Inline electromechanical variable transmission system

Information

  • Patent Grant
  • 10935112
  • Patent Number
    10,935,112
  • Date Filed
    Monday, March 2, 2020
    4 years ago
  • Date Issued
    Tuesday, March 2, 2021
    3 years ago
Abstract
A drive system includes a first planetary device, a second planetary device and a connecting shaft directly coupled to the first planetary device, a first electromagnetic device at least selectively coupled to the first planetary device and including a first shaft, a second electromagnetic device directly coupled to the second planetary device and including a second shaft, a clutch positioned to selectively rotationally couple the second shaft to the connecting shaft, and an output shaft coupled to the first planetary device. The first planetary device, the second planetary device, the connecting shaft, the first shaft, the second shaft, and the output shaft are radially aligned. The connecting shaft extends through the second planetary device to the first planetary device. The second electromagnetic device is rotationally engaged with the first planetary device when the clutch is engaged.
Description
BACKGROUND

Internal combustion engine vehicles, hybrid vehicles, and electric vehicles, among other types of vehicles, include transmissions. Traditional vehicle transmissions use gears and gear trains to provide speed and torque conversions from a rotating power source (e.g., an engine, a motor, etc.) to another device (e.g., a drive shaft, wheels of a vehicle, etc.). Transmissions include multiple gear ratios selectively coupled to the rotating power source with a mechanism. The mechanism may also selectively couple an output to the various gear ratios.


SUMMARY

One exemplary embodiment relates to a drive system for a vehicle. The drive system includes a first planetary device, a second planetary device directly coupled to the first planetary device, a connecting shaft directly coupled to the first planetary device, a first electromagnetic device at least selectively coupled to the first planetary device and including a first shaft, a second electromagnetic device directly coupled to the second planetary device and including a second shaft, a clutch positioned to selectively rotationally couple the second shaft to the connecting shaft, and an output shaft coupled to the first planetary device. The first planetary device, the second planetary device, and the connecting shaft are radially aligned. The first shaft and the second shaft are radially aligned with the first planetary device, the second planetary device, and the connecting shaft. The connecting shaft extends through the second planetary device to the first planetary device. The second electromagnetic device is rotationally engaged with the first planetary device when the clutch is engaged. The output shaft is radially aligned with the first planetary device, the second planetary device, and the connecting shaft.


Another exemplary embodiment relates to a drive system for a vehicle. The drive system includes a first planetary device, a second planetary device, a first electromagnetic device at least selectively coupled to the first planetary device, a second electromagnetic device coupled to the second planetary device, and an output shaft. The first planetary device includes a first rotatable portion, a second rotatable portion, at least one connecting member coupling the first rotatable portion to the second rotatable portion, and a first carrier rotationally supporting the at least one connecting member. The second planetary device includes a second carrier that is directly coupled to the first carrier. The output shaft is directly coupled to the first carrier and configured to transport power from the first electromagnetic device and the second electromagnetic device to a tractive element of the vehicle. The output shaft is aligned with the first electromagnetic device and the second electromagnetic device.


Another exemplary embodiment relates to a vehicle including a multi-mode transmission and a drive axle. The multi-mode transmission includes a first planetary device and a second planetary device, the first planetary device including a carrier, a first motor/generator at least selectively coupled to the first planetary device, a second motor/generator coupled to the second planetary device, and an output shaft directly coupled to the carrier of the first planetary device and configured to selectively receive rotational mechanical energy from the first motor/generator and the second motor/generator. The carrier and the second planetary device are directly coupled. The drive axle is coupled to the output shaft of the multi-mode transmission.


The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:



FIG. 1 is a schematic view of a vehicle having a drive train, according to an exemplary embodiment;



FIG. 2A is a detailed schematic view of the drive train of FIG. 1, according to an exemplary embodiment;



FIG. 2B is a partial schematic view of the drive train of FIG. 1, according to an exemplary embodiment;



FIG. 2C is a partial schematic view of the drive train of FIG. 1, according to an exemplary embodiment;



FIG. 3 is a schematic diagram of a control system for the drive train of FIG. 1, according to an exemplary embodiment;



FIG. 4 is a detailed schematic view of a drive train configured in a neutral/startup mode of operation, according to an exemplary embodiment;



FIG. 5 is a detailed schematic view of a drive train configured in a neutral/startup mode of operation, according to another exemplary embodiment;



FIG. 6 is a detailed schematic view of a drive train configured in a low range mode of operation, according to an exemplary embodiment;



FIG. 7 is a detailed schematic view of a drive train configured in a mid range mode of operation, according to an exemplary embodiment;



FIG. 8 is a detailed schematic view of a drive train configured in a high range mode of operation, according to an exemplary embodiment;



FIG. 9 is a detailed schematic view of a drive train configured in an intermediate shift mode of operation, according to an exemplary embodiment;



FIG. 10 is a detailed schematic view of a drive train configured in a low speed reverse mode of operation, according to an exemplary embodiment;



FIG. 11 is a detailed schematic view of a drive train configured in a mid speed reverse mode of operation, according to an exemplary embodiment;



FIG. 12 is a detailed schematic view of a drive train configured in a power generation mode of operation, according to an exemplary embodiment; and



FIG. 13 is a detailed schematic view of a drive train configured in an electric PTO mode of operation, according to an exemplary embodiment.





DETAILED DESCRIPTION

Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.


According to an exemplary embodiment, a multi-mode inline electromechanical variable transmission is provided as part of a vehicle and is selectively reconfigurable between a plurality of operating modes. The vehicle may also include an engine and one or more tractive elements (e.g., wheel and tire assemblies, etc.). The multi-mode inline electromechanical variable transmission may include a first electromagnetic device and a second electromagnetic device. In one embodiment, at least one of the first electromagnetic device and the second electromagnetic device provides rotational mechanical energy to start the engine. In another embodiment, the engine provides a rotational mechanical energy input to both the first and second electromagnetic devices such that each operates as a generator to generate electrical energy. In still other embodiments, one of the first electromagnetic device and the second electromagnetic device are configured to receive a rotational mechanical energy output from the engine and provide an electrical energy output to power a control system and/or the other electromagnetic device. In yet other embodiments, at least one of the first electromagnetic device and the second electromagnetic device are configured to receive an electrical energy input and provide a mechanical energy output to another part of the transmission (e.g., a power takeoff output). According to an exemplary embodiment, the multi-mode inline electromechanical variable transmission has a compact design that facilitates direct replacement of traditional inline transmissions (e.g., mechanical transmissions, transmissions without electromagnetic devices, etc.) used in front engine applications. Thus, the multi-mode inline electromechanical variable transmission may be installed during a new vehicle construction or installed to replace a conventional transmission of a front engine vehicle (e.g., as opposed to replacing a traditional midship transfer case, etc.). The multi-mode inline electromechanical variable transmission may additionally or alternatively be installed as part of a rear-engine vehicle (e.g., a bus, etc.).


According to the exemplary embodiment shown in FIGS. 1-2A, a vehicle 10 includes an engine 20 coupled to a transmission, shown as transmission 30. In one embodiment, engine 20 is configured to combust fuel and provide a mechanical energy input to transmission 30. By way of example, engine 20 may be configured to provide a rotational mechanical energy input to transmission 30. As shown in FIGS. 1-2A, transmission 30 includes a first electrical machine, electromagnetic device, and/or motor/generator, shown as first electromagnetic device 40, and a second electrical machine, electromagnetic device, and/or motor/generator, shown as second electromagnetic device 50. According to an exemplary embodiment, vehicle 10 is configured as a rear engine vehicle and transmission 30 is configured as a multi-mode inline electromechanical transmission. In other embodiments, vehicle 10 is configured as a mid-engine vehicle or a front engine vehicle.


Referring again to the exemplary embodiment shown in FIG. 1, vehicle 10 includes a front axle, shown as front axle 60, and a rear axle, shown as rear axle 70. As shown in FIG. 1, front axle 60 includes a pair of tractive elements, shown as tires 62, coupled to a front differential, shown as front differential 64. Rear axle 70 includes a pair of tractive elements, shown as tires 72, coupled to a rear differential, shown as rear differential 74, according to an exemplary embodiment. According to the exemplary embodiment shown in FIG. 1, front differential 64 is coupled to transmission 30 with a front axle driveshaft 66, and rear differential 74 is coupled to transmission 30 with a rear axle driveshaft 76. While shown as coupled to tires 62 and tires 72, front differential 64 and rear differential 74 may be coupled to various other types of tractive elements (e.g., tracks, etc.), according to alternative embodiments. As shown in FIG. 1, front axle driveshaft 66 and rear axle driveshaft 76 are configured to transport power from first electromagnetic device 40, second electromagnetic device 50, and engine 20 to tires 62 and tires 72, respectively. Vehicle 10 may include a plurality of front differentials 64 that may be coupled and/or a plurality of rear differentials 74 that may be coupled, according to various alternative embodiments. In some embodiments, transmission 30 is selectively coupled (e.g., via a clutch mechanism, coupling mechanism, etc.) to at least one of the front axle driveshaft 66 and the rear axle driveshaft 76 (e.g., to reconfigure vehicle 10 into a front-wheel-drive configuration, a rear-wheel-drive configuration, an all-wheel-drive configuration, a four-wheel-drive configuration, etc.).


Engine 20 may be any source of rotational mechanical energy that is derived from a stored energy source. The stored energy source is disposed onboard vehicle 10, according to an exemplary embodiment. The stored energy source may include a liquid fuel or a gaseous fuel, among other alternatives. In one embodiment, engine 20 includes an internal combustion engine configured to be powered by at least one of gasoline, natural gas, and diesel fuel. According to various alternative embodiments, engine 20 includes at least one of a turbine, a fuel cell, and an electric motor, or still another device. According to one exemplary embodiment, engine 20 includes a twelve liter diesel engine capable of providing between approximately 400 horsepower and approximately 600 horsepower and between approximately 400 foot pounds of torque and approximately 2000 foot pounds of torque. In one embodiment, engine 20 has a rotational speed (e.g., a rotational operational range, etc.) of between 0 and 2,100 revolutions per minute. Engine 20 may be operated at a relatively constant speed (e.g., 1,600 revolutions per minute, etc.). In one embodiment, the relatively constant speed is selected based on an operating condition of engine 20 (e.g., an operating speed relating to a point of increased fuel efficiency, etc.).


In one embodiment, at least one of first electromagnetic device 40 and second electromagnetic device 50 provide a mechanical energy input to another portion of transmission 30. By way of example, at least one of first electromagnetic device 40 and second electromagnetic device 50 may be configured to provide a rotational mechanical energy input to another portion of transmission 30 (i.e., at least one of first electromagnetic device 40 and second electromagnetic device 50 may operate as a motor, etc.). At least one of first electromagnetic device 40 and second electromagnetic device 50 may receive a mechanical energy output from at least one of engine 20 and another portion of transmission 30. By way of example, at least one of first electromagnetic device 40 and second electromagnetic device 50 may be configured to receive a rotational mechanical energy output from at least one of engine 20 and another portion of transmission 30 and provide an electrical energy output (i.e., at least one of first electromagnetic device 40 and second electromagnetic device 50 may operate as a generator, etc.). According to an exemplary embodiment, first electromagnetic device 40 and second electromagnetic device 50 are capable of both providing mechanical energy and converting a mechanical energy input into an electrical energy output (i.e., selectively operate as a motor and a generator, etc.). The operational condition of first electromagnetic device 40 and second electromagnetic device 50 (e.g., as a motor, as a generator, etc.) may vary based on a mode of operation associated with transmission 30.


