This application relates in general to solar cells, and in particular, to formation of electrodes pertaining to solar cells.
Contacts are a critical part of photovoltaic (PV”) technology. In particular, they pose difficulties in both silicon and copper indium gallium selenide (“CIGS”) technologies. The cell performance of the CIGS devices fabricated using transparent conducting oxide (“TCO”) back contacts deteriorates at high absorber deposition temperatures used for conventional CIGS devices with molybdenum (Mo) back contacts. The deterioration in cell performance is due to reduction in the fill factor originating from the increased resistivity of the TCOs. Increased resistivity is mainly attributable to the removal of fluorine (F) from tin oxide (SnO2):F and the undesirable formation of a gallium oxide (Ga2O3) thin layer at the CIGS/ITO and CIGS/zinc oxide (ZnO):aluminum (Al) interfaces. The formation of Ga2O3 has been eliminated by inserting a thin Mo layer between the indium tin oxide (“ITO”) and CIGS layers. An improved metal interconnect system for shallow planar doped silicon substrate regions has been developed using Al and Al alloys as contacts and interconnects. Contacts and interconnects have been provided using Al for Schottky contacts and silicon (Si) doped Al for ohmic contacts. This approach takes advantage of the adherent property of Al to Si and the Schottky barrier relationship while minimizing the Al to Si alloying or pitting by the use of Al and Si doped Al metal contact and interconnect system. Devices assembled using these Mo and Al contacts are illustrated in
The current direction of silicon solar cell technology development is to use thinner silicon wafers and improve conversion efficiency. The reduction in wafer thickness reduces overall material usage and cost because the costs of materials account for almost 50% of the total cost of silicon solar cells. These thin silicon wafers are often very brittle, and typical methods for application of conductive feed lines, such as screen-printing, are detrimental. Non-contact printing would lead to less breakage of thinner silicon wafers and increase manufacturing yield. Aluminum inks that can be applied to a silicon solar cell for back contacts using non-contact printing techniques would be advantageous for the silicon solar industry. Available glass frit containing Al pastes are meant for contact-type printing.
There is an increasing need to develop improved processes for contacts different from the current physical vapor deposition (“PVD”) and photolithography based approaches that are presently used. In particular, it would be desirable to develop solution based atmospheric processes to generate these contacts. This approach would be much more cost effective, environmentally benign, and more materials efficient. This approach is proving very successful for silver and for nickel/copper top contacts. To date, however, it has been very difficult to make good precursors from both Al and Mo because of their inherent chemistries. Al is problematic because it is very reactive both in the metallic and in a metal organic form, and Mo because it is prone to oxidation and also because it is more difficult to synthesize precursors. One approach to both of these metallizations is to use nanoparticle based inks. Recently significant progress has been made on the practical synthesis of large amounts of monodispersed small particles of both of these metals. In addition, considerable work has been done on the capping of these nanoparticles with chemical bonding agents, which stabilize the particle surface prior to the final dielectrode to a metal contact where they are released cleanly. Non-contact printing would lead to less breakage of thinner silicon wafers and increase manufacturing yield. Aluminum inks/pastes that can be applied to a silicon solar cell for back contacts using non-contact printing techniques would be advantageous for the silicon solar industry.
Aluminum inks or pastes (herein, the formulations may be implemented in a relatively low viscosity ink, or a higher viscosity paste) are used for industrial-scale silicon solar cell manufacturing to form an alloyed Back Surface Field (“BSF”) layer to improve the electrical performance of silicon solar cells. The most important variables that control the cell performance under industrial processing conditions are the a) ink/paste chemistry, b) deposition weight and c) firing conditions. There is a need to reduce the silicon wafer thickness to improve the silicon utilization and to reduce the solar cell materials cost. A wafer bow resulting from the addition of an Al layer becomes an issue when the silicon wafer thickness is decreased below 240 microns. Generally, the bow tends to decrease with a reduction in the ink/paste deposit amount, but there is a practical lower limit below which screen-printed Al ink/paste will result in a non-uniform BSF layer. Recently more attention has been given to understanding the effects of ink/paste chemistry and firing conditions on microstructure development (see, S. Kim et al., “Aluminum Pastes For Thin Wafers,” Proceedings, IEEE PVSC, Orlando (2004); F. Huster, “Investigation of the Alloying Process of Screen Printing Aluminum Pastes for the BSF Formation on Silicon Solar Cells,” 20th European Photovoltaic Solar Energy Conference, Barcelona (2005)).
