This patent may be considered to be related to commonly owned U.S. patent application Ser. No. 10/961,864 filed on Oct. 7, 2004 and entitled “Bidirectional Inline Power Port” in the names of inventors Daniel Biederman, Kenneth Coley and Frederick R. Schindler.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/961,243 filed on Oct. 7, 2004 and entitled “Redundant Power and Data Over A Wired Data Telecommunications Network” in the names of inventors Daniel Biederman, Kenneth Coley and Frederick R. Schindler.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/961,904 filed on Oct. 7, 2004 and entitled “Inline Power—Based Common Mode Communications in a Wired Data Telecommunications Network” in the names of inventors Roger A. Karam, Frederick R. Schindler and Wael William Diab.
This patent may be considered to be related to commonly owned U.S. patent application Ser. No. 10/961,865 filed on Oct. 7, 2004 and entitled “Automatic System for Power and Data Redundancy in a Wired Data Telecommunications Network” in the names of inventors Roger A. Karam and Luca Cafiero. That application is hereby incorporated herein by reference as if set forth fully herein.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/982,383 filed on Nov. 5, 2004 and entitled “Power Management for Serial-Powered Device Connections” in the name of inventor Roger A. Karam.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 11/022,266 filed on Dec. 23, 2004 and entitled “Redundant Power and Data In A Wired Data Telecommunications Network” in the names of inventors Roger A. Karam and Luca Cafiero.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 11/000,734 filed on Nov. 30, 2004 and entitled “Power and Data Redundancy in a Single Wiring Closet” in the names of inventors Roger A. Karam and Luca Cafiero.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/981,203 filed on Nov. 3, 2004 and entitled “Powered Device Classification In A Wired Data Telecommunications Network” in the name of inventors Roger A. Karam and John F. Wakerly.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/981,202 filed on Nov. 3, 2004 and entitled “Current Imbalance Compensation for Magnetics in a Wired Data Telecommunications Network” in the names of inventors Roger A. Karam and John F. Wakerly.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/845,021 filed May 13, 2004 and entitled “Improved Power Delivery over Ethernet Cable” in the names of inventors Wael William Diab and Frederick R. Schindler.
This patent may also be considered to be related to commonly owned U.S. Pat. No. 6,541,878 entitled “Integrated RJ-45 Magnetics with Phantom Power Provision” in the name of inventor Wael William Diab.
This patent may also be considered to be related to commonly owned U.S. patent application Ser. No. 10/850,205 filed May 20, 2004 and entitled “Methods and Apparatus for Provisioning Phantom Power to Remote Devices” in the name of inventors Wael William Diab and Frederick R. Schindler.
This patent may also be considered to be related to co-pending commonly owned U.S. patent application Ser. No. 10/033,808 filed Dec. 18, 2001 and entitled “Signal Disruption Detection in Powered Networking Systems” in the name of inventor Roger A. Karam.
The present invention relates generally to networking equipment which is powered by and/or powers other networking equipment over wired data telecommunications network connections.
Inline power (also known as Power over Ethernet and PoE) is a technology for providing electrical power over a wired telecommunications network from power source equipment (PSE) to a powered device (PD) over a link section. The power may be injected by an endpoint PSE at one end of the link section or by a midspan PSE along a midspan of a link section that is distinctly separate from and between the medium dependent interfaces (MDIs) to which the ends of the link section are electrically and physically coupled.
PoE is defined in the IEEE (The Institute of Electrical and Electronics Engineers, Inc.) Standard Std 802.3af-2003 published 18 Jun. 2003 and entitled “IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements: Part 3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications: Amendment: Data Terminal Equipment (DTE) Power via Media Dependent Interface (MDI)” (herein referred to as the “IEEE 802.3af standard”). The IEEE 802.3af standard is a globally applicable standard for combining the transmission of Ethernet packets with the transmission of DC-based power over the same set of wires in a single Ethernet cable. It is contemplated that Inline power will power such PDs as Internet Protocol (IP) telephones, surveillance cameras, switching and hub equipment for the telecommunications network, biomedical sensor equipment used for identification purposes, other biomedical equipment, radio frequency identification (RFID) card and tag readers, security card readers, various types of sensors and data acquisition equipment, fire and life-safety equipment in buildings, and the like. The power is direct current, 48 Volt power available at a range of power levels from roughly 0.5 watt to about 15.4 watts in accordance with the standard. There are mechanisms within the IEEE 802.3af standard to allocate a requested amount of power. Other proprietary schemes also exist to provide a finer and more sophisticated allocation of power than that provided by the IEEE 802.3af standard while still providing basic compliance with the standard. As the standard evolves, additional power may also become available. Conventional 8-conductor type RG-45 connectors (male or female, as appropriate) are typically used on both ends of all Ethernet connections. They are wired as defined in the IEEE 802.3af standard. Two conductor wiring such as shielded or unshielded twisted pair wiring (or coaxial cable or other conventional network cabling) may be used so each transmitter and receiver has a pair of conductors associated with it.