According to the exemplary embodiment shown in FIG. 2A, a drive system for a vehicle, shown as drive system 100, includes engine 20, transmission 30, first electromagnetic device 40, and second electromagnetic device 50. Transmission 30 may include first electromagnetic device 40 and second electromagnetic device 50. As shown in FIG. 2A, transmission 30 includes a first power transmission device, shown as power split 110, and a second power transmission device, shown as output planetary 120. In one embodiment, power split 110 and output planetary 120 are positioned outside of (e.g., on either side of, sandwiching, not between, etc.) first electromagnetic device 40 and second electromagnetic device 50. As shown in FIG. 2A, power split 110 and output planetary 120 are disposed between (e.g., sandwiched by, etc.) first electromagnetic device 40 and second electromagnetic device 50.


Referring to the exemplary embodiments shown in FIGS. 2A-2C, power split 110 is a power transmission device. In some embodiments, power split 110 is a variable ratio power transmission device or variator configured to vary a ratio (e.g., a torque ratio, a gear ratio, a speed ratio, etc.) between an input to power split 110 and an output from power split 110. In other embodiments, such ratios are fixed. An input is a rotational mechanical energy input having an input speed and an input torque. An output is a rotational mechanical energy output having an output speed and an output torque. Power split 110 may have various arrangements (e.g., an epicyclic or planetary arrangement, a radially offset arrangement, etc.). Power split 110 may utilize various types of variator configurations. By way of example, power split 110 may be a belt and/or a chain variator (e.g., include one or more belts or chains rotationally coupling variable diameter pulleys, etc.). In such an example, varying the pulley diameters may adjust the relative speeds between various components within power split 110. Such a belt variator and/or a chain variator may be a planetary device.


As shown in FIG. 2A, power split 110 includes an inner portion 111 that is shown according to various exemplary embodiments in FIGS. 2B and 2C. In FIGS. 2B and 2C, power split 110 is an epicyclic device or planetary device that includes a first rotatable portion 112, a second rotatable portion 114, and one or more adjustable members or connecting members 116 each configured to rotate about a corresponding axis 117. The connecting members 116 engage (e.g., rotationally) both first rotatable portion 112 and second rotatable portion 114, thereby coupling first rotatable portion 112 to second rotatable portion 114, according to an exemplary embodiment. As shown in FIGS. 2B and 2C, a carrier 118 rotationally supports connecting members 116 such that each connecting member 116 rotates relative to carrier 118 about the corresponding axis 117. In some embodiments, connecting members 116 are selectively repositionable such that axes 117 rotate relative to carrier 118. As the orientations of connecting members 116 change relative to carrier 118, connecting members 116 may engage first rotatable portion 112 and second rotatable portion 114 at different locations, varying the speed ratios between first rotatable portion 112, second rotatable portion 114, and carrier 118. Each of first rotatable portion 112, second rotatable portion 114, and carrier 118 may receive an input or provide an output depending on the configuration of vehicle 10.


In the embodiment shown in FIG. 2B, power split 110 is an epicyclic or planetary device configured as a friction ball variator. In this embodiment, connecting members 116 are balls (e.g., spheres, etc.) that are rotatable relative to carrier 118 about axes 117. In the embodiment shown in FIG. 2B, power split 110 is shown to include two connecting members 116, however, power split 110 may include more or fewer connecting members 116 (e.g., 1, 3, 4, 10, etc.). The first rotatable portion 112 and second rotatable portion 114 each include an engagement surface that extends along a circular path and is configured to engage connecting members 116 (e.g., through friction, etc.). Accordingly, first rotatable portion 112 is rotationally engaged with second rotatable portion 114 through connecting members 116. Each connecting member 116 is configured to rotate relative to carrier 118 about an axis 117 in response to a rotational mechanical energy input (e.g., through first rotatable portion 112, through second rotatable portion 114, through carrier 118, etc.).


In some embodiments, axes 117 are fixed (e.g., permanently, selectively, etc.) relative to carrier 118. In other embodiments, to facilitate varying speed ratios between inputs to power split 110 and outputs from power split 110, each axis 117 is rotatable relative to carrier 118 (e.g., such that axis 117 rotates about an axis extending perpendicular to the plane of FIG. 2B). Connecting members 116 may have a curved profile such that rotating the axes 117 of connecting members 116 varies the ratios between the speed of first rotatable portion 112, the speed of second rotatable portion 114, and the speed of carrier 118. Rotating the axis 117 corresponding to one of the connecting members 116 in a first direction both (a) reduces the distance between that axis 117 and the point where first rotatable portion 112 engages that connecting member 116 and (b) increases the distance between that axis 117 and the point where second rotatable portion 114 engages that connecting member 116. In one such arrangement, with carrier 118 held fixed, first rotatable portion 112 rotates more slowly than second rotatable portion 114. Rotating the axis 117 in the opposite direction may have the opposite effect. In some embodiments, the axes 117 are rotationally coupled such that they rotate in unison.


In the embodiment shown in FIG. 2C, power split 110 is an epicyclic or planetary device configured as a toroidal variator. In this embodiment, each connecting member 116 is a wheel or disc that is rotatable relative to carrier 118. In the embodiment shown in FIG. 2C, power split 110 is shown to include two connecting members 116, however, power split 110 may include more or fewer connecting members 116 (e.g., 1, 3, 4, 10, etc.). The first rotatable portion 112 and second rotatable portion 114 each include a toroidal engagement surface that is configured to engage connecting members 116 (e.g., through friction, etc.). Accordingly, first rotatable portion 112 is rotationally engaged with second rotatable portion 114 through connecting members 116. Each connecting member 116 is configured to rotate relative to carrier 118 about an axis 117 in response to a rotational mechanical energy input (e.g., through first rotatable portion 112, through second rotatable portion 114, through carrier 118, etc.).


In some embodiments, axes 117 are fixed relative to carrier 118. In other embodiments, to facilitate varying speed ratios between inputs to power split 110 and outputs from power split 110, each axis 117 is rotatable relative to carrier 118 (e.g., such that axis 117 rotates about an axis extending perpendicular to the plane of FIG. 2C). To facilitate continuous engagement between connecting members 116, first rotatable portion 112, and second rotatable portion 114 as the axis 117 rotates, the toroidal engagement surfaces may be concave with a constant radius cross sectional curvature. In such embodiments, rotating the axes 117 varies the ratios between the speed of first rotatable portion 112, the speed of second rotatable portion 114, and the speed of carrier 118. Rotating the axis 117 corresponding to one of the connecting members 116 in a first direction both (a) increases the radius between the axis of rotation of first rotatable portion 112 and the point where that connecting member 116 engages first rotatable portion 112 and (b) decreases the radius between the axis of rotation of second rotatable portion 114 and the point where that connecting member 116 engages second rotatable portion 114. In one such arrangement, with carrier 118 held fixed, first rotatable portion 112 rotates more slowly than second rotatable portion 114. Rotating the axis 117 in the opposite direction has the opposite effect. In some embodiments, the axes 117 are rotationally coupled such that they rotate in unison.


As shown in FIG. 3, power split 110 includes an adjustment mechanism or actuator, shown as variator adjustment mechanism 119. The variator adjustment mechanism 119 is configured to rotate axes 117 relative to carrier 118 or otherwise vary speed ratios between inputs to power split 110 and outputs from power split 110. The variator adjustment mechanism 119 may be a hydraulic actuator, a pneumatic actuator, an electric motor, or another type of actuator that is controlled by another component (e.g., controller 210). Alternatively, the variator adjustment mechanism 119 may be controlled passively (e.g., using a flyweight system). By way of example, the variator adjustment mechanism 119 may include a spring loaded flyweight coupled to a component of power split 110 (e.g., carrier 118) such that variator adjustment mechanism 119 varies the orientation of axes 117 based on a rotational speed of the component. In other embodiments, axes 117 are fixed relative to carrier 118, and variator adjustment mechanism 119 is omitted.


Referring again to FIG. 2A, a clutch, shown as neutral clutch 22, is positioned to selectively couple first electromagnetic device 40 to first rotatable portion 112. Neutral clutch 22 may be a component of first electromagnetic device 40 or transmission 30 or a separate component. Accordingly, first electromagnetic device 40 is selectively coupled to first rotatable portion 112 such that power split 110 is selectively coupled to first electromagnetic device 40. By way of example, first electromagnetic device 40 may include or be coupled to a shaft (e.g., a first shaft, an input shaft, an output shaft, etc.) selectively coupled to first rotatable portion 112. According to an alternative embodiment, neutral clutch 22 is omitted, and first electromagnetic device 40 is directly coupled to first rotatable portion 112.


Referring still to the exemplary embodiment shown in FIG. 2A, output planetary 120 is a planetary device or planetary gear set that includes a sun gear 122, a ring gear 124, and a plurality of planetary gears 126. The plurality of planetary gears 126 couple sun gear 122 to ring gear 124, according to an exemplary embodiment. As shown in FIG. 2A, a carrier 128 rotationally supports the plurality of planetary gears 126. In one embodiment, second electromagnetic device 50 is directly coupled to sun gear 122 such that output planetary 120 is coupled to second electromagnetic device 50. By way of example, second electromagnetic device 50 may include or be coupled to a shaft (e.g., a second shaft, an input shaft, an output shaft, etc.) directly coupled to sun gear 122. Carrier 118 is directly coupled to carrier 128, thereby coupling power split 110 to output planetary 120, according to the exemplary embodiment shown in FIG. 2A. In one embodiment, directly coupling carrier 118 to carrier 128 synchronizes the rotational speeds of carrier 118 and carrier 128.


Carrier 118 is directly rotationally coupled to an output with a shaft, shown as output shaft 32, according to the exemplary embodiment shown in FIGS. 2A-2C. Output shaft 32 may be coupled to at least one of rear axle driveshaft 76 and front axle driveshaft 66. By way of example, output shaft 32 may be coupled to a transfer case and/or rear axle driveshaft 76 where transmission 30 is installed in place of a traditional, mechanical, straight-thru transmission. In another embodiment, the output is a PTO output, and output shaft 32 is coupled thereto. A clutch assembly may be engaged and disengaged to selectively couple at least one of front axle driveshaft 66, a transfer case, and rear axle driveshaft 76 to output shaft 32 of transmission 30 (e.g., to facilitate operation of a vehicle in a rear-wheel-drive mode, an all-wheel-drive mode, a four-wheel-drive mode, a front-wheel-drive mode, etc.). As shown in FIG. 2A, the transmission 30 includes an auxiliary shaft, shown as jack shaft 34. In some embodiments, jack shaft 34 is offset (e.g., radially offset) from first electromagnetic device 40, second electromagnetic device 50, power split 110, and/or output planetary 120. As shown in FIG. 2A, transmission 30 includes a shaft, shown as connecting shaft 36, directly coupled to engine 20. According to an exemplary embodiment, connecting shaft 36 directly couples engine 20 to power split 110. In one embodiment, connecting shaft 36 directly couples engine 20 with second rotatable portion 114 of power split 110. According to an exemplary embodiment, power split 110 is at least one of directly coupled to and directly powers a power takeoff (“PTO”) (e.g., a live PTO, etc.). By way of example, second rotatable portion 114 and/or carrier 118 of power split 110 may be at least one of directly coupled to and directly power the PTO.