Al inks/pastes may be formulated with Al powders, a leaded glass frit, vehicles, and additives mixed with an organic vehicle. However, European Union regulation may in the future require the elimination of lead from the final assembled solar cell.
Some objectives in manufacturing new generation Al inks/pastes are:
1) Eliminate lead-containing glass frit from Al inks/pastes;
2) Reduce the amount of ink/paste deposited in order to decrease the silicon wafer bow when the thickness of the silicon wafer is decreased below 240 microns;
3) A BSF layer formed to achieve better electrical performance of the cells;
4) Decrease the coefficient of thermal expansion (“CTE”) mismatch between the fired Al ink/paste and silicon.
Infrared (“IR”) belt furnaces, which are similar to a RTP (Rapid Thermal Process), may be used for sintering Al ink/paste for the back contacts of a silicon solar cell. The process time is a few minutes for firing Al inks/pastes. At high firing temperatures of up to 800° C., an Al alloy with silicon is formed during the process. The Al ink/paste is fired in a nitrogen environment.
Aluminum inks/pastes may be formulated with combinations of alcohols, amines, mineral acids, carboxylic acids, water, ethers, polyols, siloxanes, polymeric dispersants, BYK dispersants and additives, phosphoric acid, dicarboxylic acids, water-based conductive polymers, polyethylene glycol derivatives such as the Triton family of compounds, esters and ether-ester combinations. Both nanosized (e.g., nanoparticles or nanopowders, which are used interchangeably herein) and micro-sized Al particles may be used in the formulations.
Aluminum ink/paste formulation without using a traditional glass frit binder
A glass frit powder may be used as an inorganic binder to make functional materials adhere to the substrate when the firing process fuses the frit materials and bonds them to the substrate. A glass frit matrix is basically comprised of a metal oxide powder, such as PbO, SiO2, or B2O3. Due to the nature of the powder form of these oxides, the discontinuous coverage of the frit material on the substrate creates a fired Al adhesion-uniformity problem. To improve the adhesion of Al on silicon, a material having both a relatively strong bond strength to both Al and the substrate needs to be introduced into the formulation of the Al inks/pastes, which is addressed by embodiments of the present invention.
A silicon ladder-like polymer, polyphenylsilsesquioxane (“PPSQ”), is an inorganic polymer that has a cis-syndiotactic double chain structure, as illustrated in
Upon drying and sintering of Al inks/pastes with such an inorganic polymer, the vehicle and dispersant are decomposed and evaporated. The inorganic polymer is also decomposed, but leaves behind a silica structure, which replaces the function of the current state of the art glass frit. PV cell electrodes made in this way are then primarily composed of Al with some SiO2.
An advantage of using a PPSQ binder in Al inks/pastes is that the silicon residue in the fired (e.g., sintered) Al decreases the thermal expansion mismatch between the silicon and the fired Al. The result is that any wafer bow is significantly reduced with PPSQ-based Al inks/pastes.
A PPSQ solution may be prepared by mixing ˜40-50 wt. % of the PPSQ material and ˜40-50 wt. % 2-butoxyethyl acetate with stirring (e.g, for 30 minutes). The viscosity of PPSQ solutions may range from ˜500-5000 cP. Utilizing this PPSQ solution, PPSQ Al inks/pastes may be formulated as follows:
A) An Al ink/paste (P-Al-3-PQ-1) may be formulated with Al powders (e.g., 7 g of 3 micron Al micro-powders), ethyl cellulose (e.g., 1 g), terpineol (e.g., 4 g), and the PPSQ solution (e.g., 1 g). The ink/paste may be mixed in a glass beaker and passed 10 times through a three-roll mill machine.
B) An Al ink/paste (P-Al-3-Al-100-PQ-1) may be formulated with Al powders (e.g., 6 g of 3 micron Al micro-powders and 1 g of 100 nm Al nanopowders), ethyl cellulose (e.g., 1 g), terpineol (e.g., 4 g), and the PPSQ solution (e.g., 1 g). The ink/paste may be mixed in a glass beaker and passed 10 times through a three-roll mill machine.
An Al ink/paste (P-Al-3-Al-100-PQ-1) may be formulated with Al powders (e.g., 6 g of 3 micron Al micro-powders and 1 g of 100 nm Al nanopowders), ethyl cellulose (e.g., 1 g), terpineol (e.g., 4 g), and the PPSQ solution (e.g., 1 g). The ink/paste may be mixed in a glass beaker and passed 10 times through a three-roll mill machine.
