997 | A |
6220697 | Yamanaka | Apr 2001 | B1 |
6244683 | Alvarez | Jun 2001 | B1 |
9387681 | Somano | Jul 2016 | B2 |
9469120 | Hara | Oct 2016 | B2 |
9914304 | Shirotori | Mar 2018 | B2 |
20010012026 | Kobayashi | Aug 2001 | A1 |
20030107625 | Koga | Jun 2003 | A1 |
20070279464 | Harazim | Dec 2007 | A1 |
20120081422 | Kura | Apr 2012 | A1 |
20130044161 | Somano | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1891472 | Jan 2007 | CN |
101066642 | Nov 2007 | CN |
101284451 | Oct 2008 | CN |
101362405 | Feb 2009 | CN |
101642983 | Feb 2010 | CN |
102602154 | Jul 2012 | CN |
102756563 | Oct 2012 | CN |
104723679 | Jun 2015 | CN |
9-76537 | Mar 1997 | JP |
2002-292904 | Oct 2002 | JP |
2006326912 | Dec 2006 | JP |
2012152996 | Aug 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20200316969 A1 | Oct 2020 | US |