As shown in FIG. 2A, transmission 30 includes a first clutch, shown as input coupled clutch 140. Input coupled clutch 140 is positioned to selectively couple second electromagnetic device 50 with engine 20, according to an exemplary embodiment. Input coupled clutch 140 may thereby selectively couple engine 20 to output planetary 120. As shown in FIG. 2A, connecting shaft 36 extends from engine 20, through input coupled clutch 140 and second electromagnetic device 50, and through output planetary 120 to power split 110. Input coupled clutch 140 may selectively couple second electromagnetic device 50 with connecting shaft 36. Accordingly, input coupled clutch 140 may selectively couple connecting shaft 36 to sun gear 122 of output planetary 120. According to an exemplary embodiment, first electromagnetic device 40 and second electromagnetic device 50 (e.g., input/output shafts thereof, etc.) are aligned (e.g., radially aligned, etc.) with power split 110, output planetary 120, connecting shaft 36, and/or output shaft 32 (e.g., axes of rotation of components thereof are aligned, centerlines thereof are aligned, to thereby form a straight-thru or inline transmission arrangement, etc.).


Jack shaft 34 is rotationally coupled to carrier 118 of power split 110 and thereby to output shaft 32. According to the exemplary embodiment shown in FIG. 2A, transmission 30 further includes a second clutch, shown as output coupled clutch 150. Output coupled clutch 150 is positioned to selectively couple jack shaft 34 to ring gear 124 of output planetary 120. In some embodiments, jack shaft 34 is rotationally coupled (e.g., selectively rotationally coupled, etc.) to one or more outputs, shown as PTO outputs 80 (e.g., to drive one or more hydraulic pumps, to power one or more hydraulic systems, to power one or more electrical power generation systems, to power one or more pneumatic systems, etc.). In other embodiments, the one or more outputs are used to power (e.g., drive, etc.) a vehicle with which transmission 30 is associated.


Transmission 30 may further include a third clutch, shown in FIG. 2A as secondary output clutch 42. In other embodiments, secondary output clutch 42 is omitted. Secondary output clutch 42 is positioned to selectively couple first electromagnetic device 40 with an additional PTO output 80, according to an exemplary embodiment. Like the PTO outputs 80 rotationally coupled to the jack shaft 34, the PTO output 80 coupled to the secondary output clutch 42 may be configured to drive one or more hydraulic pumps, to power one or more hydraulic systems, to power one or more electrical power generation systems, to power one or more pneumatic systems, or to power another type of system. In other embodiments, the output is used to power (e.g., drive, etc.) a vehicle with which transmission 30 is associated. Secondary output clutch 42 may thereby selectively couple this PTO output 80 to first rotatable portion 112 of power split 110 when neutral clutch 22 is engaged. The PTO output 80 may be directly coupled to the secondary output clutch 42 (e.g., arranged concentrically or in line with the secondary output clutch 42 and the first electromagnetic device 40, including gear teeth in meshing engagement with the secondary output clutch 42, etc.) or indirectly coupled to the secondary output clutch 42 (e.g., using a gear train, using a pulley and belt arrangement, using a chain and sprocket arrangement, etc.). As shown in FIG. 2A, output shaft 32 extends from power split 110, through first electromagnetic device 40, and out through secondary output clutch 42.


In some embodiments, neutral clutch 22 is biased into an engaged position (e.g., with a spring, etc.) and selectively disengaged (e.g., with application of pressurized hydraulic fluid, etc.). In some embodiments, input coupled clutch 140 is biased into a disengaged position (e.g., with a spring, etc.) and selectively engaged (e.g., with application of pressurized hydraulic fluid, etc.). In some embodiments, output coupled clutch 150 is biased into a disengaged position (e.g., with a spring, etc.) and selectively engaged (e.g., with application of pressurized hydraulic fluid, etc.). In some embodiments, secondary output clutch 42 is biased into a disengaged position (e.g., with a spring, etc.) and selectively engaged (e.g., with application of pressurized hydraulic fluid, etc.). In other embodiments, one or more of neutral clutch 22, input coupled clutch 140, output coupled clutch 150, and secondary output clutch 42 are hydraulically-biased and spring released.


Referring again to the exemplary embodiment shown in FIG. 2A, transmission 30 includes a brake, shown as output brake 170. Output brake 170 is positioned to selectively inhibit the movement of at least a portion of output planetary 120 (e.g., ring gear 124, etc.), according to an exemplary embodiment. In one embodiment, output brake 170 is biased into a disengaged position (e.g., with a spring, etc.) and selectively engaged (e.g., with application of pressurized hydraulic fluid, etc.). In other embodiments, output brake 170 is hydraulically-biased and spring released. In still other embodiments, the components of transmission 30 are still otherwise engaged and disengaged (e.g., pneumatically, etc.). By way of example, output brake 170 and output coupled clutch 150 may be engaged simultaneously, providing a driveline brake such that rotational movement of at least one of output planetary 120 (e.g., ring gear 124, etc.), power split 110 (e.g., carrier 118, etc.), jack shaft 34, and output shaft 32 are selectively limited.


As shown in FIG. 2A, transmission 30 includes a gear set 180 that couples carrier 118 and carrier 128 to jack shaft 34. In one embodiment, gear set 180 includes a first gear, shown as gear 182, in meshing engagement with a second gear, shown as gear 184. As shown in FIG. 2A, gear 182 is rotatably coupled to carrier 118 and carrier 128. By way of example, gear 182 may be fixed to a component (e.g., shaft, tube, etc.) that couples carrier 118 and carrier 128. As shown in FIG. 2A, gear 184 is rotatably coupled to jack shaft 34. By way of example, gear 184 may be fixed directly to the jack shaft 34.


According to an exemplary embodiment, transmission 30 includes a gear set, shown as gear set 190, that couples output planetary 120 to jack shaft 34. As shown in FIG. 2A, gear set 190 includes a first gear, shown as gear 192, coupled to ring gear 124 of output planetary 120. Gear 192 is in meshing engagement with a second gear, shown as gear 194, according to an exemplary embodiment. As shown in FIG. 2A, gear 194 is coupled to a third gear, shown as gear 196. Gear 194 may reverse the rotation direction of an output provided by gear 192 (e.g., gear 194 may facilitate rotating jack shaft 34 in the same direction as that of gear 192, etc.). In other embodiments, gear 192 is directly coupled with gear 196. By way of example, gear set 190 may not include gear 194, and gear 192 may be directly coupled to (e.g., in meshing engagement with, etc.) gear 196. As shown in FIG. 2A, output coupled clutch 150 is positioned to selectively couple gear 196 with output shaft 32 when engaged. With output coupled clutch 150 disengaged, relative movement (e.g., rotation, etc.) may occur between gear 196 and jack shaft 34. By way of example, output coupled clutch 150 may be engaged to couple ring gear 124 to jack shaft 34. Output brake 170 is positioned to selectively limit the movement of gear 192 when engaged to thereby also limit the movement of ring gear 124, gear 194, and gear 196.


According to the exemplary embodiment shown in FIG. 3, a control system 200 for a vehicle (e.g., vehicle 10, etc.) includes a controller 210. In one embodiment, controller 210 is configured to selectively engage, selectively disengage, or otherwise communicate with components of the vehicle according to various modes of operation. As shown in FIG. 3, controller 210 is coupled to engine 20. In one embodiment, controller 210 is configured to selectively engage engine 20 (e.g., interface with a throttle thereof, etc.) such that an output of engine 20 rotates at a target rate. Controller 210 is coupled to first electromagnetic device 40 and second electromagnetic device 50, according to an exemplary embodiment, and may send and receive signals therewith. By way of example, controller 210 may send command signals relating to at least one of a target mode of operation, a target rotational speed, and a target rotation direction for first electromagnetic device 40 and second electromagnetic device 50. As shown in FIG. 3, first electromagnetic device 40 and second electromagnetic device 50 are electrically coupled (e.g., by an electrical power transmission system, etc.). By way of example, power generated by first electromagnetic device 40 may be utilized by second electromagnetic device 50 (e.g., to provide an output torque as a motor, etc.), or power generated by second electromagnetic device 50 may be utilized by first electromagnetic device 40 (e.g., to provide an output torque as a motor, etc.). Controller 210 is configured to selectively engage and selectively disengage neutral clutch 22, secondary output clutch 42, input coupled clutch 140, output coupled clutch 150, and output brake 170 directly or by interacting with another component (e.g., a pump, a valve, a solenoid, a motor, etc.).


In some embodiments, controller 210 is configured to control variator adjustment mechanism 119 to selectively vary speed ratios between inputs to power split 110 and outputs from power split 110. Controller 210 may control the variator adjustment mechanism 119 in response to a user input (e.g., through the user interface 220) or automatically (e.g., in response to a sensor input, according to a predefined actuation profile, etc.). Alternatively, variator adjustment mechanism 119 may operate independently such that controller 210 may be operatively decoupled from variator adjustment mechanism 119 (e.g., if variator adjustment mechanism 119 is controlled passively with a flyweight system).


According to an exemplary embodiment, the drive system 100 includes an energy storage device (e.g., a battery, etc.). In such embodiments, the battery may be charged and recharged by an electromagnetic device that is generating power. The battery may supply the electromagnetic device that is motoring the vehicle to at least one of propel the vehicle and operate a PTO output 80. In some embodiments, the battery may always be utilized as part of the drive system 100. In other embodiments, the battery may be used only when excess generated power must be stored or excess power is required to motor the vehicle.


According to alternative embodiments, drive system 100 may be configured to operate with first electromagnetic device 40 and second electromagnetic device 50, and no additional sources of electrical power. Additional sources of electrical power include, for example, a battery and other energy storage devices. Without an energy storage device, first electromagnetic device 40 and second electromagnetic device 50 may operate in power balance. One of the electromagnetic devices may provide all of the electrical power required by the other electromagnetic device (as well as the electrical power required to offset power losses). First electromagnetic device 40 and second electromagnetic device 50 may operate without doing either of (a) providing electrical power to an energy storage device or (b) consuming electrical power from an energy storage device. Thus, the sum of the electrical power produced or consumed by first electromagnetic device 40, the electrical power produced or consumed by second electromagnetic device 50, and electrical power losses may be zero. According to the embodiment of FIGS. 1-3, two electromagnetic devices are shown. In other embodiments, the system includes three or more electromagnetic devices.


According to the exemplary embodiment shown in FIG. 3, control system 200 includes a user interface 220 that is coupled to controller 210. In one embodiment, user interface 220 includes a display and an operator input. The display may be configured to display a graphical user interface, an image, an icon, or still other information. In one embodiment, the display includes a graphical user interface configured to provide general information about the vehicle (e.g., vehicle speed, fuel level, warning lights, etc.). The graphical user interface may be configured to also display a current mode of operation, various potential modes of operation, or still other information relating to transmission 30 and/or drive system 100. By way of example, the graphical user interface may be configured to provide specific information regarding the operation of drive system 100 (e.g., whether neutral clutch 22, secondary output clutch 42, input coupled clutch 140, output coupled clutch 150, and/or output brake 170 are engaged or disengaged, a fault condition where at least one of neutral clutch 22, secondary output clutch 42, input coupled clutch 140, output coupled clutch 150, and/or output brake 170 fail to engage or disengage in response to a command signal, etc.).


The operator input may be used by an operator to provide commands to at least one of engine 20, transmission 30, first electromagnetic device 40, second electromagnetic device 50, and drive system 100 or still another component of the vehicle. The operator input may include one or more buttons, knobs, touchscreens, switches, levers, or handles. In one embodiment, an operator may press a button to change the mode of operation for at least one of transmission 30, and drive system 100, and the vehicle. The operator may be able to manually control some or all aspects of the operation of transmission 30 using the display and the operator input. It should be understood that any type of display or input controls may be implemented with the systems and methods described herein.


