The present invention relates to high pressure fuel pumps, and particularly to the inlet valve for feeding low pressure fuel to the high pressure pumping chamber.
Single piston and multi-piston high pressure common rail fuel pumps have been implemented to provide the high fuel pressures required by modern direct injected gasoline and diesel engines. These engine mounted pumps are volume controlled to minimize parasitic losses while maintaining rail pressure. Volume control is achieved either by inlet throttling using a magnetic proportional control valve, or indirect digital control of the inlet valve by a magnetic actuator. Either execution requires that the pump be controlled by an electrical signal from the engine ECU.
Because the indirect inlet valve actuator control requires a separate actuator for each pump piston, it has become common for multi-piston pumps to use a single inlet throttling proportional valve, in order to avoid a high part count and cost. Many modern single piston pumps use an indirect inlet valve actuator with a separate magnetically controlled armature assembly. These devices typically employ three separate components: inlet valve, magnetic armature, and the intervening engaging or connecting member.
Co-pending U.S. patent application Ser. No. 15/062,774, filed Mar. 7, 2016 for Direct Magnetically Controlled Inlet Valve for Fuel Pump, discloses an improved inlet valve assembly and associated pump, according to which a direct a magnetic flux path is directly applied to the inlet valve member when a coil is energized. As a result, direct actuation of the inlet valve is achieved, thereby eliminating the separate armature and armature to inlet valve connecting member, and reducing cost. By eliminating the separate armature and connecting member, reciprocating masses are reduced. Mass reduction minimizes impact generated noise and reduces response time for better controllability and lower power consumption.
As safety requirements dictate, there is a need to assure that in the event of a collision, the collapsing engine bay does not damage the inlet valve to the extent that fuel leaks from the pump, presenting a fire hazard. A vulnerable part of the pump is the electromagnetic actuator for the inlet control valve.
The primary purpose of the present invention is to reduce the risk of fuel leakage from the inlet control valve in the event of damage to the electromagnetic actuator for the inlet control valve. This is achieved by hydraulically isolating an actuation module containing the electromagnetic coil from a delivery module containing the hydraulic flow paths, and providing a breakaway connection between the actuation module and the delivery module.
Preferably, the actuation module is attached to the lower portion of the delivery module such that it projects entirely external to the housing. The snap off or breakaway connection preserves the hydraulic integrity of the pump.
In one embodiment, the inlet valve comprises a fuel delivery module mountable in the pump housing, including an inflow passage for receiving feed fuel from an inlet port, a delivery passage for delivering feed fuel to the pumping chamber, a valve seat between the inflow passage and the delivery passage, and a valve member movable between a first position against the seat to close fuel flow to the delivery passage and a second position to open fuel flow to the delivery passage. An actuation module is attached to the delivery module, including an electromagnetic coil assembly that is operatively associated with the valve member for moving the valve member between the first and second positions. The actuation module is hydraulically isolated from the fuel delivery module, so that even if the actuation module is completely severed from the pump, no fuel will leak out of the control valve.
Another embodiment is directed to a fuel pump comprising a housing, an inlet port for receiving low pressure feed fuel, a pumping chamber within the housing for pressurizing the feed fuel, an outlet port for discharging the pressurized fuel, a fuel delivery module, and an actuator module. The fuel delivery module is mounted in the housing, and includes a valve member movable between a first position and a second position to control infeed flow to the pumping chamber. An actuation module is attached to at least one of the delivery module and housing, including an electromagnetic coil assembly that is operatively associated with the valve member for moving the valve member between the first and second positions. The actuation module is hydraulically isolated from the fuel delivery module.
The actuation module preferably attached to the delivery module with a snap off connection, thereby serving as a sacrificial body to minimize collision forces transferred to the delivery module, which contains fuel. For example, the actuation module can be tack welded to the delivery module.
The present invention can be incorporated into many kinds of inlet control valves, but is most easily incorporated into the kind of magnetically actuated valve described in said co-pending application. In this embodiment, the actuation module has a first magnetic pole, a surrounding coil, and a magnetically conductive outer jacket. The valve member in the delivery module is ferromagnetic, and the lower portion of the delivery module defines a second magnetic pole magnetically coupled to the first magnetic pole. Portions of the housing, the actuation module, and the delivery module define a magnetic circuit, whereby actuation of the electromagnetic coil applies or removes a force to move the valve member between the first and second positions. The delivery module is internal to the housing, the lower portion is hydraulically sealed against the housing. The actuation module is attached to the lower portion of the delivery module and projects entirely external to the housing, so that it can be snapped off while the housing protects the delivery module.