Turning now to
Inline power is also available through techniques that are non-IEEE 802.3 standard compliant as is well known to those of ordinary skill in the art.
In order to provide regular inline power to a PD from a PSE it is a general requirement that two processes first be accomplished. First, a “discovery” process must be accomplished to verify that the candidate PD is, in fact, adapted to receive inline power. Second, a “classification” process must be accomplished to determine an amount of inline power to allocate to the PD, the PSE having a finite amount of inline power resources available for allocation to coupled PDs.
The discovery process looks for an “identity network” at the PD. The identity network is one or more electrical components which respond in certain predetermined ways when probed by a signal from the PSE. One of the simplest identity networks is a resistor coupled across the two pairs of common mode power/data conductors. The IEEE 802.3af standard calls for a 25,000 ohm resistor to be presented for discovery by the PD. The resistor may be present at all times or it may be switched into the circuit during the discovery process in response to discovery signals from the PSE.
The PSE applies some inline power (not “regular” inline power, i.e., reduced voltage and limited current) as the discovery signal to measure resistance across the two pairs of conductors to determine if the 25,000 ohm identity network is present. This is typically implemented as a first voltage for a first period of time and a second voltage for a second period of time, both voltages exceeding a maximum idle voltage (0-5 VDC in accordance with the IEEE 802.3af standard) which may be present on the pair of conductors during an “idle” time while regular inline power is not provided. The discovery signals do not enter a classification voltage range (typically about 15-20V in accordance with the IEEE 802.3af standard) but have a voltage between that range and the idle voltage range. The return currents responsive to application of the discovery signals are measured and a resistance across the two pairs of conductors is calculated. If that resistance is the identity network resistance, then the classification process may commence, otherwise the system returns to an idle condition.
In accordance with the IEEE 802.3af standard, the classification process involves applying a voltage in a classification range to the PD. The PD may use a current source to send a predetermined classification current signal back to the PSE. This classification current signal corresponds to the “class” of the PD. In the IEEE 802.3af standard as presently constituted, the classes are as set forth in Table I:
The discovery process is therefore used in order to avoid providing inline power (at full voltage of −48VDC) to so-called “legacy” devices which are not particularly adapted to receive or utilize inline power.
The classification process is therefore used in order to manage inline power resources so that available power resources can be efficiently allocated and utilized.
IEEE 802.3af power over Ethernet technology is focused on providing power from a single PSE to a single PD, the typical situation where a data port on an Ethernet switch powers an attached PD such as a VOIP telephone. In many cases where PDs are used, it may be desirable to provide some redundancy in terms of data and/or power delivery for cases in which equipment (hubs, switches, cable and the like) providing the power and/or data fails to continue to do so.
A power sourcing equipment-powered device (PSE-PD) combination unit requests inline power from a connected PSE or other PSE-PD combination unit by having the PD portion of the PD-PSE combination unit adapt its electrical characteristics, if necessary, to obtain the maximum power available. The PD-PSE combination device keeps track of available power less power consumed locally with a summation unit. A PSE manager unit grants PD power requests from downstream devices based upon the available power left (e.g., original PSE power less losses less local consumption).
Other aspects of the inventions are described and claimed below, and a further understanding of the nature and advantages of the inventions may be realized by reference to the remaining portions of the specification and the attached drawings.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present invention and, together with the detailed description, serve to explain the principles and implementations of the invention.