Controller 210 may be implemented as a general-purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a digital-signal-processor (DSP), circuits containing one or more processing components, circuitry for supporting a microprocessor, a group of processing components, or other suitable electronic processing components. According to the exemplary embodiment shown in FIG. 3, controller 210 includes a processing circuit 212 and a memory 214. Processing circuit 212 may include an ASIC, one or more FPGAs, a DSP, circuits containing one or more processing components, circuitry for supporting a microprocessor, a group of processing components, or other suitable electronic processing components. In some embodiments, processing circuit 212 is configured to execute computer code stored in memory 214 to facilitate the activities described herein. Memory 214 may be any volatile or non-volatile computer-readable storage medium capable of storing data or computer code relating to the activities described herein. According to an exemplary embodiment, memory 214 includes computer code modules (e.g., executable code, object code, source code, script code, machine code, etc.) configured for execution by processing circuit 212. Memory 214 includes various actuation profiles corresponding to modes of operation (e.g., for transmission 30, for drive system 100, for a vehicle, etc.), according to an exemplary embodiment. In some embodiments, controller 210 may represent a collection of processing devices (e.g., servers, data centers, etc.). In such cases, processing circuit 212 represents the collective processors of the devices, and memory 214 represents the collective storage devices of the devices.


Referring next to the exemplary embodiments shown in FIGS. 4-13, transmission 30 is configured to operate according to a plurality of modes of operation. Various modes of operation for transmission 30 are identified below in Table 1. In other embodiments, a vehicle having transmission 30 is configured to operate according to the various modes of operation shown in FIGS. 4-13 and identified below in Table 1.














TABLE 1







Output

Input
Secondary



Neutral
Coupled
Output
Coupled
Output


Mode of
Clutch
Clutch
Brake
Clutch
Clutch


Operation
22
150
170
140
42







Mid Speed
X

X




Reverse


Low Speed
X
X


Reverse


Power
X


X


Generation


Neutral/Vehicle
X
X
X


Start


Low Range
X
X


Mid Range
X

X


Shift
X

X
X


High Range
X


X


Electric PTO




X









As shown in Table 1, an “X” represents a component of drive system 100 (e.g., output brake 170, input coupled clutch 140, etc.) that is engaged or closed during the respective modes of operation.


In each of the modes shown in FIGS. 4-12, neutral clutch 22 is engaged. When engaged, neutral clutch 22 couples first electromagnetic device 40 to first rotatable portion 112. When disengaged, neutral clutch 22 decouples first electromagnetic device 40 from first rotatable portion 112. Accordingly, neutral clutch 22 may be used to isolate first electromagnetic device 40, secondary output clutch 42, and the PTO output 80 coupled to secondary output clutch 42 from transmission 30. With neutral clutch 22 disengaged, first electromagnetic device 40 may be used to drive the PTO output 80 coupled to the secondary output clutch 42 independent of engine 20 (e.g., without engine 20 running) and transmission 30 (e.g., without moving first rotatable portion 112).


As shown in FIGS. 4 and 5, transmission 30 is selectively reconfigured into neutral/startup modes. The neutral/startup mode may provide a true neutral for transmission 30. In one embodiment, at least one of first electromagnetic device 40 and second electromagnetic device 50 include and/or are coupled to an energy storage device (e.g., a capacitor, a battery, etc.) configured to store energy (e.g., electrical energy, chemical energy, etc.) associated with drive system 100. In one embodiment, rotation of first electromagnetic device 40 rotates connecting shaft 36 to start engine 20 (e.g., with neutral clutch 22, output coupled clutch 150, and output brake 170 engaged, etc.). In another embodiment, rotation of second electromagnetic device 50 rotates connecting shaft 36 to start engine 20 (e.g., with neutral clutch 22 and input coupled clutch 140 engaged, etc.). First electromagnetic device 40 or second electromagnetic device 50 may be configured to use the stored energy to start engine 20 by providing a rotational mechanical energy input (e.g., a torque, etc.) to engine 20 through connecting shaft 36.


In an alternative embodiment, engine 20 includes a traditional starting mechanism (e.g., a starter motor, etc.) configured to start engine 20 (e.g., in response to a vehicle start request, in response to an engine start request, etc.). The vehicle start request and/or the engine start request may include a directive to turn the engine “on” from an “off” state. The vehicle may include at least one of a pushbutton, a graphical user interface, an ignition, and another device with which a user interacts to provide or trigger the vehicle start request and/or the engine start request. Engine 20 may provide a rotational mechanical energy input to at least one of first electromagnetic device 40 and/or second electromagnetic device 50. First electromagnetic device 40 and second electromagnetic device 50 may be brought up to a threshold (e.g., a threshold speed, a threshold speed for a target period of time, a threshold power generation, a threshold power generation for a target period of time, etc.) that establishes a requisite DC bus voltage for controlling first electromagnetic device 40 and/or second electromagnetic device 50. Both first electromagnetic device 40 and second electromagnetic device 50 may thereafter be activated and controlled within and/or to desired states. The power electronics of control system 200 that control the motor-to-motor functions may be brought online during the neutral/startup mode.


As shown in FIG. 4 and Table 1, neutral clutch 22, output coupled clutch 150, and output brake 170 are engaged when transmission 30 is configured in the neutral/startup mode. According to an exemplary embodiment, engaging neutral clutch 22, output brake 170, and output coupled clutch 150 selectively limits the rotational movement of portions of both power split 110 and output planetary 120. By way of example, engaging output brake 170 may inhibit the rotational movement of ring gear 124, gear 192, gear 194, and gear 196 such that each remains rotationally fixed. Engaging output coupled clutch 150 may inhibit rotational movement of jack shaft 34 such that jack shaft 34 remains rotationally fixed (e.g., since gear 196 is fixed and output coupled clutch 150 is engaged, etc.). With jack shaft 34 rotationally fixed, gear set 180 and carrier 118 become rotationally fixed, thereby isolating output shaft 32 from engine 20, first electromagnetic device 40, and second electromagnetic device 50 in the neutral/startup mode. Such isolation may substantially eliminate a forward lurch potential of the vehicle during startup (e.g., transmission 30 does not provide an output torque to tires 62 and/or tires 72, etc.). Alternatively, as shown in FIG. 5, output coupled clutch 150 may be disengaged (e.g., before startup, during startup, after startup, etc.). However, disengaging output coupled clutch 150 may not prevent rotation of the jack shaft 34 and thereby output shaft 32.


According to an exemplary embodiment, an energy flow path in the neutral/startup mode includes: first electromagnetic device 40 providing a rotational mechanical energy input to first rotatable portion 112 through neutral clutch 22 that is received by the connecting members 116; connecting members 116 rotating about central axes thereof (e.g., axes 117) (e.g., connecting members 116 may not rotate about first rotatable portion 112 because carrier 118 may be rotationally fixed, etc.); the connecting members 116 conveying the rotational mechanical energy to second rotatable portion 114; second rotatable portion 114 transferring the rotational mechanical energy to the engine 20 through the connecting shaft 36 such that the rotational mechanical energy provided by first electromagnetic device 40 starts engine 20.


An alternative energy flow path in the neutral/startup mode may include starting engine 20 with a traditional starting mechanism, engine 20 providing a rotational mechanical energy input to second rotatable portion 114 that is received by connecting members 116; connecting members 116 rotating about central axes thereof (e.g., axes 117) (e.g., connecting members may or may not rotate about first rotatable portion 112 because carrier 118 may or may not be rotationally fixed, etc.); connecting members 116 conveying the rotational mechanical energy to first rotatable portion 112; and first rotatable portion 112 conveying the rotational mechanical energy to first electromagnetic device 40 through neutral clutch 22 to bring first electromagnetic device 40 up to the threshold for establishing a requisite DC bus voltage and controlling first electromagnetic device 40 and/or second electromagnetic device 50 in a desired state. By way of example, the neutral/startup mode may be used to start engine 20, establish a requisite DC bus voltage, or otherwise export power without relying on controller 210 to engage first electromagnetic device 40 and/or second electromagnetic device 50. Transmission 30 may provide increased export power potential relative to traditional transmission systems.


As shown in FIG. 6, transmission 30 is selectively reconfigured into a low range mode of operation such that transmission 30 allows for a low output speed operation with a high output torque (e.g., in a forward direction of travel, etc.). The low range mode increases a vehicle's gradability (e.g., facilitates the vehicle maintaining speed on a grade, etc.). In one embodiment, engine 20 provides a rotational mechanical energy input to transmission 30 such that first electromagnetic device 40 generates electrical power and second electromagnetic device 50 uses the generated electrical power to provide a rotational mechanical energy output. As such, at least one of engine 20 and second electromagnetic device 50 provide a rotational mechanical energy input to drive at least one of tires 62 and tires 72. In an alternative embodiment, first electromagnetic device 40 operates as a motor and second electromagnetic device 50 operates as a generator when transmission 30 is configured in the low range forward mode. In still another alternative embodiment, both first electromagnetic device 40 and second electromagnetic device 50 operate as a generator in the low range forward mode. In yet another embodiment, transmission 30 is not selectively reconfigurable into the low range mode of operation. In one such embodiment, transmission 30 does not include jack shaft 34, does not include gear set 190 (e.g., gear 192, gear 194, gear 196, etc.), and does not include output coupled clutch 150. Transmission 30 may additionally or alternatively not include gear set 180 in embodiments where transmission 30 is not selectively reconfigurable into the low range mode of operation.


As shown in FIG. 6 and Table 1, neutral clutch 22 and output coupled clutch 150 are engaged when transmission 30 is configured in the low range mode. As shown in FIG. 6, output coupled clutch 150 couples gear set 190 to jack shaft 34. Accordingly, when engine 20 provides a rotational mechanical energy input to transmission 30, at least one of engine 20 and second electromagnetic device 50 drive output shaft 32 through the interaction of connecting shaft 36 and jack shaft 34 with power split 110, respectively. According to the exemplary embodiment shown in FIG. 6, an energy flow path for the low range includes: engine 20 providing a rotational mechanical energy input to connecting shaft 36; connecting shaft 36 conveying the rotational mechanical energy to second rotatable portion 114; second rotatable portion 114 causing connecting members 116 to rotate about central axes thereof (e.g., axes 117), as well as about first rotatable portion 112 such that carrier 118 and output shaft 32 rotate; and the rotation of connecting members 116 about a central axis causing a rotation of first rotatable portion 112, thus driving first electromagnetic device 40 through neutral clutch 22 such that first electromagnetic device 40 operates as a generator (e.g., generates electrical energy, etc.).


Referring still to FIG. 6, the rotation of carrier 118 drives both carrier 128 and gear set 180. Carrier 128 drives the plurality of planetary gears 126 to rotate about sun gear 122 and about central axes thereof. In one embodiment, second electromagnetic device 50 receives electrical energy generated by first electromagnetic device 40. Accordingly, second electromagnetic device 50 operates as a motor, providing a rotational mechanical energy input to sun gear 122. The sun gear 122 conveys the rotational mechanical energy to the plurality of planetary gears 126 such that each further rotates about the central axis thereof. The plurality of planetary gears 126 drive ring gear 124, and the rotation of ring gear 124 drives gear set 190. According to the exemplary embodiment shown in FIG. 6, gear set 180 and gear set 190 transfer a torque to and from jack shaft 34 with output coupled clutch 150 engaged. As such, engine 20 and second electromagnetic device 50 move a vehicle at a low speed with a high output torque.


