The present disclosure relates to inflatable assemblies and, in particular, to inline aspirators for inflatable assemblies.
In the event of an emergency water landing, aircraft typically have one or more life rafts that can be deployed to hold evacuated passengers. To inflate the life raft, gas is transferred from a cylinder containing air or carbon dioxide or a mixture of gases stored at high-pressure to the inflatable tubes of the life raft. Larger cylinders may be employed to decrease inflation time; however, larger cylinders increase weight and require more storage space.
An inline aspirator for an inflatable assembly is disclosed herein. In accordance with various embodiments, the inline aspirator may comprise a first end defining a primary gas inlet, and a second end defining a primary gas outlet. An internal surface may define a flow path extending from the primary gas inlet to the primary gas outlet. An external surface may be opposite the internal surface. An orifice may be located between the first end and the second end. The orifice may be defined, at least partially, by a radial wall extending from the internal surface to the external surface. The orifice may be configured to entrain ambient air with a primary gas flowing from the primary gas inlet to the primary gas outlet.
In various embodiments, the internal surface may define a choke, a convergent section upstream of the choke, and a divergent section downstream of the choke. In various embodiments, a first diameter of the internal surface upstream of the convergent section may be equal to a second diameter of the internal surface downstream of the divergent section.
In various embodiments, an air outlet of the orifice may be located proximate the choke. In various embodiments, the air outlet may be located at a transition from the choke to the divergent section.
In various embodiments, the inline aspirator may further comprise a first portion including the first end, and a second portion downstream of the first portion including the second end. A spring may be coupled between the first portion and the second portion. In various embodiments, a stopper may be attached to the first portion. The stopper may be located within a volume defined by the second portion. The stopper may be configured to restrict translation of the second portion away from the first portion after a predetermined distance.
In various embodiments, the radial wall may be sloped such that an upstream portion of the radial wall is radially outward of a downstream portion of the radial wall.
A life raft assembly is also disclosed herein. In accordance with various embodiments, the life raft may comprise an inflatable raft and a charge cylinder fluidly coupled to the inflatable raft. An inline aspirator may be fluidly coupled between the inflatable raft and the charge cylinder.
In various embodiments, the inline aspirator may comprise an internal surface defining a flow path extending from a first end of the inline aspirator to a second end of the inline aspirator. An orifice may be located between the first end and the second end. The orifice may be defined, at least partially, by a radial wall extending from the internal surface to an external surface opposite the internal surface. The orifice may be configured to entrain ambient air with a primary gas output from the charge cylinder.
In various embodiments, the internal surface may define a choke, a convergent section upstream of the choke, and a divergent section downstream of the choke. In various embodiments, an air outlet of the orifice may be located downstream of the choke. In various embodiments, the air outlet may be located at a transition from the choke to the divergent section.
In various embodiments, a conduit may be fluidly coupled to the first end of the inline aspirator and the charge cylinder. An internal surface of conduit may be coplanar with the internal surface of the inline aspirator.
In various embodiments, the inline aspirator may comprise a first portion and a second portion downstream of the first portion. A spring may be coupled between the first portion and the second portion.
An inflatable assembly is also disclosed herein. In accordance with various embodiments, the inflatable assembly may comprise an inflatable structure and a charge cylinder fluidly coupled to the inflatable structure. An inline aspirator may be fluidly coupled between the inflatable structure and the charge cylinder.
In various embodiments, the inline aspirator may comprise an internal surface defining a flow path extending from a first end of the inline aspirator to a second end of the inline aspirator. An orifice may be located between the first end and the second end. The orifice may be defined, at least partially, by a radial wall extending from the internal surface to an external surface opposite the internal surface. The orifice may be configured to entrain ambient air with a primary gas output from the charge cylinder.
In various embodiments, the internal surface may define a convergent section and a divergent section. In various embodiments, the radial wall may be sloped such that an upstream portion of the radial wall is radially outward of a downstream portion of the radial wall.
In various embodiments, the inline aspirator may comprise a first portion and a second portion downstream of the first portion. A spring may be coupled between the first portion and the second portion.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the figures, wherein like numerals denote like elements.