The Al ink/paste of P-AL-3-G-1 may be coated on silicon and aluminum by draw-bar deposition. The coating may be dried at 100° C. for 10 minutes and then put in a vacuum tube furnace for thermal sintering. The sintering may be done in a nitrogen environment. The sintering temperature may be ˜750° C. The furnace may require 1 hour to heat up to 750° C. from room temperature and to then cool back down to room temperature.
A sheet resistance down to 3 milliohms/square on silicon and ceramic is achieved. No Al beads are observed after sintering. The Al coating has a relatively smooth surface without any large Al beads being present on the surface. The adhesion may be evaluated by a tape test. For the adhesion score of 9 in the table shown in
The Al ink/paste P-AL-3-G-1 may be coated onto silicon and aluminum by draw-bar deposition. The coating may be dried at 100° C. for 10 minutes. Alternatively, the coatings may be dried at a temperature between 200° C. and 250° C. in air for approximately I minute. The tube furnace may be then heated to 760° C. in air. The dried Al samples on a quartz substrate holder may be slowly pushed into the tube furnace in air. The samples may be kept at 760° C. for one minute and then slowly pulled out of the tube furnace. A sheet resistance of 30 milliohms/square can be achieved on silicon, as shown in the table of
Lower resistances may be achieved when the Al ink/paste samples are sintered at 750° C. in vacuum. The dried Al samples on a quartz substrate holder may be slowly pushed into the 750° C. tube furnace in air. A mechanical pump may be then used to pump down the tube furnace for about one minute. After pumping for 1 minute, the pump may be turned off and the tube furnace vented to the atmosphere. It may require approximately one minute to vent the furnace. After venting, the sample is pulled out of the furnace and allowed to cool down to room temperature. A resistance of 5 milliohms/square can be obtained with vacuum sintering in about two minutes.
The Al ink/paste may be deposited on either a silicon or ceramic substrate. A microwave oven (standard commercial appliance) may be used to process the Al inks/pastes. The processing time may be from 1 to 5 minutes.
The microwave processing is successful on Al ink/paste coated onto a silicon substrate, but no sintering was observed for Al on a ceramic substrate. The reason is that the thermally conductive silicon can absorb microwave energy to become heated itself This heat from the silicon facilitates the sintering of the coated Al ink/paste. A sheet resistance of 5 milliohm/square on the corners of samples can be achieved with microwave sintering.
An advantage of the microwave process is that sintering may be carried out in air using the relatively short time of less than 10 minutes. Conductive substrates such as silicon may be required. This may create a non-uniformity problem because of the non-uniform heating on the Al ink/paste. For silicon based solar cells, this microwave energy may also destroy the p-n junction, or damage the substrate or electrodes.
Traditional IR-belt furnaces or rapid thermal processes may also be used for sintering Al ink/paste for fabricating electrical contacts on silicon. The process time may be a few minutes for firing Al inks/pastes. At high temperatures up to 800° C., an Al alloy with silicon is formed during the process. It may be necessary to fire the Al ink/paste in a nitrogen environment to achieve a lower resistance. A sheet resistance of 5 milliohms/square on the corners of samples can be achieved with the RTP sintering or IR-belt furnaces.
Aluminum inks/pastes are prepared and cured by photosintering. Photosintering involves curing the printed metallic ink/paste with a short high intensity pulse of light that converts the metal nanoparticles into a metallic conductor. Examples of results are shown in
a. Aluminum inks/pastes are formulated without using a traditional glass frit. A silicon ladder-like polymer, polyphenylsilsesquioxane (“PPSQ”), may be used to formulate Al inks/pastes. The Al ink/paste may comprise micro-sized Al powders, Al nanoparticles (e.g., nanopowders), PPSQ, 2-butoxyethyl acetate, ethyl cellulose, and terpineo 1.
b. Both inks and pastes can be formulated.
c. Sheet resistances down to 3 milliohms/square can be achieved from a PPSQ-based Al ink/paste with a thickness of less than 20 micrometers, as compared with approximately 25 micrometers for most commercial glass frit-based Al inks. This decreases the wafer bow problem for thin solar cells.
d. Resistivities down to 5 micro-ohm-cm are achieved from the PPSQ-based Al inks/pastes.
e. Both micro-sized Al powders and Al nanoparticles (e.g., 100 rim to 500 rim) may be used to formulate Al inks/pastes. No formation of Al beads is observed after sintering with mixtures of various sizes of Al powders including Al nanoparticles.
f. Rapid vacuum sintering in a furnace for about two minutes may be used to sinter an Al ink/paste to achieve lower resistance of Al coatings than can be achieved with sintering in air.
g. An Al ink/paste on silicon may be sintered by microwave radiation to achieve a good conductor.