As shown in FIG. 7, transmission 30 is selectively reconfigured into a mid range mode of operation. In the mid range mode of operation, transmission 30 may facilitate a mid range output speed operation (e.g., in a forward direction of travel, etc.). The speed range associated with the mid range mode of operation may be larger than that of traditional transmissions (i.e., transmission 30 may provide increased coverage in the mid range, etc.). The mid range mode may improve low output speed torque and high output speed power. In one embodiment, engine 20 provides a rotational mechanical energy input such that first electromagnetic device 40 generates electrical power, and second electromagnetic device 50 uses the generated electrical power to provide a rotational mechanical energy output. Second electromagnetic device 50 thereby provides a rotational mechanical energy input to drive at least one of tires 62 and tires 72. In an alternative embodiment, second electromagnetic device 50 operates as a generator while first electromagnetic device 40 operates as a motor when transmission 30 is configured in the mid range mode. In still another alternative embodiment, both first electromagnetic device 40 and second electromagnetic device 50 operate as a generator in the mid range mode.


As shown in FIG. 7 and Table 1, neutral clutch 22 and output brake 170 are engaged when transmission 30 is configured in the mid range mode. As shown in FIG. 7, output brake 170 inhibits the rotation of gear set 190 (e.g., gear 192, gear 194, gear 196, etc.). Output brake 170 thereby rotationally fixes ring gear 124. In one embodiment, engaging output brake 170 substantially eliminates a power dip between output and input modes of transmission 30. According to the exemplary embodiment shown in FIG. 7, an energy flow path for the mid range forward mode includes: engine 20 providing a rotational mechanical energy input to connecting shaft 36 that is conveyed to second rotatable portion 114; second rotatable portion 114 driving connecting members 116 to rotate about central axes thereof (e.g., axes 117), as well as about first rotatable portion 112 such that both carrier 118 and first rotatable portion 112 rotate; and the rotation of carrier 118 driving the output shaft 32.


With ring gear 124 fixed by output brake 170, second electromagnetic device 50 may operate as a motor. In one embodiment, second electromagnetic device 50 receives electrical energy generated by first electromagnetic device 40. First electromagnetic device 40 operates as a generator, removing a rotational mechanical energy from first rotatable portion 112 through neutral clutch 22. The sun gear 122 conveys rotational mechanical torque from the second electromagnetic device 50 to the plurality of planetary gears 126 such that each further rotates about sun gear 122 (e.g., at an increased rotational speed, etc.). The rotation of the plurality of planetary gears 126 (e.g., effected by sun gear 122, etc.) drives carrier 128 and thereby carrier 118. Carrier 118 drives output shaft 32 at a mid range output speed and may thereby drive a vehicle at a mid range output speed.


As shown in FIG. 8, transmission 30 is selectively reconfigured into a high range mode of operation such that transmission 30 allows for a high output speed operation (e.g., in a forward direction of travel, etc.). In one embodiment, engine 20 provides a rotational mechanical energy input such that second electromagnetic device 50 generates electrical power while first electromagnetic device 40 uses the generated electrical power to provide a rotational mechanical energy output. As such, at least one of engine 20 and first electromagnetic device 40 provide rotational mechanical energy to drive at least one of tires 62 and tires 72. In an alternative embodiment, first electromagnetic device 40 operates as a generator and second electromagnetic device 50 operates as a motor when transmission 30 is configured in the high range mode.


As shown in FIG. 8 and Table 1, neutral clutch 22 and input coupled clutch 140 are engaged when transmission 30 is configured in the high range mode. As shown in FIG. 8, the engagement of input coupled clutch 140 with connecting shaft 36 rotationally couples engine 20 and second electromagnetic device 50. By way of example, engine 20 may provide a rotational mechanical energy input to connecting shaft 36 such that second electromagnetic device 50 generates electrical energy. In one embodiment, first electromagnetic device 40 receives the electrical energy generated by second electromagnetic device 50. First electromagnetic device 40 operates as a motor, providing a rotational mechanical energy input to first rotatable portion 112 through neutral clutch 22 that drives connecting members 116 and carrier 118.


Referring still to FIG. 8, power from engine 20 is transferred to second rotatable portion 114 and connecting members 116. The connecting members 116 are driven by at least one of engine 20 (e.g., via second rotatable portion 114, etc.) and first electromagnetic device 40 (e.g., via first rotatable portion 112, etc.). Carrier 118 rotates, which drives output shaft 32 such that the rotational mechanical energy provided by engine 20 and first electromagnetic device 40 drives a vehicle at a high range speed.


As shown in FIG. 9, transmission 30 is selectively reconfigured into an intermediate shift mode of operation that facilitates transitioning transmission 30 (i.e., shifting, changing modes, etc.) between the mid range mode of operation and the high range mode of operation. According to the embodiment shown in FIG. 9, neutral clutch 22, input coupled clutch 140, and output brake 170 are engaged when transmission 30 is selectively reconfigured into the intermediate shift mode of operation. According to an exemplary embodiment, the intermediate shift mode provides a smooth and robust shifting strategy that functions reliably even in a wide variety of operating conditions, when using various types of oil for the components of transmission 30, and when experiencing valve nonlinearities that may be present in one or more valves of transmission 30. The intermediate shift mode may provide a zero inertia shift through and across two or more overlapping ranges (e.g., the mid range and the high range, etc.). According to the exemplary embodiment shown in FIGS. 7-9, the intermediate shift mode eliminates the need to simultaneously disengage output brake 170 and engage input coupled clutch 140 to shift from the mid range mode to the high range mode, or vice versa. The intermediate shift mode reduces jerking sensations associated with simultaneously disengaging output brake 170 and engaging input coupled clutch 140 to shift from mid range to high range, providing a smoother ride.


During operation, the intermediate shift mode may be used to shift from mid range mode to high range mode or from high range mode to mid range mode. In one embodiment, when shifting between the mid range mode and the high range mode, both input coupled clutch 140 and output brake 170 are engaged for a period of time prior to disengaging input coupled clutch 140 or output brake 170. Transmission 30 may be selectively reconfigured into the intermediate shift mode in response to one or more inputs reaching a predetermined threshold condition, the inputs including a rotational speed of second electromagnetic device 50 and a rotational speed of connecting shaft 36 and/or engine 20. One or more sensors may be positioned to monitor the rotational speed of at least one of engine 20, connecting shaft 36, a portion of second electromagnetic device 50, or still another component. A controller (e.g., controller 210, etc.) may reconfigure transmission 30 into the intermediate shift mode in response to sensing signals provided by the one or more sensors.


As shown in FIG. 10, transmission 30 is selectively reconfigured into a low speed reverse mode of operation. In one embodiment, engine 20 provides a rotational mechanical energy input to transmission 30 such that first electromagnetic device 40 generates electrical power and second electromagnetic device 50 uses the generated electrical power to provide a rotational mechanical energy input to transmission 30. As such, at least one of engine 20 and second electromagnetic device 50 provide rotational mechanical energy to drive at least one of tires 62 and tires 72 in a reverse direction (e.g., backwards, etc.). In an alternative embodiment, first electromagnetic device 40 operates as a motor and second electromagnetic device 50 operates as a generator when transmission 30 is configured in the low range reverse mode.


As shown in FIG. 10 and Table 1, neutral clutch 22 and output coupled clutch 150 are engaged when transmission 30 is configured in the low speed reverse mode. As shown in FIG. 10, the low speed reverse mode is substantially similar to the low range mode of FIG. 6 in that output coupled clutch 150 couples gear set 190 to output shaft 32. In the low speed reverse mode, second electromagnetic device 50 may provide a rotational mechanical energy input to transmission 30 in an opposite direction as compared to the low range mode of FIG. 6.


As shown in FIG. 11, transmission 30 is selectively reconfigured into a mid speed reverse mode of operation such that transmission 30 allows for a mid reverse output speed operation. In one embodiment, engine 20 provides a rotational mechanical energy input such that first electromagnetic device 40 generates electrical power, and second electromagnetic device 50 uses the generated electrical power to provide a rotational mechanical energy input to transmission 30. As such, at least one of engine 20 and second electromagnetic device 50 provides a rotational mechanical energy input to drive at least one of tires 62 and tires 72 in a reverse direction (e.g., backwards). In an alternative embodiment, second electromagnetic device 50 operates as a generator and first electromagnetic device 40 operates as a motor when transmission 30 is configured in the mid speed reverse mode. In still another alternative embodiment, both first electromagnetic device 40 and second electromagnetic device 50 operate as a generator in the mid speed reverse mode.


As shown in FIG. 11 and Table 1, neutral clutch 22 and output brake 170 are engaged when transmission 30 is configured in the mid speed reverse mode. As shown in FIG. 11, output brake 170 inhibits the rotation of gear set 190 (e.g., gear 192, gear 194, gear 196, etc.). Output brake 170 thereby rotationally fixes ring gear 124. According to the exemplary embodiment shown in FIG. 11, an energy flow path for the mid speed reverse mode includes: engine 20 providing a rotational mechanical energy input to connecting shaft 36 that is conveyed to second rotatable portion 114; and second rotatable portion 114 driving connecting members 116 to rotate about central axes thereof (e.g., axes 117), as well as about first rotatable portion 112 such that both carrier 118 and first rotatable portion 112 rotate.


Referring still to FIG. 11, the rotation of carrier 118 drives carrier 128, which rotates the plurality of planetary gears 126 about central axes thereof, as well as about sun gear 122. With ring gear 124 fixed by output brake 170, second electromagnetic device 50 may operate as a motor. In one embodiment, second electromagnetic device 50 receives electrical energy generated by first electromagnetic device 40. Accordingly, first electromagnetic device 40 operates as a generator, removing a rotational mechanical energy from first rotatable portion 112 through neutral clutch 22. Second electromagnetic device 50 receives electrical energy from first electromagnetic device 40, applying a rotational mechanical torque to sun gear 122. The sun gear 122 conveys the rotational mechanical torque to the plurality of planetary gears 126 such that each further rotates about sun gear 122 (e.g., at an increased rotational speed, etc.). The rotation of the plurality of planetary gears 126 (e.g., effected by sun gear 122, etc.) drives carrier 128 and thereby carrier 118. Carrier 118 drives output shaft 32 at a mid reverse output speed and may thereby drive a vehicle at a mid reverse output speed.


As shown in FIG. 12, transmission 30 is selectively reconfigured into a power generation mode such that rotation of connecting shaft 36 rotates first electromagnetic device 40 and second electromagnetic device 50 to generate electrical power. In one embodiment, the electrical power is stored for future use. In another embodiment, the electrical power is used to power internal devices (e.g., control system 200, components of the vehicle, etc.) and/or external devices. As shown in FIG. 12 and Table 1, neutral clutch 22 and input coupled clutch 140 are engaged when transmission 30 is configured in the power generation mode.


According to an exemplary embodiment, engine 20 provides a rotational mechanical energy input to connecting shaft 36, which drives both first electromagnetic device 40 and second electromagnetic device 50. As shown in FIG. 12, second electromagnetic device 50 is rotationally coupled to engine 20 via the engagement of input coupled clutch 140 with connecting shaft 36 such that second electromagnetic device 50 generates electrical power. According to the exemplary embodiment shown in FIG. 12, an energy flow path for the power generation mode includes: connecting shaft 36 provides rotational mechanical energy to second rotatable portion 114 of power split 110; second rotatable portion 114 conveys the rotational mechanical energy from connecting shaft 36 to connecting members 116; the connecting members 116 rotate about central axes thereof (e.g., axes 117), thereby transferring rotational mechanical energy to first rotatable portion 112; first rotatable portion 112 provides the rotational mechanical energy from engine 20 to first electromagnetic device 40 through the shaft of first electromagnetic device 40 and neutral clutch 22 such that first electromagnetic device 40 generates electrical power. In some embodiments, a brake is applied to front axle 60 and/or rear axle 70 to prevent movement of the vehicle 10 in the power generation mode.