The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the exemplary embodiments of the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein. Thus, the detailed description herein is presented for purposes of illustration only and not limitation. The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented.
Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option.
Surface cross hatching lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials. Throughout the present disclosure, like reference numbers denote like elements. Accordingly, elements with like element numbering may be shown in the figures, but may not necessarily be repeated herein for the sake of clarity.
In the context of the present disclosure, methods, systems, and articles may find particular use in connection with life raft assemblies. However, various aspects of the disclosed embodiments may be adapted for performance in a variety of other inflatable assemblies. As such, numerous applications of the present disclosure may be realized.
In accordance with various embodiments, and with reference to
In various embodiments, life raft assembly 100 may include a compressed fluid source or charge cylinder 110. Charge cylinder 110 may be fluidly coupled to the one or more inflatable border tubes 114A, 114B. Charge cylinder 110 may be configured to deliver air and/or other gas into the one or more inflatable border tubes 114A, 114B. In various embodiments, charge cylinder 110 may be fluidly coupled to inflatable border tube 114A via a hose or conduit 116, and to inflatable border tube 114B via a hose or conduit 118. In various embodiments, each inflatable border tube may have a dedicated charge cylinder such that a first charge cylinder is fluidly coupled to inflatable border tube 114A and a second charge cylinder is fluidly coupled to inflatable border tube 114B.
Life raft assembly 100 may further include one or more inline aspirator(s) 120 fluidly coupled between charge cylinder 110 and inflatable border tubes 114A, 114B, (e.g., fluidly coupled to conduits 116, 118). As discussed in further detail below, inline aspirators 120 may be configured to entrain ambient air with gas output from charge cylinder 110 (referred to herein as primary gas). For example, in response to deployment of life raft assembly 100, primary gas from charge cylinder 110 may flow into inline aspirators 120 at a relatively high velocity. This primary gas flow may cause inline aspirators 120 to draw in a secondary gas (i.e., ambient air) from the environment. The primary gas flow and the environmental gas may be directed into inflatable border tubes 114A, 114B. In response to receiving the primary gas and the environmental gas, inflatable border tubes 114A, 114B begin to inflate. Inline aspirators 120 may increase inflation efficiency and/or decrease inflation time of inflatable structure 102. For example, inline aspirators 120 may allow the desired inflatable border tube 114A, 114B pressures to be achieved using less gas from charge cylinder 110. Accordingly, life raft assemblies having inline aspirators 120 may employ smaller charge cylinders. Decreasing charge cylinders size can reduce an overall weight and volume of the life raft assembly.
In accordance with various embodiments and with reference to
With reference to
Inline aspirator 120 further includes one or more orifices 130. Orifices 130 are configured to entrain ambient air with gas flowing through inline aspirator 120. Stated differently, air located radially outward of external surface 122 may flow through orifices 130 and mix with gas located radially inward of internal surface 124. Orifices 130 are each defined by one or more radial walls 132. Radial walls extend completely through inline aspirator, such that the inlet of orifices 130 (i.e., where ambient air enters orifices 130) is located at external surface 122 and the outlet of orifices 130 (i.e., where ambient air exits orifices 130) is located at internal surface 124.