Aluminum ink/paste for inkjet printing may be formulated with aluminum nanoparticles, vehicle, dispersants, binder materials, and functional additives. The sizes of aluminum nanoparticles may be below 500 nm, preferably below 300 nm. The vehicle may include one solvent or a mixture of solvents containing one or more oxygenated organic functional groups. The oxygenated organic compounds refer to medium chain length aliphatic ether acetate, ether alcohols, diols and triols, cellosolves, carbitol, or aromatic ether alcohols, etc. The acetate may be chosen from the list of 2-butoxyethyl acetate, Propylene glycol monomethyl ether acetate, Diethylene glycol monoethyl ether acetate, 2-Ethoxyethyl acetate, Ethylene Glycol Diacetate, etc. The alcohol may be chosen from a list of benzyl alcohol, 2-octanol, isobutanol, and the like. The chosen compounds have boiling points ranging from 100° C. to 250° C.
The weight percentage of dispersants may vary from about 0.5% to 10%. The dispersant may be chosen from organic compounds containing ionic functional groups, such as Disperbyk 180 and Disperbyk 111. Non-ionic dispersant may also be chosen from a list of Triton X-100, Triton X-15, Triton X-45, Triton QS-15, liner alkyl ether (Cola Cap MA259, Cola Cap MA1610), quaternized alkyl imidazoline (Cola Solv IES and Cola Solv TES), and polyvinylpyrrolidone (PVP). The loading concentration of copper nanoparticles may be from about 10% to up to 60%.
The formulated ink/paste may be mixed by sonication and then ball-milled to improve the dispersion. The formulated aluminum inks may be passed through a filter with a pore size of 1 micrometer. An example of aluminum ink/paste for inkjet printing may be formulated with 2-butoxyethyl acetate, benzyl alcohol, Disperbyk 111, and aluminum nanoparticles with a size below 100 nm. The table in
As described herein, the ink/paste may be inkjettable with a Dimatix inkjet printer on polymer substrates, such as polyimide. Aluminum ink/paste may be sintered by a laser and photosintering system, which utilizes a light pulse. Laser sintering provides a lower resistivity than photosintering with 1.4×10−2 Ω·cm attainable. The aluminum ink/paste can also be sintered by other sintering techniques to achieve much lower resistivities, including rapid thermal sintering, belt oven sintering, microwave sintering, etc.
Aluminum ink/paste for spray printing may be formulated with a mixture of micro- and nano-sized aluminum powders. The aluminum ink/paste may contain solvents, dispersants, aluminum powders, and additives.
Silicon-based inorganic polymer material, such as poly(hydromethylsiloxane) (“PHMS”), silicon-ladder polyphenylsilsesquioxane (“PPSQ”) polymer, etc. may be used as a binder material. The inorganic polymer may be dissolved in the ink/paste solvents. Carbon groups in the polymer are removed as the temperature increases leaving a three-dimensional amorphous random network comprising Si—O bonds. The random Si—O networks convert to silicon oxide at temperatures over 650° C. The coefficient of thermal expansion of silicon oxide is close to silicon wafer, and therefore the internal stress between the sintered aluminum and silicon is reduced after sintering at a high temperature. Moreover, the formation of aluminum-silicon alloy at the interface between silicon and sintered aluminum also produces a strong bonding strength film.
An example of aluminum ink/paste for spray printing is formulated with 2-butoxyethyl acetate, benzyl alcohol, Disperbyk 111, PPSQ, and aluminum powders. The aluminum powders may be a mixture of aluminum nanoparticles and micro-size aluminum powders. The size of aluminum nanoparticles may be chosen from about 30 nm to up to about 500 nm. The sizes of micro-sized aluminum powders may be chosen from about 1 micrometer to about 20 micrometers. The viscosity of inks may be modified from about 20 cP to about 2000 cP, depending on which type of deposition techniques is used.