According to an alternative embodiment, engine 20 does not provide a rotational mechanical energy input to drive a vehicle. By way of example, first electromagnetic device 40, second electromagnetic device 50, and/or another device may store energy during the above mentioned modes of operation. When sufficient energy is stored (e.g., above a threshold level, etc.), at least one of first electromagnetic device 40 and second electromagnetic device 50 may provide a rotational mechanical energy output such that the vehicle is driven without an input from engine 20 (e.g., an electric mode, etc.).


As shown in FIG. 13, transmission 30 is selectively reconfigured into an electric PTO mode of operation such that first electromagnetic device 40 allows for operation of the PTO output 80 coupled to the secondary output clutch 42 without operation of engine 20 or transmission 30. The electric PTO mode may be more efficient than other modes of operation that drive the PTO outputs 80 through the jack shaft 34, as no energy is expended moving components of engine 20 or transmission 30 in the electric PTO mode. Further, without engine 20 and transmission 30 operating, the vehicle may operate more quietly overall (e.g., without engine noise, without noises generated by movement of gears in transmission 30, etc.). In one embodiment, first electromagnetic device uses electrical energy from an energy storage device (e.g., a battery, a capacitor, etc.) and provides a rotational mechanical energy input to drive PTO output 80. In such embodiments, the electric PTO mode facilitates driving the PTO output 80 without consuming fuel (e.g., as operation of engine 20 is not required).


As shown in FIG. 13 and Table 1, neutral clutch 22 is disengaged and secondary output clutch 42 is engaged when transmission 30 is configured in the electric PTO mode. As shown in FIG. 13, secondary output clutch 42 couples the shaft of first electromagnetic device 40 to PTO output 80 when engaged. With neutral clutch 22 disengaged, first electromagnetic device 40 and PTO output 80 are rotationally decoupled from transmission 30 and thereby may rotate independently of both engine 20 and transmission 30. Accordingly, with only secondary output clutch 42 engaged, energy flows directly from first electromagnetic device 40 to PTO output 80.


Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.


As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.


It should be noted that the terms “exemplary” and “example” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).


The terms “coupled,” “connected,” and the like, as used herein, mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent, etc.) or moveable (e.g., removable, releasable, etc.). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.


References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” “between,” etc.) are merely used to describe the orientation of various elements in the figures. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.


Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, Z, X and Y, X and Z, Y and Z, or X, Y, and Z (i.e., any combination of X, Y, and Z). Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present, unless otherwise indicated.


It is important to note that the construction and arrangement of the systems as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. It should be noted that the elements and/or assemblies of the components described herein may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from scope of the present disclosure or from the spirit of the appended claims.

Claims
  • 1. A drive system for a vehicle, comprising: a first planetary device;a second planetary device directly coupled to the first planetary device;a connecting shaft directly coupled to the first planetary device, wherein the first planetary device, the second planetary device, and the connecting shaft are radially aligned;a first electromagnetic device at least selectively coupled to the first planetary device, wherein the first electromagnetic device includes a first shaft;a second electromagnetic device directly coupled to the second planetary device, wherein the second electromagnetic device includes a second shaft, wherein the first shaft and the second shaft are radially aligned with the first planetary device, the second planetary device, and the connecting shaft, and wherein the connecting shaft extends through the second planetary device to the first planetary device;a clutch positioned to selectively rotationally couple the second shaft to the connecting shaft, wherein the second electromagnetic device is rotationally engaged with the first planetary device when the clutch is engaged; andan output shaft coupled to the first planetary device, wherein the output shaft is radially aligned with the first planetary device, the second planetary device, and the connecting shaft.
  • 2. The drive system of claim 1, wherein the first planetary device is configured to vary a speed ratio between an input to the first planetary device and an output from the first planetary device.
  • 3. The drive system of claim 1, the clutch defining a first clutch, further comprising a second clutch positioned to selectively rotationally couple the first shaft of the first electromagnetic device to a power takeoff output when engaged.
  • 4. The drive system of claim 1, wherein the connecting shaft extends through the second electromagnetic device.
  • 5. The drive system of claim 1, further comprising an auxiliary shaft radially offset from the connecting shaft and the output shaft, wherein the auxiliary shaft is rotationally coupled to the first planetary device.
  • 6. The drive system of claim 5, the clutch defining a first clutch, further comprising a second clutch positioned to selectively rotationally couple the second planetary device to the auxiliary shaft when engaged.
  • 7. The drive system of claim 6, further comprising a brake positioned to selectively limit rotation of a portion of the second planetary device when engaged.
  • 8. The drive system of claim 1, wherein the output shaft is directly coupled to the first planetary device.
  • 9. The drive system of claim 8, wherein the output shaft extends away from the first planetary device and through the first electromagnetic device.
  • 10. A drive system for a vehicle, comprising: a first planetary device including a first rotatable portion, a second rotatable portion, at least one connecting member coupling the first rotatable portion to the second rotatable portion, and a first carrier rotationally supporting the at least one connecting member;a second planetary device including a second carrier, wherein the first carrier is directly coupled to the second carrier;a first electromagnetic device at least selectively coupled to the first planetary device;a second electromagnetic device coupled to the second planetary device; andan output shaft directly coupled to the first carrier, wherein the output shaft is configured to transport power from the first electromagnetic device and the second electromagnetic device to a tractive element of the vehicle; andwherein the output shaft is aligned with the first electromagnetic device and the second electromagnetic device.
  • 11. The drive system of claim 10, wherein the at least one connecting member is repositionable relative to the first carrier such that a speed ratio between one of the first rotatable portion, the second rotatable portion, and the first carrier and another of the first rotatable portion, the second rotatable portion, and the first carrier is variable.
  • 12. The drive system of claim 11, wherein the at least one connecting member is at least one of a ball, a disc, and a wheel configured to frictionally engage the first rotatable portion and the second rotatable portion.
  • 13. The drive system of claim 10, further comprising a clutch positioned to selectively rotationally couple the first electromagnetic device to a power takeoff output when engaged.
  • 14. The drive system of claim 13, the clutch defining a first clutch, further comprising a second clutch positioned to selectively rotationally couple the first rotatable portion to the first electromagnetic device when engaged, and wherein the second electromagnetic device is directly coupled to a sun gear of the second planetary device.
  • 15. The drive system of claim 10, further comprising a clutch positioned to selectively rotationally couple the second electromagnetic device to the second rotatable portion when engaged.
  • 16. The drive system of claim 10, further comprising a brake positioned to selectively limit rotation of the second planetary device when engaged.
  • 17. A vehicle, comprising: a multi-mode transmission including: a first planetary device and a second planetary device, the first planetary device including a carrier, wherein the carrier and the second planetary device are directly coupled;a first motor/generator at least selectively coupled to the first planetary device;a second motor/generator coupled to the second planetary device; andan output shaft directly coupled to the carrier of the first planetary device and configured to selectively receive rotational mechanical energy from the first motor/generator and the second motor/generator; anda drive axle coupled to the output shaft of the multi-mode transmission.
  • 18. The vehicle of claim 17, wherein the first planetary device is configured to vary a speed ratio between an input to the first planetary device and an output from the first planetary device.
  • 19. The vehicle of claim 17, further comprising a clutch positioned to selectively couple the first motor/generator to a power takeoff output when engaged.
  • 20. The vehicle of claim 19, further comprising a brake, wherein the second planetary device includes a ring gear, wherein the brake is positioned to selectively limit rotation of the ring gear when engaged.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/725,154, filed Oct. 4, 2017, which is a continuation-in-part of U.S. application Ser. No. 15/698,415, filed Sep. 7, 2017, which is a continuation-in-part of U.S. application Ser. No. 15/693,176, filed Aug. 31, 2017, which is a continuation-in-part of: U.S. application Ser. No. 14/918,221, filed Oct. 20, 2015, now U.S. Pat. No. 10,421,350; U.S. application Ser. No. 15/595,443, filed May 15, 2017, now U.S. Pat. No. 9,970,515, which is a continuation of U.S. application Ser. No. 14/624,285, filed Feb. 17, 2015, now U.S. Pat. No. 9,651,120; U.S. application Ser. No. 15/595,511, filed May 15, 2017, now U.S. Pat. No. 10,029,555, which is a continuation of U.S. application Ser. No. 14/792,532, filed Jul. 6, 2015, now U.S. Pat. No. 9,650,032, which is a continuation-in-part of U.S. application Ser. No. 14/624,285, filed Feb. 17, 2015, now U.S. Pat. No. 9,651,120; and U.S. application Ser. No. 15/601,670, filed May 22, 2017, now U.S. Pat. No. 9,908,520, which is a continuation of U.S. application Ser. No. 14/792,535, filed Jul. 6, 2015, now U.S. Pat. No. 9,656,659, which is a continuation-in-part of U.S. application Ser. No. 14/624,285, filed Feb. 17, 2015, now U.S. Pat. No. 9,651,120, all of which are incorporated herein by reference in their entireties.