In the drawings:
Embodiments of the present invention described in the following detailed description are directed at methods and apparatuses for providing inline power to multiple daisy chained devices in a wired data telecommunications network. Those of ordinary skill in the art will realize that the detailed description is illustrative only and is not intended to restrict the scope of the claimed inventions in any way. Other embodiments of the present invention, beyond those embodiments described in the detailed description, will readily suggest themselves to those of ordinary skill in the art having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. Where appropriate, the same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or similar parts.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Note that since fixed voltages are generally used for inline power provision in data communications networks implementing inline power, the terms “power” and “current” are largely interchangeable as used herein. While we often refer to “power” being allocated or requested, more technically it is usually the electrical current magnitude which is being allocated and requested, thus, the two terms should be treated as equivalents for the purposes of this disclosure.
Data communications networks have become an integral part of everyday life for many people. As more and more applications for data networks become available, more and more devices are becoming available which not only require a data connection but also require a power connection. Integrated circuitry generally makes power demands of such circuitry relatively small, however, voice over internet protocol (VOIP) telephones, networked cameras, networked sensors, wireless access points, and the like all often require at least a few watts of power and can benefit from daisy-chained connectivity without the requirement for a cable run back to a server or switch at every node.
Turning now to
Turning now to
When the PD 124 presents an identity network corresponding to a lower power request, the request will be either accepted or rejected by PSE port 126. If accepted, the power will be provided at the lower level, if rejected, the process will continue until power is provided or the PD runs out of classes to try. If the PD component 124 runs out of classes to try, never having received an acceptance of a power request, it will then give up and no inline power will be transferred from port 126 to PD component 124.
In accordance with an embodiment of the present invention, resistors are used as the identity network and a power request selection switch (PRSS) (which may be any form of suitable switching circuitry) 128 selects a suitable resistance from a power request resistor bank 130 to present to the coupled port 126 during the inline power negotiation phase. The PRSS 128 operates under the control of a controller circuit 132 (which may be implemented with an RC (resistor-capacitor) circuit, nonvolatile memory, CMOS (complementary metal oxide semiconductor) memory, or other suitable circuitry). The controller circuit 132 is coupled to PD component 124 so that it is aware of the state of negotiations for power.
Once a request for power is accepted, the entire PSE-PD combination unit powers up. Once powered up, the requested power value from the PSE 126 is presented to summation unit 134 (which, as discussed above, may be implemented with a microprocessor). From that power value is subtracted a measured or assumed value for the power consumed within the PSE-PD combination unit and, optionally, any measured or assumed power losses due to cabling. The summation unit calculates the remaining power value available and makes that value available to the PSE component 136 so that it may provide up to that value to a daisy chained PD unit such as second PSE-PD combination unit 138.
The number of devices in the chain is limited by the granularity of power sensing and power classes established (e.g., under IEEE 802.3af there are 4 classes: 0, 4, 7, 15.4 watts). It is anticipated that higher levels of power will eventually be made available under IEEE 802.3af and possibly finer granularity allowing more classes. With three levels of delivered power available, the present invention can be utilized to support a maximum of three devices each consuming four watts or less. By decreasing the granularity of the current sensing, more devices could be supported to share the total of 15.4 watts (potential more on future systems).
The PSE-PD combination unit can, for example, include circuitry to provide functionality such as an IP camera, a VOIP telephone, a sensor, and the like, with the power for these functions supplied as inline power and accounted for as consumed power as discussed above.
Three primary functional blocks of the PSE-PD combination unit are: (1) The PD component 124 which acts as a PD power request unit to request power from a coupled PSE based on predefined current limits drawn by the PD in the power classification stage. These current limits are represented by resistance values in one embodiment of the invention. By adjusting the PRSS 128 the power requested is changed (usually reduced after a rejection). Once a power request is accepted, the PRSS 128 stays in that state until a new power classification cycle is initiated (typically upon reboot of a switch or an interruption in connectivity to the PSE 126. The state of the PRSS 128 is representative of the power available to the PSE-PD combination unit 122 and a corresponding value is provided to the summation unit 134. (2) The summation unit 134 which sums power values from the PSE 126 with the power consumed (either measured or assumed). (3) The PSE Manager Unit 140 which grants (or rejects) PD power requests from PDs coupled to PSE port 136.