Another example of aluminum ink/paste containing oxide nanoparticles for spray printing may be formulated with 2-butoxyethyl acetate, benzyl alcohol, Disperbyk 111, PPSQ, aluminum powders, and zinc oxide nanoparticles. The aluminum powders may be a mixture of aluminum nanoparticles and micro-size aluminum powders. The sizes of aluminum nanoparticles may be chosen from about 30 nm to up to about 500 nm. The size of micro-sized aluminum powders may be chosen from about 1 micrometer to about 20 micrometers.
The aluminum ink/paste may be printed by an air brush gun on a P-type silicon wafer. The aluminum coated silicon wafer may be sintered in a thermal tube furnace at about 800° C. in vacuum or in air. A sheet resistance of less than 10 mΩ/cm and a perfect ohmic contact with the silicon is obtained. A BSF layer is formed after thermal sintering, as illustrated in
Another example of an aluminum ink/paste for spray printing and a perfect ohmic contact with the silicon may be formulated by using volatile solvents such as 2-propanol, ethanol, acetone, etc. The ink/paste may also include PPSQ, dispersants, and other additives. The volatile solvent helps to prepare more uniform thickness and avoid migration of aluminum during spray.
The formulated ink/paste may be mixed by sonication and then ball-milled to improve the dispersion. The aluminum ink/paste may be sprayed by spray printing techniques, such as air brush spray, compressed air spray gun, atomizing spray gun, etc.
Referring to
Aerosol jet printing dispenses a collimated beam that allows the resolution to be maintained over a wide range of stand-off distances, and moreover enables larger standoff distances than are possible with inkjet printing. Whereas inkjet printing requires fluids having viscosities less than 20 cP, aerosol jet printing can be used with relatively high viscosity fluids (up to ˜5000 cP) to create aerosol droplets that are 1.5 μm in size. The aerosol jet printing technology can be scaled up by employing multi-nozzles for high volume solar cell manufacturing. Thus, aerosol jet printing techniques can print narrow electrodes for interdigitated back contact solar cells, as shown in.
Aluminum inks need to be properly formulated for aerosol jet printing. Aluminum ink for aerosol jet printing may be formulated with both micro-sized aluminum powders and nano-sized powders. The aluminum ink may also include proper solvents, dispersants, aluminum powders, and other additives.
An example of aluminum ink for spray printing is formulated with 2-butoxyethyl acetate, benzyl alcohol, Disperbyk 111, PPSQ, and aluminum powders. The aluminum powders may be a mixture of aluminum nanoparticles and micro-size aluminum powders. The sizes of aluminum nanoparticles may be chosen from about 30 nm to up to 500 nm. The sizes of micro-sized aluminum powders may be chosen from about 1 micrometer to 20 micrometers. The viscosity of inks may be modified from about 20 cP to 2000 cP.
An aerosol jet printer may be used to print fine lines with the formulated aluminum ink.
Molybdenum inks/pastes have been formulated with combinations of alcohols, amines, alkanes (C6 to C10 chain lengths), long chain alcohols, ether-esters, aromatics, block copolymers, functionalized silanes, and electrostatically stabilized aqueous systems. Nanosized Mo particles have been used in the formulations.
Thin Mo films are used as an adhesive interlayer between a substrate (e.g., glass) and CIGS (copper indium gallium diselenide) photovoltaic films (see
In embodiments of the present invention, a Mo nanoparticle-based ink/paste, or alternatively an ink/paste with a mixture of Mo and Cu nanoparticles, are described that are printed and subsequently dried, then sintered by exposure to high intensity light at room temperature and pressure into a thin conductive film.
The Mo ink/paste may be formulated with Mo powder (e.g., 2 g of 85 nm Mo nanoparticles), isopropanol (e.g., 1.7 g), and hexylamine (e.g., 0.3 g). The ink/paste may be mixed in a glass jar and agitated in an ultrasonic bath for 10 minutes.
Alternately, for a more stable ink/paste dispersion, the ink may be formulated with Mo powder (e.g., 2 g of 85 nm Mo nanoparticles), hexane (e.g., 1.2 g), and octanol (e.g., 0.1 g). The ink/paste may be mixed in a glass jar and agitated in an ultrasonic bath for 10 minutes.
Referring to
Mo (e.g., 0.6 g, 85 nm Mo nanoparticles) and Cu (e.g., 0.15 g 50 nm Cu nanoparticles) nanoparticle powders are mixed with isopropanol (e.g., 0.7 g), and octylamine (e.g., 0.2 g). The ink/paste is mixed in a glass jar and agitated in an ultrasonic bath for 10 minutes.