US Referenced Citations (409)
Number Name Date Kind
1951089 Fielder Mar 1934 A
3524069 Stepanov et al. Aug 1970 A
3690559 Rudloff Sep 1972 A
3764867 Smith Oct 1973 A
3799284 Hender Mar 1974 A
3865209 Aihara et al. Feb 1975 A
3966067 Reese Jun 1976 A
4021704 Norbeck May 1977 A
4088934 D'Atre et al. May 1978 A
4097925 Butler, Jr. Jun 1978 A
4113045 Downing, Jr. Sep 1978 A
4196785 Downing, Jr. Apr 1980 A
4292531 Williamson Sep 1981 A
4319140 Paschke Mar 1982 A
4336418 Hoag Jun 1982 A
4347907 Downing, Jr. Sep 1982 A
4411171 Fiala Oct 1983 A
4423362 Konrad et al. Dec 1983 A
4423794 Beck Jan 1984 A
4444285 Stewart et al. Apr 1984 A
4461988 Plunkett Jul 1984 A
4533011 Heidemeyer et al. Aug 1985 A
4562894 Yang Jan 1986 A
4719361 Brubaker Jan 1988 A
4760275 Sato et al. Jul 1988 A
4774399 Fujita et al. Sep 1988 A
4774811 Kawamura Oct 1988 A
4809177 Windle et al. Feb 1989 A
4953646 Kim Sep 1990 A
4966242 Baillargeon Oct 1990 A
4985845 Goetz et al. Jan 1991 A
5067932 Edwards Nov 1991 A
5081832 Mowill Jan 1992 A
5120282 Fjaellstroem Jun 1992 A
5168946 Dorgan Dec 1992 A
5180456 Schultz et al. Jan 1993 A
5195600 Dorgan Mar 1993 A
5201629 Simpson et al. Apr 1993 A
5227703 Boothe et al. Jul 1993 A
5263524 Boardman Nov 1993 A
5264763 Avitan Nov 1993 A
5289093 Jobard Feb 1994 A
5291960 Brandenburg et al. Mar 1994 A
5343971 Heidelberg et al. Sep 1994 A
5345154 King Sep 1994 A
5369540 Konrad et al. Nov 1994 A
5389825 Ishikawa et al. Feb 1995 A
5409425 Shibahata Apr 1995 A
5417299 Pillar et al. May 1995 A
5418437 Couture et al. May 1995 A
5448561 Kaiser et al. Sep 1995 A
5498208 Braun Mar 1996 A
5501567 Lanzdorf et al. Mar 1996 A
5504655 Underwood et al. Apr 1996 A
5508594 Underwood et al. Apr 1996 A
5508689 Rado et al. Apr 1996 A
5516379 Schultz May 1996 A
5538274 Schmitz et al. Jul 1996 A
5558175 Sherman Sep 1996 A
5558588 Schmidt Sep 1996 A
5558589 Schmidt Sep 1996 A
5558595 Schmidt et al. Sep 1996 A
5568023 Grayer et al. Oct 1996 A
5575730 Edwards et al. Nov 1996 A
5575737 Weiss Nov 1996 A
5586613 Ehsani Dec 1996 A
5589743 King Dec 1996 A
5607028 Braun et al. Mar 1997 A
5629567 Kumar May 1997 A
5629603 Kinoshita May 1997 A
5646510 Kumar Jul 1997 A
5669470 Ross Sep 1997 A
5669842 Schmidt Sep 1997 A
5672920 Donegan et al. Sep 1997 A
5679085 Fredriksen et al. Oct 1997 A
5713425 Buschhaus et al. Feb 1998 A
5722502 Kubo Mar 1998 A
5767584 Gore et al. Jun 1998 A
5786640 Sakai et al. Jul 1998 A
5789882 Ibaraki et al. Aug 1998 A
5813487 Lee et al. Sep 1998 A
5813488 Weiss Sep 1998 A
5820150 Archer et al. Oct 1998 A
5820258 Braun Oct 1998 A
5828554 Donegan et al. Oct 1998 A
5847520 Theurillat et al. Dec 1998 A
5865263 Yamaguchi et al. Feb 1999 A
5879265 Bek Mar 1999 A
5880570 Tamaki et al. Mar 1999 A
5881559 Kawamura Mar 1999 A
5895333 Morisawa et al. Apr 1999 A
5924879 Kameyama Jul 1999 A
5925993 Lansberry Jul 1999 A
5927417 Brunner et al. Jul 1999 A
5934395 Koide et al. Aug 1999 A
5939794 Sakai et al. Aug 1999 A
5947855 Weiss Sep 1999 A
5957985 Wong et al. Sep 1999 A
5973463 Okuda et al. Oct 1999 A
5980410 Stemler et al. Nov 1999 A
5986416 Dubois Nov 1999 A
5991683 Takaoka et al. Nov 1999 A
5998880 Kumar Dec 1999 A
6005358 Radev Dec 1999 A
6012004 Sugano et al. Jan 2000 A
6028403 Fukatsu Feb 2000 A
6038500 Weiss Mar 2000 A
6054844 Frank Apr 2000 A
6086074 Braun Jul 2000 A
6104148 Kumar et al. Aug 2000 A
6105984 Schmitz et al. Aug 2000 A
6110066 Nedungadi et al. Aug 2000 A
6201310 Adachi et al. Mar 2001 B1
6298932 Bowman et al. Oct 2001 B1
6356817 Abe Mar 2002 B1
6371878 Bowen Apr 2002 B1
6387007 Fini, Jr. May 2002 B1
6404607 Burgess et al. Jun 2002 B1
6421593 Kempen et al. Jul 2002 B1
6434470 Nantz et al. Aug 2002 B1
6478705 Holmes et al. Nov 2002 B1
6496393 Patwardhan Dec 2002 B1
6501368 Wiebe et al. Dec 2002 B1
6516914 Andersen et al. Feb 2003 B1
6520494 Andersen et al. Feb 2003 B1
6553287 Supina et al. Apr 2003 B1
6553290 Pillar Apr 2003 B1
6561718 Archer et al. May 2003 B1
6563230 Nada May 2003 B2
6575866 Bowen Jun 2003 B2
6580953 Wiebe et al. Jun 2003 B1
6607466 Bordini Aug 2003 B2
6611116 Bachman et al. Aug 2003 B2
6702709 Bowen Mar 2004 B2
6722458 Hofbauer Apr 2004 B2
6726592 Kotani Apr 2004 B2
6757597 Yakes et al. Jun 2004 B2
6764085 Anderson Jul 2004 B1
6793600 Hiraiwa Sep 2004 B2
6819985 Minagawa et al. Nov 2004 B2
6846257 Baker et al. Jan 2005 B2
6852053 Nakano et al. Feb 2005 B2
6852054 Tumback et al. Feb 2005 B2
6860332 Archer et al. Mar 2005 B1
6882917 Pillar et al. Apr 2005 B2
6885920 Yakes et al. Apr 2005 B2
6886647 Gotta May 2005 B1
6909944 Pillar et al. Jun 2005 B2
6922615 Pillar et al. Jul 2005 B2
6953409 Schmidt et al. Oct 2005 B2
6973600 Lau et al. Dec 2005 B2
6976688 Archer et al. Dec 2005 B2
6991054 Takaoka et al. Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6994646 Ai Feb 2006 B2
7000717 Ai et al. Feb 2006 B2
7004868 Oshidari et al. Feb 2006 B2
7006902 Archer et al. Feb 2006 B2
7024296 Squires et al. Apr 2006 B2
7053566 Aizawa et al. May 2006 B2
7072745 Pillar et al. Jul 2006 B2
7073620 Braun et al. Jul 2006 B2
7073847 Morrow et al. Jul 2006 B2
7076356 Hubbard et al. Jul 2006 B2
7086977 Supina et al. Aug 2006 B2
7107129 Rowe et al. Sep 2006 B2
7127331 Pillar et al. Oct 2006 B2
7140461 Morrow Nov 2006 B2
7154236 Heap Dec 2006 B1
7162332 Pillar et al. Jan 2007 B2
7164977 Yakes et al. Jan 2007 B2
7179187 Raghavan et al. Feb 2007 B2
7184862 Pillar et al. Feb 2007 B2
7184866 Squires et al. Feb 2007 B2
7196430 Yang Mar 2007 B2
7204776 Minagawa et al. Apr 2007 B2
7217211 Klemen et al. May 2007 B2
7219756 Bischoff May 2007 B2
7223200 Kojima et al. May 2007 B2
7234534 Froland et al. Jun 2007 B2
7246672 Shirai et al. Jul 2007 B2
7254468 Pillar et al. Aug 2007 B2
7258194 Braun et al. Aug 2007 B2
7274976 Rowe et al. Sep 2007 B2
7276007 Takami et al. Oct 2007 B2
7277782 Yakes et al. Oct 2007 B2
7282003 Klemen et al. Oct 2007 B2
7302320 Nasr et al. Nov 2007 B2
7306064 Imazu et al. Dec 2007 B2
7322896 Minagawa Jan 2008 B2
7338401 Klemen et al. Mar 2008 B2
7357203 Morrow et al. Apr 2008 B2
7363996 Kamada et al. Apr 2008 B2
7367415 Oliver et al. May 2008 B2
7367911 Reghavan et al. May 2008 B2
7379797 Nasr et al. May 2008 B2
7392122 Pillar et al. Jun 2008 B2
7412307 Pillar et al. Aug 2008 B2
7419021 Morrow et al. Sep 2008 B2
7439711 Bolton Oct 2008 B2
7448460 Morrow et al. Nov 2008 B2
7451028 Pillar et al. Nov 2008 B2
7462122 Reghavan et al. Dec 2008 B2
7467678 Tanaka et al. Dec 2008 B2
7479080 Usoro Jan 2009 B2
7493980 Hidaka Feb 2009 B2
7520354 Morrow et al. Apr 2009 B2
7521814 Nasr Apr 2009 B2
7522979 Pillar Apr 2009 B2
7527573 Lang et al. May 2009 B2
7555369 Pillar et al. Jun 2009 B2
7572201 Supina et al. Aug 2009 B2
7576501 Okubo et al. Aug 2009 B2
7597164 Severinsky et al. Oct 2009 B2
7601093 Tabata et al. Oct 2009 B2
7635039 Fujiwara et al. Dec 2009 B2
7678014 Nohara et al. Mar 2010 B2
7689332 Yakes et al. Mar 2010 B2
7711460 Yakes et al. May 2010 B2
7715962 Rowe et al. May 2010 B2
7725225 Pillar et al. May 2010 B2
7729831 Pillar et al. Jun 2010 B2
7749131 Imamura et al. Jul 2010 B2
7756621 Pillar et al. Jul 2010 B2
7784554 Grady et al. Aug 2010 B2
7792618 Quigley et al. Sep 2010 B2
7811191 Iwase et al. Oct 2010 B2
7824293 Schimke Nov 2010 B2
7835838 Pillar et al. Nov 2010 B2
7848857 Nasr et al. Dec 2010 B2
7874373 Morrow et al. Jan 2011 B2
7878750 Zhou et al. Feb 2011 B2
7888894 Sugawara et al. Feb 2011 B2
7908063 Sah Mar 2011 B2
7927250 Imamura et al. Apr 2011 B2
7931103 Morrow et al. Apr 2011 B2
7935021 Tabata et al. May 2011 B2
7935022 Iwase et al. May 2011 B2
7937194 Nasr et al. May 2011 B2
7941259 Tabata et al. May 2011 B2
7972237 Ota Jul 2011 B2
8000850 Nasr et al. Aug 2011 B2
8007402 Tabata et al. Aug 2011 B2
8038572 Matsubara et al. Oct 2011 B2
8062172 Supina et al. Nov 2011 B2
8068947 Conlon et al. Nov 2011 B2
8091662 Tolksdorf Jan 2012 B2
8095247 Pillar et al. Jan 2012 B2
8123645 Schimke Feb 2012 B2
8231491 Oba Jul 2012 B2
8337352 Morrow et al. Dec 2012 B2
8444517 Gradu et al. May 2013 B2
8459619 Trinh et al. Jun 2013 B2
8491438 Kim et al. Jul 2013 B2
8561735 Morrow et al. Oct 2013 B2
8696506 Kaltenbach et al. Apr 2014 B2
8788162 Park Jul 2014 B2
8795113 Grochowski et al. Aug 2014 B2
8801318 Knoble et al. Aug 2014 B2
8801567 Demirovic et al. Aug 2014 B2
8818588 Ambrosio et al. Aug 2014 B2
8864613 Morrow et al. Oct 2014 B2
8894526 Kozarekar et al. Nov 2014 B2
8905892 Lee et al. Dec 2014 B1
9033836 Hiraiwa May 2015 B2
9114699 Takei et al. Aug 2015 B2
9114804 Shukla et al. Aug 2015 B1
9132736 Shukla et al. Sep 2015 B1
9376102 Shukla et al. Jun 2016 B1
9428042 Morrow et al. Aug 2016 B2
9452750 Shukla et al. Sep 2016 B2
9492695 Betz et al. Nov 2016 B2
9504863 Moore Nov 2016 B2
9579530 Betz et al. Feb 2017 B2
9580962 Betz et al. Feb 2017 B2
9650032 Kotloski et al. May 2017 B2
9651120 Morrow et al. May 2017 B2
9656659 Shukla et al. May 2017 B2
9677334 Aiken et al. Jun 2017 B2
9821789 Shukla et al. Nov 2017 B2
9908520 Shukla et al. Mar 2018 B2
9970515 Morrow et al. May 2018 B2
10029555 Kotloski et al. Jul 2018 B2
20020005304 Bachman et al. Jan 2002 A1
20020045507 Bowen Apr 2002 A1
20020065594 Squires et al. May 2002 A1