Turning now to
Turning now to
While embodiments and applications of this invention have been shown and described, it will now be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts disclosed herein. Therefore, the appended claims are intended to encompass within their scope all such modifications as are within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4835737 | Herrig et al. | May 1989 | A |
5122691 | Balakrishnan | Jun 1992 | A |
5148144 | Sutterlin et al. | Sep 1992 | A |
5237511 | Caird et al. | Aug 1993 | A |
5268592 | Bellamy et al. | Dec 1993 | A |
5289359 | Ziermann | Feb 1994 | A |
5386567 | Lien et al. | Jan 1995 | A |
5406260 | Cummings et al. | Apr 1995 | A |
5461671 | Sakuragi et al. | Oct 1995 | A |
5483574 | Yuyama | Jan 1996 | A |
5491804 | Heath et al. | Feb 1996 | A |
5531612 | Goodall et al. | Jul 1996 | A |
5608792 | Laidler | Mar 1997 | A |
5613130 | Teng et al. | Mar 1997 | A |
5639267 | Loudermilk | Jun 1997 | A |
5726506 | Wood | Mar 1998 | A |
5742513 | Bouhenguel et al. | Apr 1998 | A |
5758102 | Carey et al. | May 1998 | A |
5775946 | Briones | Jul 1998 | A |
5790391 | Stich et al. | Aug 1998 | A |
5790873 | Popper et al. | Aug 1998 | A |
5793987 | Quackenbush et al. | Aug 1998 | A |
5796185 | Takata et al. | Aug 1998 | A |
5808660 | Sekine et al. | Sep 1998 | A |
5809256 | Najemy | Sep 1998 | A |
5834925 | Chesavage | Nov 1998 | A |
5884086 | Amoni et al. | Mar 1999 | A |
5884233 | Brown | Mar 1999 | A |
5991885 | Chang et al. | Nov 1999 | A |
5994998 | Fisher et al. | Nov 1999 | A |
6033266 | Long | Mar 2000 | A |
6036547 | Belopolsky et al. | Mar 2000 | A |
6059581 | Wu | May 2000 | A |
6068520 | Winings et al. | May 2000 | A |
6099349 | Boutros | Aug 2000 | A |
6115468 | De Nicolo | Sep 2000 | A |
6134666 | De Nicolo | Oct 2000 | A |
6162089 | Costello et al. | Dec 2000 | A |
6218930 | Katzenberg et al. | Apr 2001 | B1 |
6233128 | Spencer et al. | May 2001 | B1 |
6310781 | Karam | Oct 2001 | B1 |
6396392 | Abraham | May 2002 | B1 |
6448899 | Thompson | Sep 2002 | B1 |
6496105 | Fisher et al. | Dec 2002 | B2 |
6541878 | Diab | Apr 2003 | B1 |
6643566 | Lehr et al. | Nov 2003 | B1 |
6701443 | Bell | Mar 2004 | B1 |
6762675 | Cafiero et al. | Jul 2004 | B1 |
6764343 | Ferentz | Jul 2004 | B2 |
6804351 | Karam | Oct 2004 | B1 |
6958699 | Karam | Oct 2005 | B1 |
6986071 | Darshan et al. | Jan 2006 | B2 |
7023809 | Rubinstein et al. | Apr 2006 | B1 |
7089126 | Muir | Aug 2006 | B2 |
7145439 | Darshan et al. | Dec 2006 | B2 |
7154381 | Lang et al. | Dec 2006 | B2 |
7159129 | Pincu et al. | Jan 2007 | B2 |
7162377 | Amrod et al. | Jan 2007 | B2 |
7257724 | Lehr et al. | Aug 2007 | B2 |
20040049321 | Lehr et al. | Mar 2004 | A1 |
20040073597 | Caveney et al. | Apr 2004 | A1 |
20040146061 | Bisceglia et al. | Jul 2004 | A1 |
20040260794 | Ferentz et al. | Dec 2004 | A1 |
20050132240 | Stineman, Jr. et al. | Jun 2005 | A1 |
20050197094 | Darshan et al. | Sep 2005 | A1 |
20050257262 | Matityahu et al. | Nov 2005 | A1 |
20060212724 | Dwelley et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
WO9623377 | Aug 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20060273661 A1 | Dec 2006 | US |