Also referring to
a. Inks composed of a vehicle, dispersant, and Mo nanoparticles have been formulated such that upon coating and sintering a conductive Mo film is produced. These films can be used as conductive adhesive interlayers between a CMS photovoltaic material and a support layer, e.g., glass. The resistivity of Mo films produced in this way can be as low as 7×10−4 ohm-cm.
b. As a way to reduce film resistivity inks with mixtures of nanoparticles comprised of different metals are made into conductive films. Mixtures of Mo and Cu have a threefold improvement compared with Mo alone.
Formulation 1:
This formulation is for non-contact printing techniques, such as aerosol jet printing and spray printing. The aluminum ink/paste (whether it is formulated as an ink or paste may be dependent upon the requirements of the printing apparatus) may be formulated with aluminum powders, solvents, PPSQ solution, binder materials, dispersant, anti-settlement agent, and other functional additives. The sizes of the aluminum powders may be from about 0.2 μm to about 3 μm, or about 0.2 μm to about 2 μm.
The solvents may include one solvent or a mixture of solvents containing one or more oxygenated organic functional groups, one alcohol, ether, etc. The oxygenated organic compounds refer to medium chain length aliphatic ether acetate, ether alcohols, dials and triols, cellosolves, carbitola, or aromatic ether alcohols, etc. The acetate may be chosen from the list of 2-butoxyethyl acetate, Propylene glycol monomethyl ether acetate, Diethylene glycol monoethyl ether acetate, 2-Ethoxyethyl acetate, Ethylene Glycol Diacetate, etc. The alcohol may be chosen from a list of benzyl alcohol, 2-octonal, isobutonal, terpineol, and the like. The chosen compounds have boiling points ranging from 100° C. to 260° C. An anti-settlement agent may be chosen from a list of Disperbyk 410 or Disperbyk 420. The anti-settlement agent is a thixotropic agent to form a high viscosity solution or a gelling material during storage, which prevents the aluminum powders from settling in the solution. The viscosity of the aluminum ink/paste dramatically decreases when it is agitated so that it becomes an ink that may be printed by either spray printing or aerosol jet printing.
The weight percentage of dispersants may vary from about 0.5% to about 10%. The dispersant may be chosen from organic compounds containing ionic functional groups, such as Disperbyk 110 or Disperbyk 111. A non-ionic dispersant may also be chosen from a list of Triton X-100, Triton X-15, Triton X-45, Triton QS-15, liner alkyl ether (Cola Cap MA259, Cola Cap MA1610), quaternized alkyl imidazoline (Cola Solv IES and Cola Solv TES), and polyvinylpyrrolidone (“PVP”). The loading concentration of aluminum may be from about 10% to up to about 70%.
The formulated ink may be mixed by a high shear mixer or sonication. Ball-milling may be also used to further improve the dispersion. An example of aluminum ink for aerosol jet printing may be formulated with diethylene glycol butal ether, benzyl alcohol, Disperbyk 110, Disperbyk 410, PPSQ solution, and aluminum powders with sizes less than ˜3 μm.
The aluminum ink may be printed by an aerosol jet printer onto a silicon wafer. A TLM (transmission line method) pattern may be printed to obtain contact resistivity. Then, the printed aluminum ink may be dried at 100° C., or 200° C. to 250° C. in air, to remove the solvents in the printed aluminum ink. The dried aluminum ink may be sintered either in air or vacuum from ˜530° C. to ˜940° C. to form a good conductor. Table 1 shows the electrical data after the aluminum ink is sintered.
Low contact resistance is desired for aluminum ink on silicon solar cells. With printed aluminum ink, contact resistivity on both N-type and P-type silicon wafers ranging from about 10−2-10−3 Ω·cm2 have been obtained. With a surface treatment to remove surface aluminum oxide on sintered aluminum ink, copper plating on sintered aluminum ink has been demonstrated.
Referring to
The sintered aluminum film on the IBC electrodes, can act as a seed layer to thicken the electrodes by plating conductive metal onto the printed metallic layers, which can lower electrode resistance to reduce the series resistance of the solar cell, which results in a higher cell conversion efficiency. The plating process may be performed by electroless plating or electrical plating. The plated metals may be copper, silver, nickel, tin, etc. The plated metals may be only one of copper, silver, nickel, tin, etc., or a combination of two or more of such metals. Other types of pastes, such as copper paste, silver paste, nickel paste, etc., may also be used to print on aluminum paste electrode to reduce overall resistance.