Representative embodiments will be described in detail with reference to the accompanying drawing, wherein:
The improved inlet valve and associated pump will be described in the context of a pump in which a direct magnetic flux path produces a magnetic force that is directly applied to the inlet valve member when the coil is energized. The basic functional aspects are evident from
In a known manner, the electromagnetic coil assembly 15 is analogous to a solenoid, with a multi-winding coil situated around an axially extending, ferromagnetic cylinder or rod 21 (hereinafter referred to as magnetic pole). One end of the pole projects from the coil. When an electrical current is passed through the coil assembly 15, a magnetic field is generated, which flows about the magnetic circuit along magnetic flux lines across radial air gap 23, generating an axial force onto the face of the valve 22 via the varying magnetic air gap 16. When the magnetic force exceeds the force of the inlet valve return spring 24, the valve 22 will close against valve sealing surface 20. The magnetic pole 21 integrally defines sealing surface 20 and is also a part of the magnetic flux path 32. Preferably, an inlet valve stop 14 aids in positioning of the valve 22 for accurate stroke control.
First magnetic break 17 and second magnetic break 18 surround the sealing face 20 to direct the correct magnetic flow path and avoid a magnetic short circuit. Both breaks 17 and 18 should be fabricated from a non-magnetic material and for best performance valve stop 14 should also be fabricated from a non-magnetic material. Breaks 17 and 18 surround the projecting portion of the magnetic pole to prevent magnetic flux from travelling radially to the housing from the pole and thereby short-circuiting the valve member 22. The breaks thereby assure that the flux circuit passes through the coils, the magnet pole, through the sealing surface 20 and air gap 16, through the inlet valve member 22, across radial air gap 23, through conductive ring 31 and pump housing 3, back to the coil 15. In an alternative embodiment, the sealing surface 20′ is not unitary with the pole 21; it could be integrated with the second magnetic break 18.
The pump comprises a housing 102, an inlet port 104 for receiving low pressure feed fuel, a pumping chamber 108 within the housing for pressurizing the feed fuel, and an outlet port 110 for discharging the pressurized fuel. A fuel delivery module 112 is mounted in the housing, including an inflow passage 114 for receiving feed fuel from the inlet port, a delivery passage 116 for delivering feed fuel to the pumping chamber, a valve seat 118 between the inflow passage and the delivery passage, and a valve member 120 movable between a first position against the seat whereby the valve member closes fuel flow to the delivery passage and a second position away from the seat whereby the valve member retracts from the seat to open fuel flow to the delivery passage. An actuation module 122 is attached to at least one of the delivery module 112 and housing 102, and includes an electromagnetic coil 124 assembly that is operatively associated with the valve member for moving the valve member between the first and second positions. The actuation module is hydraulically isolated from the fuel delivery module.
The actuation module 122 has a coil 126 supported by a coil housing 128, a central pole 130 within the coil housing, a base 132, and a conductive jacket 134 that surrounds the coil housing and the base.
The delivery module 112 is internal to the housing 102 and the actuation module 122 is external to the housing. The delivery module is mounted and radially sealed such as at 136 in a profiled bore 155 in the housing. An axially outer portion 138 constitutes a pole that coaxially confronts the central pole 130 of the actuation module, and an outer seal ring 140 with a radially inner surface that aligns and seals the pole via a lip 142 and shoulder 144 and a radially outer surface that sealingly bears against the wall of the housing bore at 146 as a press-fit or weld. Together the pole and ring of the delivery module and the bore wall of the housing hydraulically isolate the hydraulic internals of the delivery module 112 from the actuation module 122.
In a manner readily derivable from
The actuation module 122 is attached to the axially outer portion 138 of the delivery module 112 such that it projects entirely external to the housing 102. The actuation module 122 is attached to the delivery module 112 with a snap off or breakaway connection. For example, the pole 130 of the actuation module is tack welded 148 to pole 138 of the delivery module. The jacket 134 has an upper end including a lip 150 that is captured between a shoulder 152 on the housing and a counter shoulder 154 on the coil housing. The coil, coil housing, conductive jacket, and base form a unit that is fastened to the central pole 130 with a weld 156 or the like.
Number | Date | Country | |
---|---|---|---|
Parent | 15062774 | Mar 2016 | US |
Child | 15411142 | US |