20030130765 Pillar et al. Jul 2003 A1
20030158635 Pillar et al. Aug 2003 A1
20030163228 Pillar et al. Aug 2003 A1
20030163230 Pillar et al. Aug 2003 A1
20030166429 Tumback Sep 2003 A1
20030171854 Pillar et al. Sep 2003 A1
20030195680 Pillar Oct 2003 A1
20030200015 Pillar Oct 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040019414 Pillar et al. Jan 2004 A1
20040024502 Squires et al. Feb 2004 A1
20040039510 Archer et al. Feb 2004 A1
20040040775 Shimizu et al. Mar 2004 A1
20040055802 Pillar et al. Mar 2004 A1
20040069865 Rowe et al. Apr 2004 A1
20040133319 Pillar et al. Jul 2004 A1
20040133332 Yakes et al. Jul 2004 A1
20040198551 Joe et al. Oct 2004 A1
20040199302 Pillar et al. Oct 2004 A1
20040251862 Imai Dec 2004 A1
20050004733 Pillar et al. Jan 2005 A1
20050038934 Gotze et al. Feb 2005 A1
20050113988 Nasr et al. May 2005 A1
20050113996 Pillar et al. May 2005 A1
20050114007 Pillar et al. May 2005 A1
20050119806 Nasr et al. Jun 2005 A1
20050131600 Quigley et al. Jun 2005 A1
20050137042 Schmidt et al. Jun 2005 A1
20050209747 Yakes et al. Sep 2005 A1
20050234622 Pillar et al. Oct 2005 A1
20050252703 Schmidt et al. Nov 2005 A1
20060111213 Bucknor et al. May 2006 A1
20060128513 Tata et al. Jun 2006 A1
20060223663 Bucknor et al. Oct 2006 A1
20060276288 Iwanaka et al. Dec 2006 A1
20060289212 Haruhisa Dec 2006 A1
20070021256 Klemen et al. Jan 2007 A1
20070105678 Bucknor et al. May 2007 A1
20070243966 Holmes et al. Oct 2007 A1
20070254761 Kim Nov 2007 A1
20070256870 Holmes et al. Nov 2007 A1
20070275808 Iwanaka et al. Nov 2007 A1
20080150350 Morrow et al. Jun 2008 A1
20080200296 Holmes Aug 2008 A1
20080234087 Besnard et al. Sep 2008 A1
20080269000 Abe et al. Oct 2008 A1
20080280726 Holmes et al. Nov 2008 A1
20090054202 Yamakado et al. Feb 2009 A1
20090194347 Morrow et al. Aug 2009 A1
20090209381 Ai et al. Aug 2009 A1
20090221390 Houle Sep 2009 A1
20090227409 Ito et al. Sep 2009 A1
20090227417 Imamura et al. Sep 2009 A1
20090275437 Kersting Nov 2009 A1
20100029428 Abe et al. Feb 2010 A1
20100051361 Katsuta et al. Mar 2010 A1
20100051367 Yamada et al. Mar 2010 A1
20100070008 Parker et al. Mar 2010 A1
20100120579 Kawasaki May 2010 A1
20100121512 Takahashi et al. May 2010 A1
20100138086 Imamura et al. Jun 2010 A1
20100145589 Kobayashi Jun 2010 A1
20100179009 Wittkopp et al. Jul 2010 A1
20100227722 Conlon Sep 2010 A1
20100261565 Ai et al. Oct 2010 A1
20100301668 Yakes et al. Dec 2010 A1
20100312423 Steinhauser et al. Dec 2010 A1
20100326752 Lamperth Dec 2010 A1
20110127095 Imamura et al. Jun 2011 A1
20110130234 Phillips Jun 2011 A1
20110143875 Ono et al. Jun 2011 A1
20110312459 Morrow et al. Dec 2011 A1
20110319211 Si Dec 2011 A1
20120022737 Kumazaki et al. Jan 2012 A1
20120226401 Naito Sep 2012 A1
20130090202 Hiraiwa Apr 2013 A1
20130151131 Laszio et al. Jun 2013 A1
20130196806 Morrow et al. Aug 2013 A1
20130260936 Takei et al. Oct 2013 A1
20130296108 Ortmann et al. Nov 2013 A1
20140094334 Tamai et al. Apr 2014 A1
20140136035 Boskovitch et al. May 2014 A1
20140141915 Naqi et al. May 2014 A1
20140228168 Kaufman et al. Aug 2014 A1
20140229043 Frank et al. Aug 2014 A1
20140235394 Smetana et al. Aug 2014 A1
20140243149 Holmes et al. Aug 2014 A1
20140269145 Fasana et al. Sep 2014 A1
20140288756 Tanaka et al. Sep 2014 A1
20140303822 Kawamura et al. Oct 2014 A1
20140335995 Swales et al. Nov 2014 A1
20140350803 Ye et al. Nov 2014 A1
20140357441 Supina Dec 2014 A1
20140358340 Radev Dec 2014 A1
20150024894 Lee et al. Jan 2015 A1
20150246331 Broker et al. Sep 2015 A1
20150283894 Morrow et al. Oct 2015 A1
20150292600 Ai Oct 2015 A1
20150377327 Lee Dec 2015 A1
20160133557 Mortensen et al. May 2016 A1
20160288780 Shukla et al. Oct 2016 A1
20160311253 Palmer et al. Oct 2016 A1
20160361987 Morrow et al. Dec 2016 A1
20170008507 Shukla et al. Jan 2017 A1
20170108085 Morrow et al. Apr 2017 A1
20170246946 Morrow et al. Aug 2017 A1
20170246947 Kotloski et al. Aug 2017 A1
20170253229 Shukla et al. Sep 2017 A1
20170363180 Steinberger et al. Dec 2017 A1
20170370446 Steinberger et al. Dec 2017 A1
20180023671 Watt et al. Jan 2018 A1
20180023672 Watt et al. Jan 2018 A1
20180031085 Steinberger et al. Feb 2018 A1
20180072303 Shukla et al. Mar 2018 A1
20180162351 Shukla et al. Jun 2018 A1
20180222484 Shively et al. Aug 2018 A1
20180259042 Morrow et al. Sep 2018 A1
20180326832 Kotloski et al. Nov 2018 A1
20180345783 Morrow et al. Dec 2018 A1
20190111910 Shukla et al. Apr 2019 A1
20190178350 Steinberger et al. Jun 2019 A1
20190217698 Broker et al. Jul 2019 A1
20190242460 Morrow et al. Aug 2019 A1
Foreign Referenced Citations (66)
Number Date Country
101107460 Jan 2008 CN
101194114 Jun 2008 CN
101323243 Dec 2008 CN
101356070 Jan 2009 CN
101631688 Jan 2010 CN
103158526 Jun 2013 CN
104553731 Apr 2015 CN
107405990 Nov 2017 CN
18 16 183 Jun 1970 DE
41 08 647 Sep 1992 DE
41 34 160 Apr 1993 DE
44 31 929 Oct 1995 DE
19749074 May 1999 DE
19851436 May 2000 DE
10 2011 109 352 Feb 2013 DE
10 2013 006 028 Oct 2014 DE
0 791 506 Aug 1997 EP
0 622 264 Nov 1998 EP
0 898 213 Feb 1999 EP
0 925 981 Jun 1999 EP
1 018 451 Jul 2000 EP
0 805 059 Aug 2000 EP
1 092 406 Apr 2001 EP
0 564 943 Jun 2001 EP
1 142 744 Oct 2001 EP
0 812 720 Dec 2001 EP
1 229 636 Aug 2002 EP
1 340 643 Sep 2003 EP
0 937 600 Dec 2005 EP
2658259 Aug 1991 FR
1 308 318 Feb 1973 GB
2 302 850 Feb 1997 GB
2 346 124 Aug 2000 GB
2 400 588 Jan 2005 GB
2 400 589 Feb 2005 GB
2 400 590 Mar 2005 GB
60-216703 Oct 1985 JP
2010-070008 Apr 2010 JP
2013-112318 Jun 2013 JP
10-2010-0095073 Aug 2010 KR
WO-9819875 May 1998 WO
WO-0030235 May 2000 WO
WO-0154939 Aug 2001 WO
WO-03055714 Jul 2003 WO
WO-03093046 Nov 2003 WO
WO-2004083081 Sep 2004 WO
WO-2004110849 Dec 2004 WO
WO-2006028452 Mar 2006 WO
WO-2006037041 Apr 2006 WO
WO-2006037098 Apr 2006 WO
WO-2006037099 Apr 2006 WO
WO-2007108805 Sep 2007 WO
WO-2011041549 Apr 2011 WO
WO-2011163135 Dec 2011 WO
WO-2014090483 Jun 2014 WO
WO-2014090486 Jun 2014 WO
WO-2014102030 Jul 2014 WO
WO-2014140096 Sep 2014 WO
WO-2014158078 Oct 2014 WO
WO-2014166723 Oct 2014 WO
WO-2016133557 Aug 2016 WO
WO-2016172250 Oct 2016 WO
WO-2017007599 Jan 2017 WO
WO-2017007600 Jan 2017 WO
WO-2017070388 Apr 2017 WO
WO-2017106410 Jun 2017 WO
Non-Patent Literature Citations (18)
Entry
US 7,154,246 B1, 12/2006, Heap (withdrawn)
Bose, et al., “High Frequency AC vs. DC Distribution System for Next Generation Hybrid Electric Vehicle,” Industrial Electronics, Control and Instrumentation, Proceedings of the 1996 IEEE IECON 22nd International Conference on Taipei, Taiwan, New York, New York, pp. 706-712 Aug. 5-10, 1996.
European Search Report based on European Application No. EP 0724300, date of completion of the search Jul. 4, 2005, 2 pages.
Dana Spicer Central Tire Inflation System Specifications, Dana Corporation, Kalamazoo, Michigan, 2 pages, May 2000.
Diesel Locomotive Technology, http://www.railway-technical.com/diesel.shtml, available by Jan. 24, 2012, 15 pages.
International Search Report and Written Opinion on PCT/US2015/050518, dated Feb. 9, 2016, 18 pages.
International Search Report and Written Opinion on PCT/US2016/038586, dated Oct. 21, 2016, 14 pages.
International Search Report and Written Opinion on PCT/US2016/038587, dated Nov. 10, 2016, 15 pages.
International Search Report and Written Opinion on PCT/US2018/049158, dated Dec. 13, 2018, 18 pages.
International Search Report and Written Opinion on PCT/US2018/049550, dated Dec. 13, 2018, 18 pages.
International Search Report and Written Opinion on PCT/US2018/053983, dated Jan. 3, 2019, 18 pages.
International Search Report for PCT Application No. PCT/US2011/041089, dated Dec. 19, 2011, 6 pages.
Invitation to Pay Additional Fees regarding International Application No. PCT/US2011/041089, dated Sep. 6, 2011, 5 pages.
Khan, I.A., Automotive Electrical Systems: Architecture and Components, Digital Avionics Systems Conference, IEEE, pp. 8.C.5-1-8.C.5-10, 1999.
Miller, Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type, IEEE Transactions on Power Electronics, vol. 21, No. 3, May 2006, 12 pages.
Namuduri, et al., High Power Density Electric Drive for an Hybrid Vehicle, Applied Power Electronics Conference and Exposition, pp. 34-40, Feb. 15, 1998.
Rajashekara, K., History of Electric Vehicles in General Motors, Industry Applications Society Annual Meeting, pp. 447-454, Oct. 2-8, 1993.
Shigley et al., Theory of Machines and Mechanisms, complete text, McGraw-Hill Book Company, published in the United States, 297 pages, 1980.
Related Publications (1)
Number Date Country
20200200237 A1 Jun 2020 US
Continuations (3)
Number Date Country
Parent 15725154 Oct 2017 US
Child 16806623 US
Parent 14792532 Jul 2015 US
Child 15595511 US
Parent 14792535 Jul 2015 US
Child 15601670 US
Continuation in Parts (7)
Number Date Country
Parent 15698415 Sep 2017 US
Child 15725154 US
Parent 15693176 Aug 2017 US
Child 15698415 US
Parent 14918221 Oct 2015 US
Child 15693176 US
Parent 15595511 May 2017 US
Child 14918221 US
Parent 14624285 Feb 2015 US
Child 14792532 US
Parent 15595443 May 2017 US
Child 15693176 US
Parent 15601670 May 2017 US
Child 15693176 US