Formulation 2:
Based on Formulation 1, other powders such as tin, zinc, bismuth, titanium, gallium, boron, silicon, etc., may be added into the aluminum inks. The loading concentration of the powders may range from about 0.5% to about 5%. The addition of such powders may be one of them or a combination of them. The sizes of powders may be nanoparticles or micro-sized particles below 3 micrometers.
Formulation 3:
Based on Formulation 1, other inorganic metal salts may also be added to form a glass-frit like material to produce adhesion on silicon and matching coefficient of thermal expansion. The organic metal salts may be dissolved in solvents and may be decomposed into metal or form oxides during sintering in air. The solvents and additives in Formulation 1 may be used to formulate Al-silicon based inks.
Formulation 4
Another approach to obtain adhesion and matching coefficient of thermal expansion to silicon is to have in-situ synthesis of glass-like material during sintering. One of the examples is to combine a PPSQ solution, B2O3 solution, and low-cost ZnO nanoparticles together to form a good suspension. The B2O3 solution may be dissolved in an alcohol-based solvent, such as ethanol, benzyl alcohol, etc. During sintering, PPSQ converts into a Si—O type of structure, which can react with B2O3 and ZnO to form a glass-like material, therefore forming adhesion to silicon and matching CTE to silicon by adjusting the ratio of PPSQ, B2O3, and ZnO. The solvents and additives in Formulation 1 may be used to formulate Al-silicon based inks.
Formulation 5
To avoid aluminum spiking or pitting on silicon P-N junctions of solar cells, silicon may be added into aluminum inks, or an aluminum silicon alloy may be used to formulate aluminum inks instead of using pure aluminum powders. Silicon nanoparticles with a sizes less than 100 nm may be added into the aluminum inks. The concentration of silicon may be from about 5% to about 50%. Aluminum silicon alloy powders (e.g., silicon concentration from about 1%-20%) may be also used to formulate an Al ink to prevent pitting on the silicon when fired. The solvents and additives in Formulation 1 may be used to formulate Al-silicon based inks. The silicon content aluminum ink may also be formulated as a paste for screen printing, stencil printing. The silicon content aluminum pastes may also be used to reduce aluminum spiking on both P-doped silicon and N-doped silicon to reduce surface carrier recombination and avoid damage to the P-N junctions of the silicon solar cell.
Referring to
The front grid electrodes 1304 and back aluminum contact 1305 may be co-fired or fired separately. After firing, an ohmic contact is formed between the grid electrodes 1304 and N-type layer 1302. Aluminum-silicon alloy and BSF (Back Surface Field) layer 1306 according to embodiments of the present invention is also formed in the interface between the aluminum layer and P-type silicon by diffusion during a firing process.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the presently disclosed subject matter belongs.
Following long-standing patent law convention, the terms “a” and “an” mean “one or more” when used in this application, including the claims.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently disclosed subject matter.
As used herein, the terms “about,” “approximately,” and “˜” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
As used herein, the term “and/or” when used in the context of a listing of entities, refers to the entities being present singly or in combination. Thus, for example, the phrase “A, B, C, and/or D” includes A, B, C, and D individually, but also includes any and all combinations and subcombinations of A, B, C, and D. The term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. “Comprising” is a term of art used in claim language which means that the named elements are present, but other elements can be added and still form a construct or method within the scope of the claim.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a defacto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
Concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a numerical range of approximately 1 to approximately 4.5 should be interpreted to include not only the explicitly recited limits of 1 to approximately 4.5, but also to include individual numerals such as 2, 3, 4, and sub-ranges such as 1 to 3, 2 to 4, etc. The same principle applies to ranges reciting only one numerical value, such as “less than approximately 4.5,” which should be interpreted to include all of the above-recited values and ranges. Further, such an interpretation should apply regardless of the breadth of the range or the characteristic being described.
This application claims priority to U.S. patent application Ser. No. 13/128,577, which claims priority to International Application Number PCT/US2009/064162, which claims priority to U.S. Provisional Patent Application Ser. No. 61/114,860.
Number | Date | Country | |
---|---|---|---|
61114860 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13128577 | May 2011 | US |
Child | 14341182 | US |