With reference to
Referring to
In various embodiments, internal surface 124 of inline aspirator 120 may be configured to generate a Venturi effect proximate an air outlet 131 of orifices 130. For example, internal surface 124 comprises a constricted section or “choke” 134, a convergent section 136 upstream of choke 134, and a divergent section 138 downstream of choke 134. Choke 134 is the section of internal surface 124 having the smallest diameter D1. Air outlets 131 of orifices may be located immediately downstream of choke 134, for example, in various embodiments, air outlets 131 may be located at the transition from choke 134 to divergent section 138. An inlet area 140, defined by internal surface 124 and having a diameter D2, is located upstream of convergent section 136. Diameter D2 is greater than diameter D1, such that in convergent section 136, the diameter of internal surface 124 decreases from diameter D2 to diameter D1. In various embodiments, diameter D2 may be constant through inlet area 140. An outlet area 142, defined by internal surface 124 and having a diameter D3, is located downstream of divergent section 138. Diameter D3 is greater than diameter D1, such that in divergent section 138, the diameter of internal surface 124 increases from diameter D1 to diameter D3. In various embodiments, diameter D3 may be constant through outlet area 142. In various embodiments, diameter D2 may be equal to diameter D3. In various embodiments, diameter D2 may be between 0.5 inches and 2 inches (1.27 cm and 5.08 cm). In various embodiments, diameter D2 may be between 0.75 inches and 1.5 inches (1.91 cm and 3.81 cm). In various embodiments, diameter D2 may be approximately 1.0 inch (2.54 cm). As used in the previous context, the term “approximately” means±0.125 inches (±0.318 cm). A slope of internal surface 124 in convergent section 136 may be greater than a slope of internal surface 124 in divergent section 138. Stated differently, in convergent section 136, an angle theta (θ) of internal surface 124 relative to central axis X-X is greater than an angle beta (β) of internal surface 124 relative to central axis X-X in divergent section 138.
The Venturi effect created by internal surface 124 may increase a flow velocity of primary gas G proximate air outlet 131 of orifices 130. The velocity immediately downstream of choke 134 may increase the flow of ambient air A through orifices 130 and the flow velocity of the primary gas G and ambient air A mixture exiting inline aspirator 120A. For example, a velocity of primary gas G is greatest in area 144, immediately downstream of choke 134. Ambient air A flows through orifices 130 and mixes with primary gas G proximate to area 144. As the diameter of internal surface 124 increases in divergent section 138, the flow velocity of the primary gas G and ambient air A mixture decreases, such that the flow velocity in area 146 is less than the flow velocity in area 144, and the flow velocity in outlet area 142 is less than the flow velocity in area 144. However, the addition of ambient air A in combination with the Venturi effect tends to cause the flow velocity in outlet area 142 to be greater than the flow velocity in inlet area 140. Table 1 illustrates flow measurements at various locations along an inline aspirator 120.
An inline aspirator 120 having the parameters listed in Table 1, exhibits a flow increase of 60.1% with an ambient air to primary gas ratio of 0.607. The increase in flow may allow for smaller charge cylinders, which can reduce overall weight and volume of the life raft assembly 100 of
With reference to
Internal surfaces 224A, 224B define a gas flow path through inline aspirator 220. Internal surfaces 224A, 224B may be configured to generate a Venturi effect through inline aspirator 220. For example, internal surfaces 224A, 224B may meet to form a constricted section or “choke” 234. Internal surface 224A may define convergent section 236 upstream of choke 234, and internal surface 224B may define a divergent section 238 downstream of choke 234. An inlet area 240, defined by internal surface 224A and which may have a constant diameter, is located upstream of convergent section 236. An outlet area 242, defined by internal surface 224B and which may have a constant diameter, is located downstream of divergent section 238.
In various embodiments, second portion 220B may define a cavity or volume 248. Volume 248 may house a stopper 250 connected to first portion 220A. In various embodiments, first portion 220A may define volume 248, and second portion 220B may include stopper 250 A spring 252, or other biasing member, may be coupled between first portion 220A and second portion 220B. Spring 252 may be configured to bias first portion 220A toward second portion 220B.
With reference to
In various embodiments, with combined reference to
Benefits and other advantages have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, and any elements that may cause any benefit or advantage to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “various embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f), unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
3591314 | Day | Jul 1971 | A |
3598504 | Siravo | Aug 1971 | A |
3684404 | Galbraith | Aug 1972 | A |
4362517 | Martin | Dec 1982 | A |
4566862 | Halavais | Jan 1986 | A |
5566728 | Lange | Oct 1996 | A |
6071084 | Wass | Jun 2000 | A |
6494756 | Michaud | Dec 2002 | B2 |
7527481 | Baryshnikov | May 2009 | B2 |
8549850 | Janakiraman | Oct 2013 | B2 |
8550137 | Delgado et al. | Oct 2013 | B2 |
9585425 | Berchten et al. | Mar 2017 | B2 |
Number | Date | Country | |
---|---|---|---|
20200031439 A1 | Jan 2020 | US |